Perforce Helix Core Server
Deployment Package (for UNIX/Linux)

Perforce Professional Services

Version v2024.2, 2025-03-04

Table of Contents

Preface
1. Overview
1.1. Using this Guide
1.2. Getting the SDP
1.3. Checking the SDP Version
2. Setting up the SDP
2.1. Terminology Definitions
2.1.1. Process
2.1.2. Instance
2.1.3. Server machine
2.1.4. Server spec
2.1.5. Server
2.2. Pre-Requisites
2.3. Volume Layout and Hardware
3. Maintaining the SDP
3.1. Backup procedures
3.1.1. Metadata checkpoints
3.1.2. Backup of the partition containing depots, checkpoints, and the SDP configuration
3.2. Notifications
3.2.1. Configuration
3.2.2. Notifications to monitor
3.2.2.1. Daily Checkpoint
3.2.2.2. Verify
3.2.2.3. Sync Replica
3.3. Disk usage
4. Installing the SDP
4.1. Using install_sdp.sh
4.1.1. Planning
4.1.2. STEP 1: Configure storage.
4.1.3. STEP 2: Download the install_sdp.sh script.
4.1.4. STEP 3: Generate install configuration file.
4.1.5. STEP 4: Modify install configuration file.
4.1.6. STEP 5: Install SDP (Dry Run).
4.1.7. STEP 6: Install SDP (Live Run).
4.1.8. STEP 7: Install a license file.
4.1.9. Start Your Helix Core Server
4.2. Using mkdirs.sh
4.2.1. Use of SSL

© © © ©O©W 0 W 00 0 0 N N N N N N9 o g g g g b ok bk oW w NN e

S S S Y
[I NI NC R S N = T = B o

4.2.1.1. Changing SSL Certificates
4.2.1.2. Configuration script mkdirs.cfg
4.2.2. SDP Init Scripts
4.2.2.1. Configuring systemd
Configuring systemd for p4d
Configuring systemd for p4p
Configuring systemd for p4dtg
Configuring systemd p4broker - multiple configs
4.2.2.2. Enabling systemd under SELinux
4.2.2.3. Configuring SysV Init Scripts
4.2.3. Configuring Automatic Service Start on Boot
4.2.3.1. Automatic Start for Systems using systemd
4.2.3.2. For systems using the SysV init mechanism
4.2.4. SDP Crontab Templates
4.2.5. Completing Your Server Configuration
4.2.6. Validating your SDP installation
4.3. Local SDP Configuration
4.3.1. Load Order
4.4. Setting your login environment for convenience
4.5. Configuring protections, file types, monitoring and security
4.6. Operating system configuration
4.6.1. Configuring email for notifications
4.6.2. Swarm Email Configuration
4.6.3. Configuring PagerDuty for notifications
4.6.3.1. Prerequisites
4.6.3.2. SDP Configuration
4.6.3.3. Optional variables
Example Additional Context Configuration
4.6.4. Configuring AWS Simple Notification Service (SNS) for notifications
4.6.4.1. Prerequisites
4.6.4.2. SDP Configuration
4.6.4.3. Example IAM Policy
4.7. Other server configurables
4.8. Archiving configuration files
4.9. Installing Swarm Triggers
5. Backup, Replication, and Recovery
5.1. Typical Backup Procedure
5.2. Planning for HA and DR
5.2.1. Further Resources
5.2.2. Creating a Failover Replica for Commit or Edge Server
5.2.3. What is a Failover Replica?

12
13
14
15
15
16
16
17
19
20
21
21
21
21
21
22
24
24
24
24
25
25
26
26
27
27
27
27
28
28
28
29
29
29
29
32
32
33
34
34
34

5.2.4. Mandatory vs Non-mandatory Standbys
5.2.5. Server host naming conventions
5.3. Full One-Way Replication
5.3.1. Replication Setup
5.3.2. Replication Setup for Failover
5.3.3. Pre-requisites for Failover
5.3.4. Using mKkrep.sh
5.3.4.1. SiteTags.cfg
5.3.4.2. Output of mkrep.sh
5.3.5. Addition Replication Setup
5.3.6. SDP Installation
5.3.6.1. SSH Key Setup

5.4. Recovery Procedures

5.4.1. Recovering a master server from a checkpoint and journal(s)

5.4.2. Recovering a replica from a checkpoint
5.4.3. Recovering from a tape backup

5.4.4. Failover to a replicated standby machine

6. Upgrades

6.1. Upgrade Order: SDP first, then Helix P4D
6.2. SDP and P4D Version Compatibility
6.3. Upgrading the SDP
6.3.1. Sample SDP Upgrade Procedure
6.3.1.1. Sample SDP Upgrade in Classic Structure

6.3.1.2. Sample SDP Upgrade in OS Package Structure

6.3.2. SDP Legacy Upgrade Procedure
6.4. Upgrading Helix Software with the SDP

6.4.1. Get Latest Helix Binaries

6.4.2. Upgrade Each Instance

6.4.3. Global Topology Upgrades - Outer to Inner
6.5. Database Modifications

7. Maximizing Server Performance

7.1. Ensure Transparent Huge Pages (THP) is turned off
7.2. Putting server.locks directory into RAM
7.3. Installing monitoring packages
7.4. Optimizing the database files
7.5. P4V Performance Settings
7.6. Proactive Performance Maintenance
7.6.1. Limiting large requests

7.6.2. Offloading remote syncs

8. Tools and Scripts

8.1. General SDP Usage

35
36
37
37
37
37
38
38
39
39
39
39
40
40
41
41
42
43
43
43
43
44
44
45
45
46
46
46
46
47
49
49
51
52
53
53
53
53
54
35
35

8.1.1. Linux 55

8.1.2. Monitoring SDP activities 56
8.2. Upgrade Scripts 56
8.2.1. get_helix_binaries.sh 56
8.2.2. upgrade.sh 60
8.2.3. sdp_upgrade.sh 70
8.3. Legacy Upgrade Scripts 79
8.3.1. clear_depot_Map_fields.sh 79
8.4. Core Scripts 81
8.4.1. p4_vars 81
8.4.2. p4_<instance>.vars 81
8.4.3. p4master_run 82
8.4.4. daily_checkpoint.sh 82
8.4.5. keep_offline_db_current.sh 83
8.4.6. live_checkpoint.sh 83
8.4.7. mkrep.sh 84
8.4.8. p4verify.sh 90
8.4.9. p4login 104
8.4.10. p4d_<instance>_init 106
8.4.11. recreate_offline _db.sh 107
8.4.12. refresh_P4ROOT from_offline db.sh 107
8.4.13. run_if master.sh 108
8.4.14. run_if edge.sh 108
8.4.15. run_if replica.sh 108
8.4.16. run_if master/edge/replica.sh 108
8.4.17. sdp_health_check.sh 108
8.5. More Server Scripts 110
8.5.1. p4.crontab 110
8.5.2. verify_sdp.sh 110
8.6. Other Scripts and Files 114
8.6.1. backup_functions.sh 114
8.6.2. broker_rotate.sh 114
8.6.3. ccheck.sh 115
8.6.4. edge_dump.sh 117
8.6.5. edge_vars 117
8.6.6. edge_shelf replicate.sh 117
8.6.7.load_checkpoint.sh 118
8.6.8. gen_default_broker_cfg.sh 128
8.6.9. journal_watch.sh 128
8.6.10. kill_idle.sh 129

8.6.11. mkdirs.sh 129

8.6.12. p4d_base 137

8.6.13. p4broker_base 137
8.6.14. p4ftpd_base 137
8.6.15. p4p_base 137
8.6.16. p4pcm.pl 137
8.6.17. p4review2.py 138
8.6.18. proxy_rotate.sh 139
8.6.19. p4sanity_check.sh 139
8.6.20. p4dstate.sh 140
8.6.21. ps_functions.sh 140
8.6.22. pull.sh 140
8.6.23. pull_test.sh 141
8.6.24. purge_revisions.sh 142
8.6.25. recover_edge.sh 143
8.6.26. replica_cleanup.sh 143
8.6.27. replica_status.sh 144
8.6.28. request_replica_checkpoint.sh 144
8.6.29. rotate_journal.sh 144
8.6.30. submit.sh 145
8.6.31. submit_test.sh 146
8.6.32. sync_replica.sh 146
8.6.33. templates directory 146
8.6.34. update_limits.py 147

9. Sample Procedures 148
9.1. Installing Python3 and P4Python 148
9.2. Installing CheckCaseTrigger.py 149
9.3. Swarm JIRA Link 150
9.4. Reseeding an Edge Server 151
9.5. Edge Reseed Scenario 152
9.5.1. Step 0: Preflight Checks 152
9.5.2. Step 1: Create New Edge Seed Checkpoint 152
9.5.3. Step 2: Transfer Edge Seed 153
9.5.4. Step 3: Reseed the Edge 153
Appendix A: SDP Package Contents and Planning 155
A.1. SDP Classic and OS Package Structures 155
A.2. SDP Runtime Structure 157
A.2.1. The Site Directory 158
A.3. P4D versions and links 158
A.4. Storage Volumes Layout 159
A.4.1. Storage Volumes for a Helix Core Server 159

A.4.2. Storage Volumes for a Helix Proxy 162

A.4.3. Storage Volumes for a Helix Broker 162

A.5. Memory and CPU 163
A.6. Case Insensitive P4D on UNIX/Linux 163
Appendix B: The journalPrefix Standard 165
B.1. SDP Scripts that set journalPrefix 165
B.2. First Form of journalPrefix Value 165
B.2.1. Detail on "Completely Unfiltered" 165

B.3. Second Form of journalPrefix Value 166
B.4. Scripts for Maintaining the offline_db 166
B.5. SDP Structure and journalPrefix 167
B.6. Replicas of Edge Servers 167
B.7. Goals of the journalPrefix Standard 168
Appendix C: Server Spec Naming Standard 169
C.1. General Form 169
C.1.1. Commit Server Spec 169
C.1.2. Helix Server Tags 170
C.1.3. Replica Type Tags 170
C.1.3.1. Replication Notes 171

C.1.4. Site Tags 171

C.2. Example Server Specs 172
C.3. Implications of Replication Filtering 172
C.4. Other Replica Types 172
C.5. The SDP mkrep.sh script 172
Appendix D: Frequently Asked Questions 173
D.1. How do I tell what version of the SDP I have? 173
D.2. How do I change super user password? 173
D.3. Can I remove the perforce user? 174
D.4. CanIclone a VM to create a standby replica? 175
Appendix E: Troubleshooting Guide 177
E.1. Daily_checkpoint.sh fails 177
E.1.1. Last checkpoint not complete. Check the backup process or contact support. 177

E.2. Replication appears to be stalled 177
E.2.1. Resolution 178
E.2.2. Make Replication Errors Visible 179
E.2.3. Remove state file 179

E.3. Archive pull queue appears to be stalled 180
E.3.1. Resolutions 180
E.3.1.1. Remove and re-queue 180
E.3.1.2. Check for verify errors on the parent server 181

E.4. Can’t login to edge server 181

E.4.1. Resolution 181

E.5. Updating offline_db for an edge server
E.5.1. Resolution
E.6. Journal out of sequence in checkpoint.log file
E.7. Unexpected end of file in replica daily sync
Appendix F: Starting and Stopping Services
F.1. SDP Service Management with the systemd init mechanism
F.1.1. Brokers and Proxies
F.1.2. Root or sudo required with systemd
F.2. SDP Service Management with SysV init mechanism
Appendix G: Brokers in Stack Topology
Appendix H: SDP Health Checks
Appendix I: More Detail on install_sdp.sh
I.1. Sample configuration file sdp_install.cfg
[.2. install_sdp.sh
Appendix J: More Detail on mkdirs.sh

181
181
182
183
184
184
185
185
185
187
188
189
189
193
206

Preface -1 of 213
Preface

The Server Deployment Package (SDP) is the implementation of Perforce’s best practices for
operating and managing a production Perforce Helix Core Version Control System. It is intended to
provide the Helix Core administration team with tools to help with:

* Production Focus

» Simplify Management

» Simplify Upgrades and make them fast and safe

High Availability (HA) and Disaster Recovery (DR)

Best Practice Configurables

* Optimal Performance, Data Safety, and Simplified Backup

This guide is intended to provide instructions of setting up the SDP to help provide users of Helix
Core with the above benefits.

This guide assumes some familiarity with Perforce and does not duplicate the basic information in
the Perforce user documentation. This document only relates to the Server Deployment Package
(SDP). All other Helix Core documentation can be found here: Perforce Support Documentation or
Helix Core Documentation.

Related Guides:

* SDP Release Notes
e SDP Failover Guide
¢ SDP Guide for Windows

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document or the SDP to consulting-helix-core@perforce.com.

© 2007-2024 Perforce Software, Inc. 1

https://www.perforce.com/support/self-service-resources/documentation
https://help.perforce.com/helix-core/
ReleaseNotes.pdf
SDP_Failover_Guide.pdf
SDP_Guide.Windows.pdf
mailto:consulting-helix-core@perforce.com

2 0f 213 - Chapter 1. Overview
Chapter 1. Overview

The SDP has four main components:

* Hardware and storage layout recommendations for Perforce.

* Scripts to automate critical maintenance activities.

Scripts to aid the setup and management of replication (including failover for DR/HA).

* Scripts to assist with routine administration tasks.

Each of these components is covered, in detail, in this guide.

1.1. Using this Guide

Chapter 2, Setting up the SDP describes concepts, terminology and pre-requisites

Chapter 3, Maintaining the SDP covers administrative duties associated with keeping an installation
of the SDP in good shape.

Chapter 4, Installing the SDP consists of what you need to know to install SDP and setup a Helix
Core Server, Broker, or Proxy.

Chapter 5, Backup, Replication, and Recovery gives information around the Backup, Restoration and
Replication of Helix Core, including some guidance on planning for HA (High Availability) and DR
(Disaster Recovery)

Chapter 6, Upgrades covers upgrades of SDP as well as upgrading Helix Core binaries such as p4d
and p4p.

Chapter 7, Maximizing Server Performance covers optimizations and proactive actions.
Chapter 8, Tools and Scripts covers all the scripts used within the SDP in detail.
Appendix A, SDP Package Contents and Planning describes the details of the SDP package.

Appendix B, The journalPrefix Standard describes the standard for setting the journalPrefix
configurable.

Appendix C, Server Spec Naming Standard describes the standard for naming 'server' specs created
with the p4 server command.

Appendix D, Frequently Asked Questions and Appendix E, Troubleshooting Guide are useful for other
questions.

Appendix F, Starting and Stopping Services gives on overview of starting and stopping services with
common init mechanisms, systemd and SysV.

2 © 2007-2024 Perforce Software, Inc.

Chapter 1. Overview - 3 of 213

1.2. Getting the SDP

The SDP is downloaded as a single zipped tar file the latest version can be found at:
* https://swarm.workshop.perforce.com/files/guest/perforce_software/sdp/downloads

The file to download containing the latest SDP is consistently named sdp.Unix.tgz. A copy of this file
also exists with a version-identifying name, e.g. sdp.Unix.2021.2.28649.tqgz.

The direct download link to use with curl or wget is illustrated with this command:
curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

or

wget
https://swarm.workshop.perforce.com/download/guest/perforce_software/sdp/downloads/sdp
.Unix.tgz

1.3. Checking the SDP Version

Once installed, the SDP Version file is stored as /p4/sdp/Version. This is a simple text file that
contains the SDP version string. The version can be checked using a command like cat, as in this
sample command:

$ cat /p4/sdp/Version
Rev. SDP/MultiArch/2020.1/27955 (2021/08/13)

That string can be found in Change History section of the SDP Release Notes. This can be useful in
determining if your SDP is the latest available, and to see what features are included.

© 2007-2024 Perforce Software, Inc. 3

https://swarm.workshop.perforce.com/files/guest/perforce_software/sdp/downloads
ReleaseNotes.pdf

4 of 213 - Chapter 2. Setting up the SDP
Chapter 2. Setting up the SDP

This section tells you how to configure the SDP to setup a new Helix Core server.

The SDP can be installed on multiple server machines, and each server machine can host one or
more Helix Core server instances. See Section 2.1, “Terminology Definitions” for detailed definition
of terms.

The SDP implements a standard logical directory structure which can be implemented flexibly on
one or many physical server machines.

Additional relevant information is available in the System Administrator Guide.

2.1. Terminology Definitions

Key terms are defined in this section.

2.1.1. Process

A process is a running operating system process with a process identifier (PID) known to the
operating system. It should normally be qualified as to what type of process it is:

* p4d process - a running p4d process with it’s own copy of db.* files. P4D processes may be of
any one of the standard types, e.g. standard or commit-server, and any of the valid replica types:
standby, forwarding-standby, forwarding-replica, edge-server etc (see p4 server and the Services:
field in the P4 Command Reference).

* p4p process - proxy instance talking to a single upstream p4d instance

* p4broker process - p4broker talking to a single upstream p4d instance

2.1.2. Instance

An instance is a logically independent set of Helix Core data and metadata, represented by entities
such as changelist numbers and depot paths, and existing on a storage device in the form of db.*
files (metadata) and versioned files (archive files). Thus, the instance is a reference to the logical
data set, with its set of users, files, file histories, and changelists.

Some facts about SDP instance names:

* The default SDP instance name is simply 1 (the digit 'one’).

* Any alphanumeric name can be used (e.g. internal). It is mainly of interest to administrators,
not regular users. Underscores are also allowed; dots should not be used in SDP instance names.

* As they are typed often in various admin operational tasks:

o Instance names are best kept short. A length of 1-5 characters is recommended, with a
maximum of 32 characters.

- Lowercase letters are preferred and required at some sites, but not required by the SDP.

* SDP instance names can be any alphanumeric name. Underscores (_) and dashes (-) are also
4 © 2007-2024 Perforce Software, Inc.

https://help.perforce.com/helix-core/server-apps/p4sag/current/Content/P4SAG/Home-p4sag.html
https://help.perforce.com/helix-core/server-apps/cmdref/current/Content/CmdRef/p4_server.html#Form_Fields_..211

Chapter 2. Setting up the SDP - 5 of 213

allowed. Dots, spaces, and other special characters should not be used in SDP instance names.

* An instance has a well defined name, embedded in its P4AROOT value. If the P4ROOT is
/p4/ace/root, for example, ace is the instance name.

* An instance must operate with at least one p4d process on a master server machine. The
instance may also extend to many machines running additional p4d, p4broker, and p4p
processes. For the additional p4d processes, they can be replicas of various types, to include
standby, edge, and filtered forwarding replicas (to name a few).

* On all machines on which an instance is physically extended, including proxy, broker, edge and
replica machines, the instance exists as /p4/N, where N is the instance name.

e There can be more than one instance a machine.
2.1.3. Server machine

A server machine is a host machine (virtual or physical) with operating system and on which any
number of p4d or other processes may be running.

2.1.4. Server spec

A server spec (or server specification) is the entity managed using the p4 server command (and the
plural p4 servers to list all of them) - P4 Command Reference.

2.1.5. Server
The term server may mean any one of:

¢ A Server machine.

The p4d process. This is perhaps the most common usage - tend to assume this unless otherwise
defined.

A defined server spec within a p4d data set, as listed with the p4 servers command.

* Any other type of instance!

The phrase "p4d server" is unclear as to whether you are talking about a p4d

o process, or a server machine on which the p4d process runs, or a combination of
both (since there may be a single instance on a single machine, or many instances
on a machine, etc). Make sure you understand what is being referred to!

2.2. Pre-Requisites
1. The Helix Core binaries (p4d, p4, p4broker, p4p) have been downloaded (see Chapter 4,
Installing the SDP)

2. sudo access is required for initial installation (and at least partial sudo is required for actions
such as starting and stopping systemd services)

3. System administrator available for configuration of drives / volumes (especially if on network
or SAN or similar)

© 2007-2024 Perforce Software, Inc. 5

https://help.perforce.com/helix-core/server-apps/cmdref/current/Content/CmdRef/p4_server.html

6 of 213 - Chapter 2. Setting up the SDP

4. Supported Linux version, currently these versions are fully supported - for other versions
please speak with Perforce Support. Note prior versions are typically past their End of Life.

o Ubuntu 20.04 LTS (focal)
o Ubuntu 22.04 LTS (jammy)
o Ubuntu 24.04 LTS (noble)
o Red Hat Enterprise Linux (RHEL) 8.x (and compatible)
= Rocky Linux 8.x
= Alma Linux 8.x
o Red Hat Enterprise Linux (RHEL) 9.x (and compatible)
= Rocky Linux 9.x
= Alma Linux 9.x
> CentOS 8 (not recommended for production; Rocky Linux replaces CentOS 8)

o SUSE Linux Enterprise Server 15

2.3. Volume Layout and Hardware

As can be expected from a version control system (which includes a database), good disk (storage)
management is key to maximizing data integrity and performance. Perforce recommend using
multiple physical volumes for each p4d server instance. Using three or four volumes per instance
reduces the chance of hardware failure affecting more than one instance. When naming volumes
and directories the SDP assumes the "hx" prefix is used to indicate Helix Core data volumes. Your
own naming conventions/standards can be used instead, though this is discouraged as it will create
inconsistency with documentation. For optimal performance on UNIX machines, the XFS file system
is recommended, but not mandated. The EXT4 filesystem is also considered proven, performant,
and widely used.

See the Section A.4, “Storage Volumes Layout” for guidance on storage configuration.

6 © 2007-2024 Perforce Software, Inc.

Chapter 3. Maintaining the SDP - 7 of 213
Chapter 3. Maintaining the SDP

These are regular (automated) tasks that are setup to maintain your installation.

3.1. Backup procedures

Helix Core’s purpose is to maintain long-running history of all your development. As such, it is
important to take reliable backups to preserve your dataset integrity.

3.1.1. Metadata checkpoints

The SDP contains scripts and a default crontab which will create daily checkpoints with no
downtime. The script Section 8.4.4, “daily_checkpoint.sh” accomplishes this by rotating the journal,
replaying it into the offline_db directory, and checkpointing the offline_db directory. The resulting
checkpoints, rotated journals, and checkpoint checksum files can be found in
/p4/<instance>/checkpoints.

It is difficult to overstate the importance of regular checkpoints! Perforce metadata (contained
in the db.* files) is in a constant state of flux and being updated, and a checkpoint is the most
reliable point of recovery for a commit server. Attempts to back up the root directory with cp or
rsync will result in a metadata set that is probably inconsistent and corrupt. Simple backups of the
root directory are insufficient.

3.1.2. Backup of the partition containing depots, checkpoints, and the SDP
configuration

There are three important parts to an SDP installation of Perforce: Metadata, archive storage (back-
end version file storage), and configuration. A standard SDP installation will have all three of these
on the /hxdepots partition or equivalent. Whatever your server backup strategy is, ensure that you
are taking regular snapshots of /hxdepots.

3.2. Notifications

The SDP contains the framework to allow your server to communicate its automated maintenance
activities, both successes and failures. It is important to ensure that the SDP is properly configured
to send emails to the right people, and that the right people are monitoring their emails. We also
recommend the use of PAPrometheus and associated scripts and dashboards using Prometheus and
Grafana, together with Alertmanager for best practice monitoring of your installation.

3.2.1. Configuration

Setting up mailx, postfix, or mailutils will allow your server to send out emails to your
administrative team. Details can be found in Section 4.6.1, “Configuring email for notifications”.

To tell the SDP whom to mail, you will need to set that in the file
/p4/common/config/p4_<instance.vars>on a per-instance basis. The relevant lines are:

https://github.com/perforce/p4prometheus
mailto:P4AdminList@p4demo.com

8 0f 213 - Chapter 3. Maintaining the SDP
export MAILFROM=P4Admin@p4demo.com

The MAILTO value can be a distribution group like administrators@company.net, a single recipient like
bruno@company.net, or a comma delimited list like bruno@company.net,mary@company.net
,pat@company.net.

The MAILFROM value can be a valid email address, or a placeholder like do-not-reply@company.net.

3.2.2. Notifications to monitor

Your administrator should be aware of the emails that the SDP will be sending on a regular basis.
Be careful to not simply redirect them into an unmonitored folder!

3.2.2.1. Daily Checkpoint

Probably the most important notification to follow, the daily checkpoint job lets you know that your
metadata is backed up. Any error messages should be investigated.

3.2.2.2. Verify

By default, the SDP will run a verify on all your back-end versioned file storage on a weekly basis. It
is possible that errors or warnings will creep into an instance as time goes on. These should be
investigated, but they are often not mission-critical.

3.2.2.3. Sync Replica

If you are in a Helix topology that contains replicas or edges, those machines will have their own
automated jobs that synchronize checkpoints from the commit server, and keep the metadata in
sync. To maintain a healthy topology, these emails should also be investigated if they contain errors.

3.3. Disk usage

Running out of disk is never fun. You should keep an eye on your disk usage, expanding when
needed. A default SDP instance has the following configurables set:

filesys.P4JOURNAL.min = 5G
filesys.P4R0O0OT.min = 5G

filesys.depot.min = 5G

These settings will cause Perforce to halt when they discover that free disk space is under 5G on the
specified partition. This will spare you from corruption if Perforce tries to write to a database and
isn’t able to finish. However, there are some edge cases where disk usage can still be disruptive. If
your total partition size is 5G or lower, Perforce will halt automatically even if 5G was your
intended partition size. Monitoring and expanding your storage space is an important part of
maintenance.

8 © 2007-2024 Perforce Software, Inc.

mailto:P4Admin@p4demo.com
mailto:mary@company.net
mailto:pat@company.net

Chapter 4. Installing the SDP - 9 of 213
Chapter 4. Installing the SDP

If you are installing SDP on a fresh new server machine where SDP has not been installed
previously, see Section 4.1, “Using install_sdp.sh”. This applies whether you are setting up a Helix
Core Server (P4D) of any kind (commit, standby, edge, etc.) as well as if you intend to install a
standalone Helix Proxy or Helix Broker.

If you are adding a new SDP instance on a machine where SDP has already been installed, see
Section 4.2, “Using mkdirs.sh”. This applies if the /p4/sdp directory structure already exists on the
machine and you intend to add a new data set with a new /p4/N folder, for operating a Helix Core
Server (P4D) of any kind (commit, standby, edge, etc.) as well as if you intend to add a standalone
Helix Proxy or Helix Broker to the existing machine.

For clarity on use of the term 'instance’, see Section 2.1.2, “Instance” in the section Section 2.1,
“Terminology Definitions”.

4.1. Using install_sdp.sh

Use install_sdp.sh if you are installing SDP on a fresh new server machine where SDP has not been
installed previously. This applies whether you are setting up a Helix Core Server (P4D) of any kind
(commit, standby, edge, etc.) as well as if you intend to install a standalone Helix Proxy or Helix
Broker.

Following are instructions for install a Helix Core P4D Server. More details appear in the Appendix
I, More Detail on install_sdp.sh

4.1.1. Planning

Review the sample configuration file Section 1.1, “Sample configuration file sdp_install.cfg”, which
captures various aspects you need to consider before installing a new Helix Core server, such as the
desired case sensitivity, SDP instance name, type, port numbers, use of SSL, etc. This same
configuration file is used regardless of whether you are configuring a Helix Core Server, Helix
Proxy, or Helix Broker.

If you are installing SDP on a machine that is intended to extend the topology of an existing SDP
instance, for example by adding a standby replica, edge server, proxy, or broker, then make sure to
use the same SDP instance name and case sensitivity as the data set you are extending.

4.1.2. STEP 1: Configure storage.

For a production install, storage must first be configured before this script can be run.

If you are installing a non-production installation, such as for demonstration or
training with SDP, you can skip storage configuration. Storage will not be optimally

(;) configured if this step is skipped, but this may be appropriate for a purely
demonstration install. Use the -demo option to install_sdp.sh to skip preflight
checks verifying optimal storage configuration.

© 2007-2024 Perforce Software, Inc. 9

10 of 213 - Chapter 4. Installing the SDP

See Section A.4, “Storage Volumes Layout” for guidance on storage configuration. There are a
variety of options and methods for installing and configuraing storage. However accomplished,
when storage is ready, the following, the directories must exist and must have storage mounted that
is NOT on the OS root volume (this makes it much easier to extend those volumes as required):

* /hxdepots
e /hxmetadata

* /hxlogs

These paths are typical, but are configurable. More information is available in the install
configuration file generatedd below (Section I.1, “Sample configuration file sdp_install.cfg”).

When storage is properly configured, you will have a /hxdepots directory and possibly other /hx*
directories.

4.1.3. STEP 2: Download the install_sdp.sh script.

Install this script in a directory under the root user’s home directory with these commands:

sudo su -

mkdir /root/sdp_install

cd /root/sdp_install

curl -L -0
https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/main/Server/U
nix/setup/install_sdp.sh

chmod +x install_sdp.sh

Note that you can get help from the script with options:

./install_sdp.sh -h
./install_sdp.sh -man | less

4.1.4. STEP 3: Generate install configuration file.

This creates a sample configuration file for modification:

./install_sdp.sh -C > sdp_install.cfg

4.1.5. STEP 4: Modify install configuration file.

Edit the generated sdp_install.cfg using your preferred text editor, changing the values as desired.
This file contains various settings with documentation for each setting.

vi sdp_install.cfg

10 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 11 of 213

Once settings are decided, save the file. The file containes lots of comments to explain required
configuration choices.

4.1.6. STEP 5: Install SDP (Dry Run).

Call this script and reference the configuration file, as a dry run/preview:
./install_sdp.sh -c sdp_install.cfg -init

Review the generated log of the preview, and address any reported issues.

4.1.7. STEP 6: Install SDP (Live Run).
./install_sdp.sh -c sdp_install.cfg -init -y

This will install SDP per the per the command line and settings in the install configuration file. It
performs actions such as:

* Create directory structure and links with appropriate ownership

* Install binaries

* Install crontab and systemd service files

* Initialise the repository as required

4.1.8. STEP 7: Install a license file.

Only certain Helix Core P4D Servers require license files. Helix Proxy and Helix Broker services
never require a license file.

For Helix Core P4D Servers, only the commit server and replica servers intended as possible
failover targets from the commit server require a license. Other types of replica, e.g. edge servers
and standby servers that target edge or forwarding replica servers do not need license files.

For Helix Core P4D Servers that need a license, get the license from Perforce Sales (RevOps), and
install Perforce Helix Core license file for the p4d server instance into the P4ROOT directory for
your instance, e.g. "/p4/N/root/license (where N is the instance name). Then restart the p4d_N
service.

if you have multiple instances and have been provided with port-specific licenses
o by Perforce, the appropriate license file must be stored in the appropriate
/p4/<instance>/root folder for each instance.

o Rename the license file to simply the name license in the P4AROOT folder.

© 2007-2024 Perforce Software, Inc. 11

12 of 213 - Chapter 4. Installing the SDP
4.1.9. Start Your Helix Core Server

You are now free to start up the p4d instance as documented in Appendix F, Starting and Stopping
Services.

Please note that if you have configured SSL, then refer to Section 4.2.1, “Use of SSL”.

4.2. Using mkdirs.sh

If you use install_sdp.sh, you do not need to call mkdirs.sh yourself (though the mkdirs.sh script is
called by the install_sdp.sh during its processing).

Use the mkdirs.sh script directly only when adding a new SDP instance, i.e. a new data set, on a
server machine where SDP has already been installed.

More details appear in the Appendix], More Detail on mkdirs.sh.

4.2.1. Use of SSL

If your configuration file indicated that SSL was to be used during installation, your P4PORT value
will have a prefix of ssl:.

During installation, the install script initially uses self-signed certificates. If you prefer to use "full
chain" certificates acquired from a public global Certificate Authority, referred to as "CA certs", you
will need to replace the self-signed certificates in /p4/ssl after the SDP install.

Changing SSL certificates is disruptive and should be done in a scheduled
maintenance window. Each server machine has certs in /p4/ssl, so certificate
updates should be coordinated across the server fleet.

4.2.1.1. Changing SSL Certificates

If you choose to update the self-signed certificates, do like this example (for instance 1):

As user perforce (or the defined OSUSER) on each p4d, p4proxy, and p4p server machine in your
fleet, run the following commands. Note that the first command uses an rsync to create a backup of
your current certificates before proceeding.

sudo systemctl stop p4d_1 ## Stop p4d_1, pdbroker_1 and/or p4p_1 as applicable.
source /p4/common/bin/p4_vars 1

rsync -a /p4/ssl/ /p4/ssl.backup.$(date +'%Y-%m-%d-%H%M%S")

cd /p4/ssl

rm -f certificate.txt privatekey.txt

cp -f /p4/sdp/Server/Unix/p4/ssl/config.txt .

p4d -Ge

sudo systemctl start p4d_1 ## Stop p4d_1, pdbroker_1 and/or p4p_1 as applicable.

In order to validate that SSL is working correctly:

12 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 13 of 213

p4d set
If you are using full-chain CA certs, the trust is still necessary on the p4d server
O machine, which is referenced by a P4PORT value that does not include the DNS
- name used in the full chain certificate. However, with full-chain CA certs, end

users can skip the trust.

Update the PATRUST values:

p4d trust -y # Trusts the default port on localhost

p4 -p ssl:p4d.myco.com:1666 trust -y # Assuming correct port

p4 -p ssl:‘hostname':1666 trust -y # Trusts the IP address of current host
p4 -p $PAMASTERPORT trust -y

If this server must connect to other servers in the fleet, do p4 trust as needed to those server port
values as well. For example, a p4d server should trust the ExternalAddress of all edge servers, every
standby and edge server must trust its PATARGET server.

Check the stored PATRUST values:

p4 trust -1

You need to have an entry for the above for both loopback (127.0.0.1 and the IP address of current
machine)

Check you are not prompted for trust:
p4 login
p4 info

4.2.1.2. Configuration script mkdirs.cfg

The mkdirs.sh script executed above resides in $SDP/Server/Unix/setup. It sets up the basic directory
structure used by the SDP. Carefully review the config file mkdirs.instance.cfg for this script before
running it, and adjust the values of the variables as required. The important parameters are:

Parameter Description

DB1 Local path for /hxmetadatal (can be same as DB2)

DB2 Local path for /hxmetadata2 (can be same as DB1)

DD Local path for /hxdepots

CD Local path for /hxcheckpoints, usually same as
DD.

© 2007-2024 Perforce Software, Inc. 13

14 of 213 - Chapter 4. Installing the SDP

Parameter Description

LG Local path for /hxlogs volume

SHAREDDATA TRUE or FALSE - whether sharing the /hxdepots
volume with a replica - normally this is FALSE

ADMINUSER P4USER value of a Perforce super user that
operates SDP scripts, typically perforce.

OSUSER Operating system user that will run the Perforce
instance, typically perforce.

OSGROUP Operating system group that OSUSER belongs to,

CASE_SENSITIVE

typically perforce.

Indicates if p4d server instance has special case
sensitivity settings

SSL_PREFIX Set if SSL is required so either "ssl:" or blank for
no SSL

P4ADMINPASS Password to use for Perforce superuser account
- can be edited later in
/p4/common/config/.p4password.p4_1.admin

PASERVICEPASS This value is not used by any SDP scripts or
standard procedures. It is left in place for
backward compatibility.

PAMASTERHOST Fully qualified DNS name of the Perforce master

server machine for this instance. should refer to
the DNS of the edge server machine. Otherwise
replicas should refer to the commit-server
machine.

For a detailed description of this config file it is fully documented with in-file comments, or see

4.2.2. SDP Init Scripts

The SDP includes templates for initialization scripts ("init scripts") that provide basic service start
[/stop/status functionality for a variety of Perforce server products, including:

* p4d

* p4broker
* p4p

* p4dtg

During initialization for an SDP instance, the SDP mkdirs.sh script creates a set of initialization
scripts based on the templates, and writes them in the instance-specific bin folder (the "Instance
Bin" directory), /p4/N/bin. For example, the /p4/1/bin folder for instance 1 might contain any of the
following:

14 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 15 of 213

p4d_1_init
pdbroker_1_init
pdp_1_init
pddtg_1_init

The set of *_init files in the Instance Bin directory defines which services (p4d, p4broker, p4p,
and/or p4dtg) are active for the given instance on the current machine. A common configuration is
to run both p4d and p4broker together, or only run a p4p on a machine. Unused init scripts must be
removed from the Instance Bin dir. For example, if a p4p is not needed for instance 1 on the current
machine, then /p4/1/bin/p4p_1_init should be removed.

For example, the init script for starting p4d for instance 1 is /p4/1/bin/p4d_1_init. All init scripts
accept at least start, stop, and status arguments. How the init scripts are called depends on
whether your operating system uses the systemd or older SysV init mechanism. This is detailed in
sections specific to each init mechanism below.

Templates for the init scripts are stored in:

/p4/common/etc/init.d

4.2.2.1. Configuring systemd

Configuring systemd for p4d

RHEL/CentOS 7, 8 or 9, SuSE 12, Ubuntu (>= v16.04), Amazon Linux 2, and other Linux distributions
utilize systemd / systemctl as the mechanism for controlling services, replacing the earlier SysV
init process. Templates for systemd *service files are included in the SDP distribution in
$SDP/Server/Unix/p4/common/etc/systemd/system.

Note that using systemd is strongly recommended on systems that support it, for safety reasons.
However, enabling services to start automatically on boot is optional.

To configure p4d for systemd, run these commands as the root user:

I=1

Replace the 1 on the right side of the = with your SDP instance name, e.g. xyz if your P4ROOT is
/p4/xyz/root. Then:

cd /etc/systemd/system

sed -e "s:__INSTANCE__:$I:9" -e "s:__OSUSER__:perforce:g"
$SDP/Server/Unix/p4/common/etc/systemd/system/p4d_N.service.t > p4d_${I}.service
chmod 644 p4d_${I}.service

systemctl daemon-reload

If you are configuring p4d for more than one instance, repeat the I= command with each instance
© 2007-2024 Perforce Software, Inc. 15

16 of 213 - Chapter 4. Installing the SDP

name on the right side of the =, and then repeat the block of commands above.

Once configured, the following are sample management commands to start, stop, and status the
service. These following commands are typically run as the perforce OSUSER using sudo where
needed:

systemctl cat p4d_1
systemctl status p4d_1
sudo systemctl start p4d_1
sudo systemctl stop p4d_1

o if running with SELinux in enforcing mode, see Section 4.2.2.2, “Enabling systemd
under SELinux”

Systemd Required if Configured

If you are using systemd and you have configured services as above, then you can no longer
run the *_init scripts directly for normal service start/stop, though they can still be used for
status. The sudo systemctl commands must be used for start/stop. Attempting to run the
underlying scripts directly will result in an error message if systemd is configured. This is for
safety: systemd’s concept of service status (up or down) is only reliable when systemd starts
and stops the service itself. The SDP init scripts require the systemd mechanism (using the
systemctl command) to be used if it is configured. This ensures that services will gracefully
stop the service on reboot (which would otherwise present a risk of data corruption for p4d
on reboot).

The SDP requires systemd to be used if it is configured, and we strongly recommend using
system on systems that use it. We recommend this to eliminate the risk of corruption on
reboot, and also for consistency of operations. However, the SDP does not require systemd to
be used. The SDP uses systemctl cat of the service name (e.g. p4d_1) to determine if systemd is
configured for any given service.

Configuring systemd for p4p

Configuring p4p for systemd is identical to the configuration the for p4d, except that you would
replace p4d with p4p in the sample commands above for configuring p4d.

7 Note SELinux fix (Section 4.2.2.2, “Enabling systemd under SELinux”) may be
- similarly required.

Configuring systemd for p4dtg

Configuring p4dtg for systemd is identical to the configuration the for p4d, except that you would
replace p4d with p4dtg in the sample commands above for configuring p4d.

(f') Note SELinux fix (Section 4.2.2.2, “Enabling systemd under SELinux”) may be

16 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 17 of 213

similarly required.

Configuring systemd p4broker - multiple configs

Configuring p4broker for systemd can be similar to configuration the for p4d, but there are extra
options as you may choose to run multiple broker configurations. For example, you may have:

* a default p4broker configuration that runs when the service is live,

* a "Down for Maintenance" (DFM) broker used in place of the default broker during
maintenance to help lock out users broadcasting a friendly message like "Perforce is offline for
scheduled maintenance."

» SSL broker config enabling an SSL-encrypted connection to a server that might not yet require
SSL encryption for all users.

The service name for the default broker configuration is always p4broker_N, where N is the instance
name, e.g. pdbroker_1 for instance 1. This wuses the default broker config (file,
/p4/common/config/p4_1.broker.cfq.

Host Specific Broker Config

For circumstances where host-specific broker configuration is required, the default broker
will use a /p4/common/config/p4_N.broker.<short-hostname>.cfq if it exists, where <short-
hostname> is whatever is returned by the command hostname -s. The logic in the broker init
script will favor the host-specific config if found, otherwise it will use the standard broker
config.

When alternate broker configurations are used, each alternate configuration file must have a
separate systemd unit file associated with managing that configuration. The service file must
specify a configuration tag name, such as 'dfm’' or 'ssl'. That tag name is used to identify both the
broker config file and the systemd unit file for that broker. If the broker config is intended to run
concurrently with the default broker config, it must listen on a different port number than the one
specified in the default broker config. If it is only intended to run in place of the standard config, as
with a 'dfm’ config, then it should listen on the same port number as the default broker if a default
broker is used, or else the same port as the p4d server if brokers are used only for dfm. The systemd
service for a broker intended to run only during maintenance should not be enabled, and thus only
manually started/stopped as part of maintenance procedures.

(r) If maintenance procedures involve a reboot of a server machine, you may also
- want to disable all services during maintenance and re-enable them afterward.

For example, say you want a default broker, a DFM broker, and an SSL broker for instance 1. The
default and SSL brokers will run continuously, and the DFM broker only during scheduled
maintenance. The following broker config files would be needed in /p4/common/config:

* p4_1.broker.cfg - default broker, targets p4d on port 1999, listens on port 1666
* p4_1.broker.ssl.cfg- SSL broker, targets p4d on port 1999, listens on port 1667

© 2007-2024 Perforce Software, Inc. 17

18 of 213 - Chapter 4. Installing the SDP
* p4_1.broker.dfm.cfg - DFM broker, targets p4d on port 1999, listens on port 1666.

Then, create a systemd *service file that references each config. For the default broker, use the
template just as with p4d above. Do the following as the root user:

I=1

Replace the 1 on the right side of the = with your SDP instance name, e.g. xyz if your P4ROOT is
/p4/xyz/root. Then:

cd /etc/systemd/system

sed -e "s:__INSTANCE__:$I:9" -e "s:__OSUSER__:perforce:g"
$SDP/Server/Unix/p4/common/etc/systemd/system/p4broker _N.service.t >
pdbroker_$I.service

chmod 644 p4broker_$I.service

systemctl daemon-reload

Once configured, the following are sample management commands to start, stop, and status the
service. These following commands are typically run as the perforce OSUSER using sudo where
needed:

systemctl cat p4broker_1
systemctl status p4broker_1
sudo systemctl start p4dbroker_1
sudo systemctl stop p4broker_1

For the non-default broker configs for the SSL and DFM brokers, start by copying the default broker
config to a new *service file with _ss1 or _dfm inserted into the name, like so:

cd /etc/systemd/system
cp p4broker_1.service p4dbroker_1_dfm.service
cp p4broker_1.service pdbroker_1_ssl.service

Next, modify the p4broker_1_dfm.service file and p4broker_1_ssl.service files with a text editor,
making the following edits:

* Find the string that says using default broker config, and change the word default to dfm or ssl
as appropriate, so it reads something like using dfm broker config.

* Change the ExecStart and ExecStop definitions by appending the dfm or ssl tag. For example,
change these two lines:

ExecStart=/p4/1/bin/pdbroker_1_init start
ExecStop=/p4/1/bin/p4broker_1_init stop

18 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 19 of 213
to look like this for the dfm broker:

ExecStart=/p4/1/bin/pdbroker_1_init start dfm
ExecStop=/p4/1/bin/p4broker_1_init stop dfm

After any modifications to systemd *services files are made, reload them into with:
systemctl daemon-reload

At this point, the services p4broker_1, p4broker_1_dfm, and p4broker_1_ss1 can be started and stopped
normally.
Finally, enable those services you want to start on boot. In our example here, we will enable the

default and ssl broker services to start on boot, but not the DFM broker:

systemctl enable p4broker_1
systemctl enable p4broker_1_ssl

You must be aware of which configurations listen on the same port, and not try to runs those
configurations concurrently. In this case, ensure the default and dfm brokers don’t run at the same
time. So, for example, you might start a maintenance window with:

sudo systemctl stop p4broker_1 p4d_1
sudo systemctl start p4broker_1_dfm

and end maintenance in the opposite order:

sudo systemctl stop p4broker_1_dfm
sudo systemctl start pdbroker_1 p4d_1

Details may vary depending on what is occurring during maintenance.

7 Note SELinux fix (Section 4.2.2.2, “Enabling systemd under SELinux”) may be
- similarly required.
4.2.2.2. Enabling systemd under SELinux

If you have SELinux in Enforcing mode, then you may get an error message when you try and start
the service:

$ systemctl start p4d_1
$ systemctl status p4d_1

Active: failed
© 2007-2024 Perforce Software, Inc. 19

20 of 213 - Chapter 4. Installing the SDP
Process: 1234 ExecStart=/p4/1/bin/p4d_1_init start (code=exited, status=203/EXEC)

$ journalctl -u p4d_1 --no-pager | tail

... pAd_1.service: Failed to execute command: Permission denied
... pAd_1.service: Failed at step EXEC spawning p4d_1_init: Permission denied

This can be easily fixed (as root):

semanage fcontext -a -t bin_t /p4/1/bin/p4d_1_init
restorecon -vF /p4/1/bin/p4d_1_init

If not already installed then yum install policycoreutils-python-utils gets you the

(;) basic commands mentioned above - you don’t need the full setools which comes
t with a GUI!
Then try again:

systemctl start p4d_1
systemctl status p4d_1

The status command should show Active: active

For troubleshooting SELinux, we recommend the setroubleshoot utility

7 Look for denied in /var/log/audit.log and then 1s -alZ <file> for any file that
- triggered the denied message and go from there.

4.2.2.3. Configuring SysV Init Scripts

To configure services for an instance on systems using the SysV init mechanism, run these
commands as the root user: Repeat this step for all instance init scripts you wish to configure as
system services.

cd /etc/init.d
1In -s /p4/1/bin/p4d_1_init
chkconfig --add p4d_1_init

With that done, you can start/stop/status the service as root by running commands like:

service p4d_1_init status
service p4d_1_init start
service p4d_1_init stop

20 © 2007-2024 Perforce Software, Inc.

https://www.serverlab.ca/tutorials/linux/administration-linux/troubleshooting-selinux-centos-red-hat/

Chapter 4. Installing the SDP - 21 of 213

On SysV systems, you can also run the underlying init scripts directly as either the root or perforce
user. If run as root, the script becomes perforce immediately, so that no processing occurs as root.

4.2.3. Configuring Automatic Service Start on Boot

You may want to configure your server machine such that the Helix Core Server for any given
instance (and/or Proxy and/or Broker) will start automatically when the machine boots.

This is done using Systemd or Init scripts as covered below.

4.2.3.1. Automatic Start for Systems using systemd

Once systemd services are configured, you can enable the service to start on boot with a command
like this, run a s root:

systemctl enable p4d_1

The enable command configures the services to start automatically when the machine reboots, but
does not immediately start the service. Enabling services is optional; you can start and stop the
services manually regardless of whether it is enabled for automatic start on boot.

4.2.3.2. For systems using the SysV init mechanism

Once SysV services are configured, you can enable the service to start on boot with a command like
this, run as root:

chkconfig p4d_1_init on

4.2.4. SDP Crontab Templates

The SDP includes basic crontab templates for master, replica, and edge servers in:

/p4/common/etc/cron.d

These define schedules for routine checkpoint operations, replica status checks, and email reviews.

4.2.5. Completing Your Server Configuration

1. Ensure that the admin user configured above has the correct password defined in
/p4/common/config/.p4passwd.p4_1.admin, and then run the p4login script, giving it the parameter
1 for the SDP Instance name (which calls the p4 login command using the
/p4/common/config/.p4passwd.p4_1.admin file). That looks like this:

p4login 1

© 2007-2024 Perforce Software, Inc. 21

22 of 213 - Chapter 4. Installing the SDP

2. For new server instances, run this script, which sets several recommended configurables:
cd /p4/sdp/Server/setup/configure_new_server.sh 1

For existing servers, examine this file, and manually apply the p4 configure command to set
configurables on your Perforce server instance.

Initialize the perforce user’s crontab with one of these commands:
crontab /p4/p4.crontab

and customize execution times for the commands within the crontab files to suite the specific
installation.

The SDP uses wrapper scripts in the crontab: run_if_master.sh, run_if_edge.sh, run_if_replica.sh.
We suggest you ensure these are working as desired, e.g.

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

The above should output yes if you are on the master (commit) machine (or replica/edge as
appropriate), but otherwise nothing. Any issues with the above indicate incorrect values for
$MASTER_ID, or for other values within /p4/common/config/p4_1.vars (assuming instance 1). You can
debug this with:

bash -xv /p4/common/bin/run_if_master.sh 1 echo yes

If in doubt contact support.

4.2.6. Validating your SDP installation

Source your SDP environment variables and check that they look appropriate - for <instance> 1:
source /p4/common/bin/p4_vars 1
The output of p4 set should be something like:

PACONFIG=/p4/1/.pAconfig (config 'noconfig')
P4ENVIRO=/dev/null/.p4enviro
P4JOURNAL=/p4/1/10gs/journal
P4L0G=/p4/1/10gs/1log

PAPCACHE=/p4/1/cache

P4PORT=ss1:1666

22 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 23 of 213

P4R00T=/p4/1/root
P4SSLDIR=/p4/ssl
PATICKETS=/p4/1/.p4tickets
PATRUST=/p4/1/.p4trust
P4USER=perforce

There is a script /p4/common/bin/verify_sdp.sh. Run this specifying the <instance> id, e.g.

/p4/common/bin/verify_sdp.sh 1

The output should be something like:

verify_sdp.sh v5.6.1 Starting SDP verification on host helixcorevml at Fri 2020-08-14
17:02:45 UTC with this command line:
/p4/common/bin/verify_sdp.sh 1

If you have any questions about the output from this script, contact support-helix-
core@perforce.com.

Doing preflight sanity checks.

Preflight Check: Ensuring these utils are in PATH: date 1s grep awk id head tail
Verified: Essential tools are in the PATH.

Preflight Check: cd /p4/common/bin

Verified: cd works to: /p4/common/bin

Preflight Check: Checking current user owns /p4/common/bin

Verified: Current user [perforce] owns /p4/common/bin

Preflight Check: Checking /p4 and /p4/<instance> are local dirs.

Verified: P4HOME has expected value: /p4/1

Verified: This P4HOME path is not a symlink: /p4/1

Verified: cd to /p4 OK.

Verified: Dir /p4 is a local dir.

Verified: cd to /p4/1 OK.

Verified: P4HOME dir /p4/1 is a local dir.

Finishing with:

Verifications completed, with @ errors and @ warnings detected in 57 checks.

If it mentions something like:

Verifications completed, with 2 errors and 1 warnings detected in 57 checks.

then review the details. If in doubt contact Perforce Support: support-helix-core@perforce.com

© 2007-2024 Perforce Software, Inc. 23

mailto:support-helix-core@perforce.com

24 of 213 - Chapter 4. Installing the SDP

4.3. Local SDP Configuration

There are many scenarios where you may need to override a default value that the SDP provides.
These changes must be done in specific locations so that your changes persist across SDP upgrades.
There are two different scopes of configuration to be aware of and two locations you can place your
configuration in:

Location Scope Description
/p4/commony/site/config/$P4SER SDP Instance Specific Single configuration file that is
VER.vars.local scoped to a single SDP Instance
/p4/common/site/config/$PASER SDP Instance Specific Directory of configuration files
VER.vars.local.d/* that are scoped to a single SDP
Instance
/p4/common/site/config/p4_vars. SDP Wide Single configuration file that is
local scoped to all SDP Instances
/p4/common/site/config/p4_vars. SDP Wide Directory of configuration files
local.d/* that are scoped to all SDP
Instances
4.3.1. Load Order
1. /p4/common/bin/p4_vars
2. /p4/common/site/config/p4_vars.local
3. /p4/common/site/config/p4_vars.local.d/*
4. /p4/common/config/$P4SERVER.vars
5. /p4/common/site/config/$PASERVER.vars.local.d/*

4.4. Setting your login environment for convenience

Consider adding this to your .bashrc for the perforce user as a convenience for when you login:
echo "source /p4/common/bin/p4_vars 1" >> ~/.bashrc

Obviously if you have multiple instances on the same machine you might want to setup an alias or
two to quickly switch between them.

4.5. Configuring protections, file types, monitoring and
security

After the server instance is installed and configured, either with the Helix Installer or a manual
installation, most sites will want to modify server permissions ("Protections") and security settings.
Other common configuration steps include modifying the file type map and enabling process

24 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 25 of 213

monitoring. To configure permissions, perform the following steps:

1. To set up protections, issue the p4 protect command. The protections table is displayed.

2. Delete the following line:
write user * * //depot/...

3. Define protections for your repository using groups. Perforce uses an inclusionary model. No
access is given by default, you must specifically grant access to users/groups in the protections
table. It is best for performance to grant users specific access to the areas of the depot that they
need rather than granting everyone open access, and then trying to remove access via
exclusionary mappings in the protect table even if that means you end up generating a larger
protect table.

4. To set the default file types, run the p4 typemap command and define typemap entries to
override Perforce’s default behavior.

5. Add any file type entries that are specific to your site. Suggestions:

o For already-compressed file types (such as .zip, .gz, .avi, .gif), assign a file type of
binary+F1 to prevent p4d from attempting to compress them again before storing them.

o For regular binary files, add binary+1 to make so that only one person at a time can check
them out.
A sample file is provided in §SDP/Server/setup/typemap

If you are doing things like games development with Unreal Engine or Unity, then there are specific
recommended typemap to add in KB articles: Search the Knowledge Base

1. To make your changelists default to restricted (for high security environments):

p4 confiqgure set defaultChangeType=restricted

4.6. Operating system configuration

Check Chapter 7, Maximizing Server Performance for detailed recommendations.

4.6.1. Configuring email for notifications

Use Postfix - which Integrates easily with Gmail, Office365 etc just search for postfix and the email
provider. Examples:
* https://www.howtoforge.com/tutorial/configure-postfix-to-use-gmail-as-a-mail-relay/

* https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-
app-password

* https://www.middlewareinventory.com/blog/postfix-relay-office-365/#
3_Office_365_SMTP_relay_Discussed_in_this_Post

© 2007-2024 Perforce Software, Inc. 25

https://portal.perforce.com/s/
https://www.howtoforge.com/tutorial/configure-postfix-to-use-gmail-as-a-mail-relay/
https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-app-password
https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-app-password
https://www.middlewareinventory.com/blog/postfix-relay-office-365/#3_Office_365_SMTP_relay_Discussed_in_this_Post
https://www.middlewareinventory.com/blog/postfix-relay-office-365/#3_Office_365_SMTP_relay_Discussed_in_this_Post

26 of 213 - Chapter 4. Installing the SDP

Please note that for Gmail:

* You must turn on 2FA for the account which is trying to create an app password

* The organization must allow 2FA (2-Step Verification) - this is normally turned off in Google
Workspace (formerly known as G Suite).

Testing of email once configured:
echo "Test email" | mail -s "Test email subject" user@example.com
If there are problems sending email, then this may find the problem:

grep postfix /var/log/*
cat /var/log/maillog

4.6.2. Swarm Email Configuration
The advantage of installing Postfix is that it is easily testable from the command line as above.

The Swarm configuration then becomes editing config.php as below (optional sender address) and
restarting Swarm in the normal way (resetting its cache first):

// this block should be a peer of 'p4'

'mail' => array(
// ‘'sender' => 'swarm@my.domain', // defaults to 'notifications@hostname’
"transport' => array(

"name' => 'localhost', // name of SMTP host
"host' => 'localhost', // host/IP of SMTP host
)

)I
)I

Restarting Swarm (on CentOS):

cd /opt/perforce/swarm/data
rm cache/*cache.php
systemctl restart httpd

4.6.3. Configuring PagerDuty for notifications

The default behavior of the SDP is to use email for delivering alerts and log files. This section details
replacing email with PagerDuty.

26 © 2007-2024 Perforce Software, Inc.

https://www.pagerduty.com/

Chapter 4. Installing the SDP - 27 of 213

4.6.3.1. Prerequisites

* PagerDuty Account
» PagerDuty Service where SDP/Helix Core incidents will be created

* Events API V2 Integration added to PagerDuty Service, this will produce an Integration Key
which will be used later

* Install PagerDuty CLI

4.6.3.2. SDP Configuration

The following can be added to /p4/common/site/config/p4_vars.local to configure the SDP to use
PagerDuty:

set this environment variable to the Integration Key that was created when adding
the

Events API V2 Integration to your PagerDuty Service

export PAGERDUTY_ROUTING_KEY="2ac2....e5c3"

4.6.3.3. Optional variables

The SDP will automatically set the Title of the PagerDuty Incident based on the exception that
occurred. The SDP will also include the log file from the exception (example: checkpoint log,
p4verify log, etc).

If you have multiple Helix Core servers it will be helpful to include some additional context with
the incident so you know which server the alert is coming from.

The following environment variable can optionally be used to add additional context to the
PagerDuty Incident:

export PAGERDUTY_CUSTOM_FIELD=""

Example Additional Context Configuration

The following snippet will create environment variables in p4_vars.local that will provide
additional context in each PagerDuty Incident:

curl -s -H Metadata:true --noproxy "*" "http://169.254.169.254/metadata/instance?api-
version=2021-02-01" > /tmp/azure_metadata

cat <<-EOF >> /p4/common/site/config/p4_vars.local

export PAGERDUTY_ROUTING_KEY="2ac2....e5c3"

export VM_ID="$(jq -r '.compute.vmId' /tmp/azure_metdata)"

export REGION="$(jq -r '.compute.location' /tmp/azure_metdata)"

export AZURE_SUBSCRIPTION_ID="$(jq -r '.compute.subscriptionId' /tmp/azure_metdata)"
export PAGERDUTY_CUSTOM_FIELD=\$(cat <<-END

BHEH S S S S S S S S G S H S H S S S G H SRS H

Azure Subscription: \$AZURE_SUBSCRIPTION_ID

© 2007-2024 Perforce Software, Inc. 27

https://www.pagerduty.com/
https://support.pagerduty.com/docs/service-directory
https://github.com/martindstone/pagerduty-cli/wiki/PagerDuty-CLI-User-Guide#installation-and-getting-started

28 of 213 - Chapter 4. Installing the SDP

Region: \$REGION

Azure VM ID: \$VM_ID
Uy S R R i A
END

)
EOF

The following context will be added as a field on the PagerDuty Incident:

BUHHHHHH S A A 4444

Azure Subscription: f306878d-d321-4731-4cd3-f3afafbbd3ac
Region: eastus

Azure VM ID: 5ee13bfe-8a0c-486f-ae08-c43e44255d15
BUBHHHHHHHHHHHHHHHHHHH GGG 1 44

4.6.4. Configuring AWS Simple Notification Service (SNS) for notifications

The default behavior of the SDP is to use email for delivering alerts and log files. This section details
replacing email with AWS SNS.

4.6.4.1. Prerequisites

* AWS CLI installed
* Authorization for publish to a AWS SNS topic
4.6.4.2. SDP Configuration
The following can be added to /p4/common/config/p4_1.vars to configure the SDP to use SNS:
SNS Alert Configurations
Two methods of authentication are supported: key pair (on prem, azure, etc) and IAM
role (AWS deployment)

In the case of IAM role the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment
variables must not be set, not even empty strings

To test SNS delivery use the following command: aws sns publish --topic-arn
$SNS_ALERT_TOPIC_ARN --subject test --message "this is a test"

export AWS_ACCESS_KEY_ID=""
export AWS_SECRET_ACCESS_KEY=""

export AWS_DEFAULT_REGION="us-east-1"
export SNS_ALERT_TOPIC_ARN="arn:aws:sns:us-east-1:541621974560:Perforce-Notifications-

28 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 29 of 213
SnsTopic-1FIRHOKEAXTU"

4.6.4.3. Example IAM Policy

The following is an example policy that could be used for either an IAM Role or an IAM user with
key/secret:

{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sns:Publish",
"Resource": "arn:aws:sns:us-east-1:541621974560:Perforce-Notifications-*",
"Effect": "Allow"
}
]
}

4.7. Other server configurables

There are various configurables that you should consider setting for your server instance.
Some suggestions are in the file: $SDP/Server/setup/configure_new_server.sh

Review the contents and either apply individual settings manually, or edit the file and apply the
newly edited version. If you have any questions, please see the configurables section in Command
Reference Guide appendix (get the right version for your server!). You can also contact support
regarding questions.

4.8. Archiving configuration files

Now that the server instance is running properly, copy the following configuration files to the
hxdepots volume for backup:

* Any init scripts used in /etc/init.d or any systemd scripts to /etc/systemd/system
* A copy of the crontab file, obtained using crontab -1.

* Any other relevant configuration scripts, such as cluster configuration scripts, failover scripts,
or disk failover configuration files.

4.9. Installing Swarm Triggers

On the commit server (NOT the Swarm machine), get it setup to connect to the Perforce package
repo (if not already done). See: https://www.perforce.com/perforce-packages

Install the trigger package, e.g.:

© 2007-2024 Perforce Software, Inc. 29

https://help.perforce.com/helix-core/server-apps/cmdref/current/Content/CmdRef/appendix.configurables.html
https://help.perforce.com/helix-core/server-apps/cmdref/current/Content/CmdRef/appendix.configurables.html
https://www.perforce.com/perforce-packages

30 of 213 - Chapter 4. Installing the SDP

* yum install helix-swarm-triggers (if Red Hat family, i.e. RHEL, Rocky Linux, CentOS, Amazon
Linux).

o apt install helix-swarm-triggers (for Ubuntu)

Then (for SDP environments for ease):

sudo chown -R perforce:perforce /opt/perforce/etc

Then install the triggers on the p4d server. Something like:

vi /opt/perforce/etc/swarm-triggers.conf

Make it look something like (in SDP env):

SWARM_HOST="https://swarm.p4.p4bsw.com'
SWARM_TOKEN="MY-UUID-STYLE-TOKEN'
ADMIN USER='swarm'
ADMIN_TICKET_FILE='/p4/1/.p4tickets’
P4_PORT="ss1:1666"
P4="/p4/1/bin/p4_1"
EXEMPT_FILE_COUNT=0
EXEMPT_EXTENSIONS=""

VERIFY_SSL=1

TIMEOUT=30

IGNORE_TIMEQUT=1

IGNORE_NOSERVER=1

Then test that config file:

chmod +x /p4/sdp/Unsupported/setup/swarm_triggers_test.sh
/p4/sdp/Unsupported/setup/swarm_triggers_test.sh

Get that to be happy. May require iteration of the conf file, trigger install, etc.

Then install triggers on the server.

cd /p4/1/tmp
p4 triggers -o > temp_file.txt

/opt/perforce/swarm-triggers/bin/swarm-trigger.pl -o >> tmp_file.txt
vi tmp_file.txt # Clean up formatting, make it syntactically correct.

p4 triggers -i < temp_file.txt
p4 triggers -o # Make sure it's there.

30 © 2007-2024 Perforce Software, Inc.

Chapter 4. Installing the SDP - 31 of 213
Then test!

mkdir /p4/1/tmp/swarm_test
cd /p4/1/tmp/swarm_test

export PACONFIG=.p4config
echo PACLIENT=swarm_test.$(hostname -s)>>.pdconfig

Make a workspace, map View to some location where we can edit harmlessly,
or use a stream like //sandbox/main
p4 client

p4 add chg.txt

The important thing is '#review' which trigger will process

p4 change -o | sed 's:<enter description here>:#review' > chg.txt
p4 change -i < chg.txt

p4 shelve -c CL # Use CL listed in output from prior command

p4 describe -s CL # if #review gets replace by something like #review-12345, you're
Done!

© 2007-2024 Perforce Software, Inc. 31

32 of 213 - Chapter 5. Backup, Replication, and Recovery

Chapter 5. Backup, Replication, and
Recovery

Perforce server instances maintain metadata and versioned files. The metadata contains all the
information about the files in the depots. Metadata resides in database (db.*) files in the server
instance’s root directory (P4ROOT). The versioned files contain the file changes that have been
submitted to the repository. Versioned files reside on the hxdepots volume.

This section assumes that you understand the basics of Perforce backup and recovery. For more
information, consult the Perforce System Administrator’s Guide and failover.

5.1. Typical Backup Procedure

The SDP’s maintenance scripts, run as cron tasks, periodically back up the metadata. The weekly
sequence is described below.

Seven nights a week, perform the following tasks:

1. Truncate the active journal.

2. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

3. Create a checkpoint from the offline database.

4. Recreate the offline database from the last checkpoint.
Once a week, perform the following tasks:

1. Verify all depot files.
Once every few months, perform the following tasks:

1. Stop the live server instance.

2. Truncate the active journal.

w

Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

Archive the live database.

Move the offline database to the live database directory.

Start the live server instance.

Create a new checkpoint from the archive of the live database.

Recreate the offline database from the last checkpoint.

© ® N o Uk

Verify all depots.

This normal maintenance procedure puts the checkpoints (metadata snapshots) on the hxdepots

ceente noacrncecary 'Fnr roecouvory
OOTLO 11TLLOOUL y 1UL 1TLUVUL y.

32 © 2007-2024 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/failover.html#Failover

Chapter 5. Backup, Replication, and Recovery - 33 of 213

To ensure that the backup does not interfere with the metadata backups (checkpoints), coordinate
backup of the hxdepots volume using the SDP maintenance scripts.

The preceding maintenance procedure minimizes service outage, because checkpoints are created
from offline or saved databases while the live p4d server process is running on the live databases
in PAROOT.

With no additional configuration, the normal maintenance prevents loss of more
than one day’s metadata changes. To provide an optimal Recovery Point Objective
(RPO), the SDP provides additional tools for replication.

5.2. Planning for HA and DR

The concepts for HA (High Availability) and DR (Disaster Recovery) are fairly similar - they are both
types of Helix Core replica.

When you have server specs with Services field set to commit-server, standard, or edge-server - see
deployment architectures you should consider your requirements for how to recover from a failure
to any such servers.

See also Replica types and use cases

The key issues are around ensuring that you have have appropriate values for the following
measures for your Helix Core installation:

* RTO - Recovery Time Objective - how long will it take you to recover to a backup?

* RPO - Recovery Point Objective - how much data are you prepared to risk losing if you have to

failover to a backup server?

We need to consider planned vs unplanned failover. Planned may be due to upgrading the core
Operating System or some other dependency in your infrastructure, or a similar activity.

Unplanned covers risks you are seeking to mitigate with failover:

* loss of a machine, or some machine related hardware failure (e.g. network)
* Joss of a VM cluster
* failure of storage

loss of a data center or machine room

e etc...

So, if your main commit-server fails, how fast should be you be able to be up and running again, and
how much data might you be prepared to lose? What is the potential disruption to your
organization if the Helix Core repository is down? How many people would be impacted in some
way?

You also need to consider the costs of your mitigation strategies. For example, this can range from:

* taking a backup once per 24 hours and requiring maybe an hour or two to restore it. Thus you
© 2007-2024 Perforce Software, Inc. 33

http://en.wikipedia.org/wiki/Recovery_point_objective
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://portal.perforce.com/s/article/5434

34 of 213 - Chapter 5. Backup, Replication, and Recovery

might lose up to 24 hours of work for an unplanned failure, and require several hours to
restore.

* having a high availability replica which is a mirror of the server hardware and ready to take
over within minutes if required

Having a replica for HA or DR is likely to reduce your RPO and RTO to well under an hour (<10
minutes if properly prepared for) - at the cost of the resources to run such a replica, and the
management overhead to monitor it appropriately.

Typically we would define:

* An HA replica is close to its upstream server, e.g. in the same Data Center - this minimizes the
latency for replication, and reduces RPO

* A DR replica is in a more remote location, so maybe risks being further behind in replication
(thus higher RPO), but mitigates against catastrophic loss of a data center or similar. Note that
"further behind" is still typically seconds for metadata, but can be minutes for submits with
many GB of files.

5.2.1. Further Resources

* High Reliability Solutions

5.2.2. Creating a Failover Replica for Commit or Edge Server

A commit server instance is the ultimate store for submitted data, and also for any workspace state
(WIP - work in progress) for users directly working with the commit server (part of the same "data
set")

An edge server instance maintains its own copy of workspace state (WIP). If you have people
connecting to an edge server, then any workspaces they create (and files they open for some action)
will be only stored on the edge server. Thus it is normally recommended to have an HA backup
server, so that users don’t lose their state in case of failover.

There is a concept of a "build edge" which is an edge server which only supports build farm users.
In this scenario it may be deemed acceptable to not have an HA backup server, since in the case of
failure of the edge, it can be re-seeded from the commit server. All build farm clients would be
recreated from scratch so there would be no problems.

5.2.3. What is a Failover Replica?

A Failover is the hand off of the role of a master/primary/commit server from a primary server
machine to a standby replica (typically on a different server machine). As part of failover
processing the secondary/backup is promoted to become the new master/primary/commit server.

As of 2018.2 release, p4d supports a p4 failover command that performs a failover to a standby
replica (i.e. a replica with Services: field value set to standby or forwarding-standby). Such a replica
performs a journalcopy replication of metadata, with a local pull thread to update its db.* files.
After the failover is complete, traffic must be redirected to the server machine where newly
promoted standby server operates, e.g. with a DNS change (possibly automated with a post-failover

- r==-== TTTTTTO I b o

34 © 2007-2024 Perforce Software, Inc.

https://portal.perforce.com/s/article/3166

Chapter 5. Backup, Replication, and Recovery - 35 of 213
trigger).

See also: Configuring a Helix Core Standby.

On Linux the SDP script mkrep.sh greatly simplifies the process of setting up a replica suitable for
use with the p4 failover command. See: Section 5.3.4, “Using mkrep.sh”.

5.2.4. Mandatory vs Non-mandatory Standbys

You can modify the Options: field of the server spec of a standby or forwarding-standby replica to
make it mandatory. This setting affects the mechanics of how failover works.

When a standby server instance is configured as mandatory, the master/commit server will wait
until this server confirms it has processed journal data before allowing that journal data to be
released to other replicas. This can simplify failover if the master server is unavailable to
participate in the failover, since it provides a guarantee that no downstream servers are ahead of
the replica.

This guarantee is important, as it ensures downstream servers can simply be re-directed to point to
the standby after the master server has failed over to its standby, and will carry on working
without problems or need for human intervention on the servers.

Failovers in which the master does not participate are generally referred to as unscheduled or
reactive, and are generally done in response to an unexpected situation. Failovers in which the
master server is alive and well at the start of processing, and in which the master server
participates in the failover, are referred to as scheduled or planned.

If a server which is marked as mandatory goes offline for any reason, the replication
to other replicas will stop replicating. In this scenario, the server spec of the
replica can be changed to nomandatory, and then replication will immediately

o resume, so long as the replication has not been offline for so long that the master
server has removed numbered journals that would be needed to catch up
(typically several days or weeks depending on the KEEPJNLS setting). If this
happens, the p4d server logs of all impacted servers will clearly indicate the root
cause, so long p4d versions are 2019.2 or later.

If set to nomandatory then there is no risk of delaying downstream replicas, however there is no
guarantee that they will be able to switch seamlessly over to the new server in event of an
unscheduled failover.

We recommend creating mandatory standby replica(s) if the server is local to its
(;) commit server. We also recommend active monitoring in place to quickly detect
replication lag or other issues.

To change a server spec to be mandatory or nomandatory, modify the server spec with a command like

p4 server p4d_ha_bos to edit the form, and then change the value in the Options: field to be as
desired, mandatory or nomandatory, and the save and exit the editor.

© 2007-2024 Perforce Software, Inc. 35

https://portal.perforce.com/s/article/16462

36 of 213 - Chapter 5. Backup, Replication, and Recovery
5.2.5. Server host naming conventions

This is recommended, but not a requirement for SDP scripts to implement failover.

Use a name that does not indicate switchable roles, e.g. don’t indicate in the name whether a
host is a master/primary or backup, or edge server and its backup. This might otherwise lead to
confusion once you have performed a failover and the host name is no longer appropriate.

Use names ending numeric designators, e.g. -01 or -05. The goal is to avoid being in a post-
failover situation where a machine with master or primary is actually the backup. Also, the
assumption is that host names will never need to change.

While you don’t want switchable roles baked into the hostname, you can have static roles, e.g.
use p4d vs. p4p in the host name (as those generally don’t change). The p4d could be primary,
standby, edge, edge’s standby (switchable roles).

Using a short geographic site is sometimes helpful/desirable. If used, use the same site tag used
in the ServerlD, e.g. aus.

Valid site tags should be listed in: /p4/common/config/SiteTags.cfg - see Section 5.3.4.1,
“SiteTags.cfg”

Using a short tag to indicate the major OS version is sometimes helpful/desirable, eg. c¢7 for
CentOS 7, or r8 for RHEL 8. This is based on the idea that when the major OS is upgraded, you
either move to new hardware, or change the host name (an exception to the rule above about
never changing the hostname). This option maybe overkill for many sites.

End users should reference a DNS name that may include the site tag, but would exclude the
number, OS indicator, and server type (p4d/p4p/p4broker), replacing all that with just perforce or
optionally just p4. General idea is that users needn’t be bothered by under-the-covers tech of
whether something is a proxy or replica.

For edge servers, it is advisable to include edge in both the host and DNS name, as users and
admins needs to be aware of the functional differences due to a server being an edge server.

Examples:

36

p4d-aus-r7-03, a master in Austin on RHEL 7, pointed to by a DNS name like p4-aus.

pAd-aus-03, a master in Austin (no indication of server OS), pointed to by a DNS name like p4-
aus.

p4d-aus-r7-04, a standby replica in Austin on RHEL 7, not pointed to by a DNS until failover, at
which point it gets pointed to by p4-aus.

p4p-syd-r8-05, a proxy in Sydney on RHEL 8, pointed to by a DNS name like p4-syd.

p4d-syd-r8-04, a replica that replaced the proxy in Sydney, on RHEL 8, pointed to by a DNS name
like p4-syd (same as the proxy it replaced).

p4d-edge-tok-s12-03, an edge in Tokyo running SuSE12, pointed to by a DNS name like p4edge-
tok.

p4d-edge-tok-s12-04, a replica of an edge in Tokyo running SuSE12, not pointed to by a DNS
name until failover, at which point it gets pointed to by p4edge-tok.

© 2007-2024 Perforce Software, Inc.

Chapter 5. Backup, Replication, and Recovery - 37 of 213

FQDNs (fully qualified DNS names) of short DNS names used in these examples would also exist,
and would be based on the same short names.

5.3. Full One-Way Replication

Perforce supports a full one-way replication of data from a master server to a replica, including
versioned files. The p4 pull command is the replication mechanism, and a replica server can be
configured to know it is a replica and use the replication command. The p4 pull mechanism
requires very little configuration and no additional scripting. As this replication mechanism is
simple and effective, we recommend it as the preferred replication technique. Replica servers can
also be configured to only contain metadata, which can be useful for reporting or offline
checkpointing purposes. See the Distributing Perforce Guide for details on setting up replica
servers.

If you wish to use the replica as a read-only server, you can use the P4Broker to direct read-only
commands to the replica or you can use a forwarding replica. The broker can do load balancing to a
pool of replicas if you need more than one replica to handle your load.

5.3.1. Replication Setup

To configure a replica server, first configure a machine identically to the master server (at least as
regards the link structure such as /p4, /p4/common/bin and /p4/instance/*), then install the SDP on it
to match the master server installation. Once the machine and SDP install is in place, you need to
configure the master server for replication.

Perforce supports many types of replicas suited to a variety of purposes, such as:

Real-time backup,

» Providing a disaster recovery solution,

Load distribution to enhance performance,
* Distributed development,

* Dedicated resources for automated systems, such as build servers, and more.

We always recommend first setting up the replica as a read-only replica and ensuring that
everything is working. Once that is the case you can easily modify server specs and configurables to
change it to a forwarding replica, or an edge server etc.

5.3.2. Replication Setup for Failover

This is just a special case of replication, but implementing Section 5.2.3, “What is a Failover
Replica?”

Please note the section below Section 5.3.4, “Using mkrep.sh” which implements many details.
5.3.3. Pre-requisites for Failover

These are vital as part of your planning.

© 2007-2024 Perforce Software, Inc. 37

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/replication.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_pull.html#p4_pull
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html

38 of 213 - Chapter 5. Backup, Replication, and Recovery

* Obtain and install a license for your replica(s)

Your commit or standard server has a license file (tied to IP address), while your replicas do not
require one to function as replicas.

However, in order for a replica to function as a replacement for a commit or standard server, it
must have a suitable license installed.

This should be requested when the replica is first created. See the form:
https://www.perforce.com/support/duplicate-server-request

Review your authentication mechanism (LDAP etc) - is the LDAP server contactable from the
replica machine (firewalls etc configured appropriately).
Review all your triggers and how they are deployed - will they work on the failover host?

Is the right version of Perl/Python etc correctly installed and configured on the failover host
with all imported libraries?

TEST, TEST, TEST!!! It is important to test the above issues as part of your planning.
o For peace of mind you don’t want to be finding problems at the time of trying to
failover for real, which may be in the middle of the night!

On Linux:

* Review the configuration of options such as Section 7.1, “Ensure Transparent Huge Pages (THP)

is turned off” and also Section 7.2, “Putting server.locks directory into RAM” are correctly
configured for your HA server machine - otherwise you risk reduced performance after
failover.

5.3.4. Using mkrep.sh

The SDP mkrep.sh script should be used to expand your Helix Topology, e.g. adding replicas and
edge servers. For the detailed usage statement, go to Section 8.4.7, “mkrep.sh”

When creating server machines to be used as Helix servers, the server machines
should be named following a well-designed host naming convention. The SDP has

o no dependency on the convention used, and so any existing local naming
convention can be applied. The SDP includes a suggested naming convention in
Section 5.2.5, “Server host naming conventions”

5.3.4.1. SiteTags.cfg

The mkrep.sh documentation references a SiteTags.cfg file used to register short tag names for
geographic sites. Location is: /p4/common/config/SiteTags.cfg

Your tags should use abbreviations that are meaningful to your organization.

38

© 2007-2024 Perforce Software, Inc.

https://www.perforce.com/support/duplicate-server-request

Chapter 5. Backup, Replication, and Recovery - 39 of 213

Example/Format
Valid Geographic site tags.

Each is intended to indicate a geography, and optionally a specific Data
Center (or Computer Room, or Computer Closet) within a given geographic
location.

The format is:

Name: Description

The Name must be alphanumeric only. The Description may contain spaces.
Lines starting with # and blank lines are ignored.

= R o o R o = =

bej: Beijing, China

bos: Boston, MA, USA

blr: Bangalore, India
chi: Chicago greater metro area
cni: Chennai, India

pune: Pune, India

lv: Las Vegas, NV, USA
mlb: Melbourne, Australia
syd: Sydney, Australia
awsuseast1: AWS US-East-1
azuksouth: Azure UK South

A sample file exists /p4/common/config/SiteTags.cfg.sample.

5.3.4.2. Output of mkrep.sh

The output of mkrep.sh (which is also written to a log file in /p4/<instance>/1logs/mkrep.*) describes
a number of steps required to continue setting up the replica after the metadata configuration
performed by the script is done.

5.3.5. Addition Replication Setup

In addition to steps recommended by mkrep.sh, there are other steps to be aware of to prepare a
replica server machine.

5.3.6. SDP Installation

The SDP must first be installed on the replica server machine. If SDP already exists on the machine
but not for the current instance, then mkdirs.sh must be used to add a new instance to the machine.

5.3.6.1. SSH Key Setup

SSH keys for the perforce operating system user should be setup to allow the perforce user to ssh
and rsync among the Helix server machines in the topology. If no ~perforce/.ssh directory exist on
a machine, it can be created with this command:

© 2007-2024 Perforce Software, Inc. 39

40 of 213 - Chapter 5. Backup, Replication, and Recovery

ssh-keygen -t rsa -b 4096

5.4. Recovery Procedures

There are three scenarios that require you to recover server data:

Metadata Depotdata Action required

lost or corrupt Intact Recover metadata as described
below

Intact lost or corrupt Call Perforce Support

lost or corrupt lost or corrupt Recover metadata as described
below.

Recover the hxdepots volume
using your normal backup
utilities.

Restoring the metadata from a backup also optimizes the database files.

5.4.1. Recovering a master server from a checkpoint and journal(s)

The checkpoint files are stored in the /p4/instance/checkpoints directory, and the most recent
checkpoint is named p4_instance.ckp.number.gz. Recreating up-to-date database files requires the
most recent checkpoint, from /p4/instance/checkpoints and the journal file from /p4/instance/logs.

To recover the server database manually, perform the following steps from the root directory of the
server (/p4/instance/root).

Assuming instance 1:

1. Stop the Perforce Server by issuing the following command:
/p4/1/bin/p4_1 admin stop

2. Delete the old database files in the /p4/1/root/save directory
3. Move the live database files (db.*) to the save directory.

4. Use the following command to restore from the most recent checkpoint.
/p4/1/bin/p4d_1 -r /p4/1/root -jr -z /p4/1/checkpoints/p4_1.ckp.#ittt.gz

5. To replay the transactions that occurred after the checkpoint was created, issue the following
command:

40 © 2007-2024 Perforce Software, Inc.

Chapter 5. Backup, Replication, and Recovery - 41 of 213

/p4/1/bin/p4d_1 -r /p4/1/root -jr /p4/1/logs/journal

6. Restart your Perforce server.

If the Perforce service starts without errors, delete the old database files from
/p4/instance/root/save.

If problems are reported when you attempt to recover from the most recent checkpoint, try
recovering from the preceding checkpoint and journal. If you are successful, replay the subsequent
journal. If the journals are corrupted, contact Perforce Technical Support. For full details about
backup and recovery, refer to the Perforce System Administrator’s Guide.

5.4.2. Recovering a replica from a checkpoint
This is very similar to creating a replica in the first place as described above.

If you have been running the replica crontab commands as suggested, then you will have the latest
checkpoints from the master already copied across to the replica through the use of Section 8.6.32,
“sync_replica.sh”.

See the steps in the script Section 8.6.32, “sync_replica.sh” for details (note that it deletes the state
and rdb.lbr files from the replica root directory so that the replica starts replicating from the start
of a journal).

Remember to ensure you have logged the service user in to the master server (and that the ticket is
stored in the correct location as described when setting up the replica).

5.4.3. Recovering from a tape backup

This section describes how to recover from a tape or other offline backup to a new server machine
if the server machine fails. The tape backup for the server is made from the hxdepots volume. The
new server machine must have the same volume layout and user/group settings as the original
server. In other words, the new server must be as identical as possible to the server that failed.

To recover from a tape backup, use the mkdirs.sh script to create missing elements of the SDP
structure. This can be used in a recovery scenario where some folders exist and others do not. This
script will safely create only the folders needed. However, it is necessary to first ensure storage is
properly configured before calling mkdirs.sh. In particular, the /hxdepots, /hxmetadata, and /hxlogs
volumes must be mounted properly.

Following is a sample procedure using 1 as the SDP instance name:

. Recover the /hxdepots volume from your backup tape.

. Asroot, do: cd /hxdepots/sdp/Server/Unix/setup; ./mkdirs.sh 1

1

2

3. Switch to the Perforce OS account.

4. Find the last available checkpoint, under /p4/1/checkpoints/
5

. Reinstall the Perforce server license to the server PAROOT directory.

© 2007-2024 Perforce Software, Inc. 41

mailto:support-helix-core@perforce.com
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html

42 of 213 - Chapter 5. Backup, Replication, and Recovery

6. Recover the latest checkpoint by running:

source /p4/common/bin/p4_vars N
nohup load_checkpoint.sh -latest < /dev/null > $L0GS/load.log 2>&1 &

7. Verify that the server instance is running.
8. Reinstall the server crontab or scheduled tasks.
9. Perform any other initial server machine configuration.

10. Verify the database and versioned files by running the p4verify.sh script. Note that files using
the +k file type modifier might be reported as BAD! after being moved. Contact Perforce
Technical Support for assistance in determining if these files are actually corrupt.

5.4.4. Failover to a replicated standby machine

See SDP Failover Guide (PDF) or SDP Failover Guide (HTML) for detailed steps.

42 © 2007-2024 Perforce Software, Inc.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/file.types.synopsis.modifiers.html
SDP_Failover_Guide.pdf
SDP_Failover_Guide.html

Chapter 6. Upgrades - 43 of 213
Chapter 6. Upgrades

This section describes both upgrades of the SDP itself, as well as upgrades of Helix software such as
p4d, p4broker, p4p, and the the p4 command line client in the SDP structure.

6.1. Upgrade Order: SDP first, then Helix P4D

The SDP should normally be upgraded prior to the upgrade of Helix Core (P4D). If you are
upgrading P4D to or beyond P4D 2019.1 from a prior version of P4D, you must upgrade the SDP
first. If you run multiple instances of P4D on a given machine (potentially each running different
versions of P4D), upgrade the SDP first before upgrading any of the instances.

The SDP should also be upgraded before upgrading other Helix software on machines using the
SDP, including p4d, p4p, p4broker, and p4 (the command line client).

Upgrading a Helix Core server instance in the SDP framework is a simple process involving a few
steps.

6.2. SDP and P4D Version Compatibility

Starting with the SDP 2020.1 release, the released versions of SDP match the released versions of
P4D. So SDP r20.1 is guaranteed to work with P4D r20.1. In addition, the SDP Release Notes clarify
all the specific versions of P4D supported.

The SDP is often forward- and backward-compatible with P4D versions, but for best results they
should be kept in sync by upgrading SDP before P4D. This is partly because the SDP contains logic
that helps upgrade P4D, which can change as P4D evolves (most recently for 2019.1).

The SDP is aware of the P4D version, and has backward-compatibility logic to support older
versions of P4D. This is guaranteed for supported versions of P4D. Backward compatibility of SDP
with older versions of P4D may extend farther back, though without the "officially supported"”
guarantee.

6.3. Upgrading the SDP

Starting with this SDP 2021.1 release, upgrades of the SDP from 2020.1 and later use a new
mechanism. The SDP upgrade procedure starting from 2020.1 and later uses the sdp_upgrade.sh
script. Some highlights of the new upgrade mechanism:

* Automated: Upgrades from SDP 2020.1 are automated with sdp_upgrade.sh provided with each
new version of the SDP.

* Continuous: Each new SDP version, starting from SDP 2021.1, will maintain the capability to
upgrade from all prior versions, so long as the starting version is SDP 2020.1 or later.

* Independent: SDP upgrades will enable upgrades to new Helix Core versions, but will not
directly cause Helix Core upgrades to occur immediately. Each Helix Core instance can be
upgraded independently of the SDP on its own schedule.

© 2007-2024 Perforce Software, Inc. 43

ReleaseNotes.pdf

44 of 213 - Chapter 6. Upgrades
6.3.1. Sample SDP Upgrade Procedure

For complete information, see: Section 8.2.3, “sdp_upgrade.sh”.

6.3.1.1. Sample SDP Upgrade in Classic Structure

First, confirm that you are on the SDP C(Classic or SDP OS Package structure. If the
/opt/perforce/helix-sdp directory does not exist, then you are using the SDP Classic Structure, and
the sample instructrions below apply. If that directory does exist, your installation was done with
the install_sdp.sh script; to upgrade it see Section 6.3.1.2, “Sample SDP Upgrade in OS Package
Structure”.

For the SDP Classic structure (if /opt/perforce/helix-sdp does not exist), a sample set of commands
to upgrade appears below, to be As the OS user that your p4d service runs as (typically perforce):

As perforce:

cd /hxdepots

[[-d downloads]] || mkdir downloads

cd downloads

[[-d new]] && mv new old.$(date +'%Y%m%d-%H%XM%S")

[[-e sdp.Unix.tgz 1] && mv sdp.Unix.tgz sdp.Unix.old.$(date +'%Y%m%d-%H%M%S")
curl -L -0
https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

1s -1 sdp.Unix.tgz

mkdir new

cd new

tar -xzf ../sdp.Unix.tgz

After extracting the SDP tarball, cd to the directory where the sdp_ugprade.sh script resides, and
execute it from there:

cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh -man

If the curl command cannot be used (perhaps due to lack of outbound internet
(r) access), replace that step with some other means of acquiring the SDP tarball such
- that it lands as /hxdepots/downloads/sdp.Unix.tgz, and then proceed from that
point forward.

What if there is no /hxdepots ?

If the existing SDP does not have a /hxdepots directory, find the correct value with this
command:

44 © 2007-2024 Perforce Software, Inc.

Chapter 6. Upgrades - 45 of 213

bash -c 'cd /p4/common; d=$(pwd -P); echo ${d%/p4/common}’

This can be run from any shell (bash, tcsh, zsh, etc.)

6.3.1.2. Sample SDP Upgrade in OS Package Structure

If /opt/perforce/helix-sdp directory exists, you are using the SDP OS Package Structure. A basic set
of commands to upgrade is as follows, which must be executed as the root user:

As root:

cd /opt/perforce/helix-sdp/downloads

[[-e sdp.Unix.tgz 1] && mv -f sdp.Unix.tgz sdp.Unix.$(date +'%Y-%m-%d-%H%M%S").tgz
curl -L -0
https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

tar -tzf sdp.Unix.tgz 2>&1 | grep -q sdp/Version && echo OK

If this does not display an OK message, the tarball is not valid. Investigate and resolve this issue
before proceeding.

As root:

cd /opt/perforce/helix-sdp

[[-d backup 11 || mkdir backup

mv sdp backup/sdp.old.$(date +'%Y-%m-%d-%H%sM%S")
tar -xzf downloads/sdp.Unix.tgz

cd /opt/perforce/helix-sdp/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh

Ensure the output contains a Success message near the end before proceeding with the live
upgrade:

./sdp_upgrade.sh -y

6.3.2. SDP Legacy Upgrade Procedure

If your current SDP is older than the 2020.1 release, see the SDP Legacy Upgrade Guide (for Unix)
for information on upgrading SDP to SDP 2020.1 from any prior version (dating back to 2007).

© 2007-2024 Perforce Software, Inc. 45

SDP_Legacy_Upgrades.Unix.pdf

46 of 213 - Chapter 6. Upgrades

6.4. Upgrading Helix Software with the SDP

The following outlines the procedure for upgrading Helix binaries using the SDP scripts.

6.4.1. Get Latest Helix Binaries

Acquire the latest Perforce Helix binaries to stage them for upgrade using the Section 8.2.1,
“get_helix_binaries.sh” script.

If you have multiple server machines with SDP, staging can be done with this script on one machine
first, and then the /hxdepots/sdp/helix_binaries folder can be rsync’d to other machines.

Alternately, this script can be run on each machine, but as patches can be released at any time,
running it once and then distributing the helix_binaries directory internally via rsync is preferred
to ensure all machines at your site deploy with the same binary versions.

See Section 8.2.1, “get_helix_binaries.sh”

6.4.2. Upgrade Each Instance

Use the SDP upgrade.sh script to upgrade each instance of Helix on the current machine, using the
staged binaries. The upgrade process handles all aspects of upgrading, including adjusting the
database structure, executing commands to upgrade the p4d database schema, and managing the
SDP symlinks in /p4/common/bin.

Instances can be upgraded independently of each other.

See Section 8.2.2, “upgrade.sh”.

6.4.3. Global Topology Upgrades - Outer to Inner

For any given instance, be aware of the Helix topology when performing upgrades, specifically
whether that instance has replicas and/or edge servers. When replicas and edge servers exist (and
are active), the order in which upgrade.sh must be run on different server machines matters.
Perform upgrades following an "outer to inner" strategy.

For example, say for SDP instance 1, your site has the following server machines:

bos-helix-01 - The master (in Boston, USA)

bos-helix-02 - Replica of master (in Boston, USA)
* nyc-helix-03 - Replica of master (in New York, USA)
* syd-helix-04 - Edge Server (in Sydney, AU)

syd-helix-05 - Replica of Sydney edge (in Sydney)
Envision the above topology with the master server in the center, and two concentric circles.

The Replica of the Sydney edge would be done first, as it is by itself in the outermost circle.

The Edge server and two Replicas

46

f the mast

o
=

are all at the next inner circle. So bos-helix-02, nyc-
e

1 next inn . 1elix \
> 2

e
2007-2024 Perforce Software, Inc.

©

Chapter 6. Upgrades - 47 of 213

helix-03, and syd-helix-04 could be upgraded in any order with respect to each other, or even
simultaneously, as they are in the same circle.

The master is the innermost, and would be upgraded last.
A few standards need to be in place to make this super easy:

* The perforce operating system user would have properly configured SSH keys to allow
passwordless ssh from the master to all other servers.

* The perforce user shell environment (~/.bash_profile and ~/.bashrc) ensured that the SDP shell
environment automatically sourced

The Helix global topology upgrade could be done something like, starting as perforce@bos-helix-01:

cd /p4/sdp/helix_binaries

./get_helix_binaries.sh

rsync -a /p4/sdp/helix_binaries/ syd-helix-05:/p4/sdp/helix_binaries
rsync -a /p4/sdp/helix_binaries/ syd-helix-04:/p4/sdp/helix_binaries
rsync -a /p4/sdp/helix_binaries/ nyc-helix-03:/p4/sdp/helix_binaries
rsync -a /p4/sdp/helix_binaries/ bos-helix-02:/p4/sdp/helix_binaries

Then do a preview of the upgrade on all machines, in outer-to-inner order:

ssh syd-helix-05 upgrade.sh
ssh syd-helix-04 upgrade.sh
ssh nyc-helix-03 upgrade.sh
ssh bos-helix-02 upgrade.sh
ssh bos-helix-01 upgrade.sh

On each machine, check for a message in the output that contains Success: Finished. If that looks
good, then proceed to execute the actual upgrades:

ssh syd-helix-05 upgrade.sh -y
ssh syd-helix-04 upgrade.sh -y
ssh nyc-helix-03 upgrade.sh -y
ssh bos-helix-02 upgrade.sh -y
ssh bos-helix-01 upgrade.sh -y

As with the preview, check for a message in the output that contains Success: Finished.

6.5. Database Modifications

Occasionally modifications are made to the Perforce database from one release to another. For
example, server upgrades and some recovery procedures modify the database.

When upgrading the server, replaying a journal patch, or performing any activity that modifies the

© 2007-2024 Perforce Software, Inc. 47

48 of 213 - Chapter 6. Upgrades

db.* files, you must ensure that the offline checkpoint process is functioning correctly so that the
files in the offline_db directory match the ones in the live server directory.

Normally upgrades to the offline_db after a P4D upgrade will be applied by rotating the journal in
the normal way, and applying it to the offline_db.

In some cases it is necessary to restart the offline checkpoint process and the easiest way to is to
run the live_checkpoint script after modifying the db.* files, as follows:

/p4/common/bin/live_checkpoint.sh 1

This script makes a new checkpoint of the modified database files in the live root directory, then
recovers that checkpoint to the offline_db directory so that both directories are in sync. This script
can also be used anytime to create a checkpoint of the live database.

o Please note the warnings about how long this process may take at Section 8.4.6,
“live_checkpoint.sh”

This command should be run when an error occurs during offline checkpointing. It restarts the

offline checkpoint process from the live database files to bring the offline copy back in sync. If the
live checkpoint script fails, contact Perforce Consulting at consulting-helix-core@perforce.com.

48 © 2007-2024 Perforce Software, Inc.

mailto:consulting-helix-core@perforce.com

Chapter 7. Maximizing Server Performance - 49 of 213
Chapter 7. Maximizing Server Performance

The following sections provide some guidelines for maximizing the performance of the Perforce
Helix Core Server, using tools provided by the SDP. More information on this topic can be found in
the Knowledge Base.

7.1. Ensure Transparent Huge Pages (THP) is turned
off

This is reference KB Article on Platform Notes

There is a (now deprecated) script in the SDP which will do this:
/p4/sdp/Server/Unix/setup/os_tweaks.sh

It needs to be run as root or using sudo. This will not persist after system is rebooted - and is thus no
longer the recommended option.

(r') We recommend the usage of tuned instead of the above, since it will persist after
- reboots.

Install as appropriate for your Linux distribution (so as root):
yum install tuned

or
apt-get install tuned

1. Create a customized tuned profile with disabled THP. Create a new directory in /etc/tuned
directory with desired profile name:

mkdir /etc/tuned/p4d_profile
2. Then create a new tuned.conf file for p4d_profile, and insert the new tuning info:

cat <<EOF > /etc/tuned/p4d_profile/tuned.conf

[main]

summary = Optimized settings for running on AWS and enabling cgroupsv2
include = virtual-guest

[bootloader]
Note that these changes are for performance and resource pressure monitoring via

© 2007-2024 Perforce Software, Inc. 49

https://portal.perforce.com/s/article/2529
https://portal.perforce.com/s/article/3005

50 of 213 - Chapter 7. Maximizing Server Performance
cgroupsv?2
This is valid for AWS: nvme_core.io_timeout
These changes will not take effect until system is rebooted
Valid for RHEL/Rocky 8 or 9 - https://portal.perforce.com/s/article/Enabling-0S-
supplied-resource-pressure-thresholds-on-Linux
cmdline = +net.ifnames=0 +systemd.unified_cgroup_hierarchy=1 +psi=1
+nvme_core.io_timeout=4294967295
For Ubuntu 22.04+
cmdline = +net.ifnames=0 +nvme_core.io_timeout=4294967295
cmdline = +net.ifnames=0

[sysctl]
net.ipv4.tcp_keepalive_time = 30
net.ipv4.tcp_keepalive_intvl = 10
net.ipv4.tcp_keepalive_probes = 3
vm.swappiness = @

[vm]
transparent_hugepages = never
EOF

3. Make the script executable

chmod +x /etc/tuned/p4d_profile/tuned.conf

4. Enable p4d_profile using the tuned-adm command.

tuned-adm profile p4d_profile

5. This change will immediately take effect and persist after reboots. To verify if THP are disabled
or not, run below command

cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

6. To validate resource pressure (after a reboot):

ls /proc/pressure
cpu io irq memory

7. To validate a profile (after a reboot):

tuned-adm verify
tail -40 /var/log/tuned/tuned.log

50 © 2007-2024 Perforce Software, Inc.

Chapter 7. Maximizing Server Performance - 51 of 213

7.2. Putting server.locks directory into RAM

The server.locks directory is maintained in the $P4ROOT (so /p4/1/root) for a running server
instance. This directory contains a tree of 0-length files (or 17 byte files in earlier p4d versions) used
for lock coordination amongst p4d processes.

This directory can be removed every time the p4d instance is restarted, so it is safe to put it into a
tmpfs filesystem (which by its nature does not survive a reboot).

Even on a large installation with many hundreds or thousands of users, this directory will be
unlikely to exceed 64M. The files in this directory are 17 or 0 bytes depending on th p4d version;
space is needed for inodes.

To do this, first determine if the setting will be global for all p4d servers at your site, or will be
determined on a per-server machine basis. If set globally, the per-machine configuration described
below MUST be done on all p4d server machines.

This should be done in a scheduled maintenance window.

For each p4d server machine (all server machines if you intend to make this a global setting), do
the following as user root:

1. Create a local directory mount point, and change owner/group to perforce:perforce (or $0SUSER
if SDP config specifies a different OS user, and whatever group is used):

mkdir /hxserverlocks
chown perforce:perforce /hxserverlocks

2. Add a line to /etc/fstab (adjusting appropriately if $0SUSER and group are set to something other
than perforce:perforce):

HxServerLocks /hxserverlocks tmpfs
uid=perforce,gid=perforce,size=64M,mode=0700 0 0

Note: The 64M in the above example is suitable for many sites, including large ones. For servers with
less available RAM, a smaller value is recommended, but no less than 128K.

If multiple SDP instances are operated on the machine, the value must be large enough for all
instances.

1. Mount the storage volume:
mount -a

2. Check it is looking correct and has correct ownership (perforce or $0SUSER):

© 2007-2024 Perforce Software, Inc. 51

52 of 213 - Chapter 7. Maximizing Server Performance

df -h
1s -1a /hxserverlocks

As user perforce (or $0SUSER), set the configurable server.locks.dir. This will be set in one of two
ways, depending on whether it was set globally, or on a per-server machine.

First, set the shell environment for your instance:
source /p4/common/bin/p4_vars N

Replacing N with your instance name; 1 by default.

To set server.locks.dir globally, do:

p4 configure set server.locks.dir="/hxserverlocks${P4HOME}/server.locks"

e.g.

p4 configure set ${SERVERID}server.locks.dir=/hxserverlocks${P4HOME}/server.locks

If you set this globally (without serverid# prefix), then you must ensure that all
o server machines running p4d, including replicas end edge servers, have a
similarly named directory available (or bad things will happen!)

Consider failover options. A failover will, by nature, change the ServerID on a
o given machine. If server.locks.dir is set globally, and all machines have the

HxServerLocks configuration done as noted above, then the server.locks.dir

setting is fully accounted for, and will not cause a problem in a failover situaion.

If server.locks.dir is set on a per-machine basis, then you should ensure that every standby server
has the same configuration with respect to server.locks.dir and the HxServerLocks filesystem as
its target server. So any standby servers replicating from a commit server should have the same
configuration as the commit server, and any standby servers replicating from an edge server
should have the same configuration as the target edge server. For simplicity, using a global setting
should be considered.

If you are defining server machine templates (such as an AMI in AWS or with Terraform or similar),
the HxServerLoccks configuration can and should be accounted for in the system template.

7.3. Installing monitoring packages

The sysstat and sos packages are recommended for helping investigate any performance issues on
a server.

52 © 2007-2024 Perforce Software, Inc.

Chapter 7. Maximizing Server Performance - 53 of 213

yum install sysstat sos
or
apt install sysstat sos
Then enable it:
systemctl enable --now sysstat

The reports are text based, but you can use kSar (https://github.com/vlsi/ksar) to visualize the data.
If installed before sosreport is run, sosreport will include the sysstat data.

We also recommend P4prometheus - https://github.com/perforce/p4prometheus. See Automated
script installer for SDP instances which makes it easy to install node_exporter, p4prometheus and
monitoring scripts in the crontab

See an example of interpreting prometheus metrics

7.4. Optimizing the database files

The Perforce Server’s database is composed of b-tree files. The server does not fully rebalance and
compress them during normal operation. To optimize the files, you must checkpoint and restore the
server. This normally only needs to be done very few months.

To minimize the size of back up files and maximize server performance, minimize the size of the
db.have and db.label files.

7.5. P4V Performance Settings

These are covered in: https://portal.perforce.com/s/article/2878

7.6. Proactive Performance Maintenance

This section describes some things that can be done to proactively to enhance scalability and
maintain performance.

7.6.1. Limiting large requests

To prevent large requests from overwhelming the server, you can limit the amount of data and
time allowed per query by setting the MaxResults, MaxScanRows and MaxLockTime parameters to
the lowest setting that does not interfere with normal daily activities. As a good starting point, set
MaxScanRows to MaxResults * 3; set MaxResults to slightly larger than the maximum number of
files the users need to be able to sync to do their work; and set MaxLockTime to 30000 milliseconds.
These values must be adjusted up as the size of your server and the number of revisions of the files

© 2007-2024 Perforce Software, Inc. 53

https://github.com/vlsi/ksar
https://github.com/perforce/p4prometheus
https://github.com/perforce/p4prometheus/blob/master/INSTALL.md#automated-script-installation
https://github.com/perforce/p4prometheus/blob/master/INSTALL.md#automated-script-installation
https://brian-candler.medium.com/interpreting-prometheus-metrics-for-linux-disk-i-o-utilization-4db53dfedcfc
https://portal.perforce.com/s/article/2878

54 of 213 - Chapter 7. Maximizing Server Performance

grow. To simplify administration, assign limits to groups rather than individual users.

To prevent users from inadvertently accessing large numbers of files, define their client view to be
as narrow as possible, considering the requirements of their work. Similarly, limit users' access in
the protections table to the smallest number of directories that are required for them to do their
job.

Finally, keep triggers simple. Complex triggers increase load on the server.

7.6.2. Offloading remote syncs

For remote users who need to sync large numbers of files, Perforce offers a proxy server. P4P, the
Perforce Proxy, is run on a machine that is on the remote users' local network. The Perforce Proxy
caches file revisions, serving them to the remote users and diverting that load from the main
server.

P4P is included in the Windows installer. To launch P4P on Unix machines, copy the
/p4/common/etc/init.d/pdp_1_init script to /p4/1/bin/p4p_1_init. Then review and customize the
script to specify your server volume names and directories.

P4P does not require special hardware but it can be quite CPU intensive if it is working with binary
files, which are CPU-intensive to attempt to compress. It doesn’t need to be backed up. If the P4P
instance isn’t working, users can switch their port back to the main server and continue working
until the instance of P4P is fixed.

54 © 2007-2024 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.proxy.html

Chapter 8. Tools and Scripts - 55 of 213
Chapter 8. Tools and Scripts

This section describes the various scripts and files provided as part of the SDP package.

8.1. General SDP Usage

This section presents an overview of the SDP scripts and tools, with details covered in subsequent
sections.

8.1.1. Linux

Most scripts and tools reside in /p4/common/bin. The /p4/<instance>/bin directory (e.g. /p4/1/bin)
contains scripts or links that are specific to that instance such as wrappers for the p4d executable.

Older versions of the SDP required you to always run important administrative commands using
the p4master_run script, and specify fully qualified paths. This script loads environment information
from /p4/common/bin/p4_vars, the central environment file of the SDP, ensuring a controlled
environment. The p4_vars file includes instance specific environment data from
/p4/common/config/p4_instance.vars e.g. /p4/common/config/p4_1.vars. The pdmaster_run script is
still used when running p4 commands against the server unless you set up your environment first
by sourcing p4_vars with the instance as a parameter (for bash shell: source /p4/common/bin/p4_vars
1). Administrative scripts, such as daily_checkpoint.sh, no longer need to be called with
pdmaster_run however, they just need you to pass the instance number to them as a parameter.

When invoking a Perforce command directly on the server machine, use the p4_instance wrapper
that is located in /p4/instance/bin. This wrapper invokes the correct version of the p4 client for the
instance. The use of these wrappers enables easy upgrades, because the wrapper is a link to the
correct version of the p4 client. There is a similar wrapper for the p4d executable, called
p4d_instance.

This wrapper is important to handle case sensitivity in a consistent manner, e.g.

o when running a UNIX/Linux server in case-insensitive mode. If you just execute
p4d directly when it should be case-insensitive, then you may cause problems, or
commands will fail.

Below are some usage examples for instance 1.

Example Remarks

/p4/common/bin/p4master_run 1 /p4/1/bin/p4_1 Run p4 admin stop on instance 1
admin stop

/p4/common/bin/1live_checkpoint.sh 1 Take a checkpoint of the live database on
instance 1

/p4/common/bin/p4login 1 Log in as the perforce user (superuser) on
instance 1.

Some maintenance scripts can be run from any client workspace, if the user has administrative

access to Perforce

© 2007-2024 Perforce Software, Inc. 55

56 of 213 - Chapter 8. Tools and Scripts
8.1.2. Monitoring SDP activities

The important SDP maintenance and checkpoint scripts generate email notifications when they
complete.

For further monitoring, you can consider options such as:

» Making the SDP log files available via a password protected HTTP server.

* Directing the SDP notification emails to an automated system that interprets the logs.

8.2. Upgrade Scripts

8.2.1. get_helix_binaries.sh
Usage
USAGE for get_helix_binaries.sh v1.7.3:

get_helix_binaries.sh [-r <HelixMajorVersion>] [-b <Binary1>,<Binary2>,...] [-api] [-
sbd <StageBinDir>] [-n] [-d|-D]

or
get_helix_binaries.sh -h|-man

DESCRIPTION:
This script acquires Perforce Helix binaries from the Perforce FTP server.

The four Helix binaries that can be acquired are:

* p4, the command line client
p4d, the Helix Core server
pdp, the Helix Proxy

* pdbroker, the Helix Broker

*

*

In addition, P4API, the C++ client API, can be downloaded.

This script gets the latest patch of binaries for the current major Helix
version. It is intended to acquire the latest patch for an existing install,
or to get initial binaries for a fresh new install. It must be run from

the /p4/sdp/helix_binaries directory in order for the upgrade.sh script

to find the downloaded binaries.

The helix_binaries directory is used for staging binaries for later upgrade
with the SDP 'upgrade.sh' script (documented separately). This helix_binaries
directory is used to stage binaries on the current machine, while the
'upgrade.sh' script uses the downloaded binaries to upgrade a single SDP
instance (of which there might be several on a machine).

The helix_binaries directory must NOT be in the PATH. As a safety feature,
56 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 57 of 213

the 'verify_sdp.sh' will report an error if the 'p4d' binary is found outside
/p4/common/bin in the PATH. The SDP 'upgrade.sh' check uses 'verify_sdp.sh'
as part of its preflight checks, and will refuse to upgrade if any 'p4d' is
found in the PATH outside /p4/common/bin.

When a newer major version of Helix binaries is needed, this script should not
be modified directly. Instead, get the latest version of SDP first, which will
included a newer version of this script, as well as the latest 'upgrade.sh'
The 'upgrade.sh' script is updated with each major SDP version to be aware of
any changes in the upgrade procedure for the corresponding p4d version.
Upgrading SDP first ensures you have a version of the SDP that works with
newer versions of p4d and other Helix binaries.

PLATFORM DETECTION
The 'uname' command is used to determine the architecture for the current
machine on which this script is run.

This script and supporting P4*.json release list files know what platforms
for which builds are available for each Helix Core binary (p4, p4d, pdbroker,
p4p). If the 'jq' utility is available, this script uses the P4*.json files
to verify that a build is available for the current platform, and in some
cases selects an alternate compatible platform if needed. For example, if
the detected platform is for 0SX 12+ for the x86_64 architecture, no build

is available for binaries such as p4d for that platform, so a compatible
alternative is used instead, in this case macosx1015x86_64.

This script handles only the UNIX/Linux platforms (to include 0SX).

RELEASE LIST FILES:
For each binary, there is a corresponding release list file (in json format)
that indicates the platforms available for the given binary. These files are:

P4.json (for the 'p4' binary)

P4D.json (for the 'p4d' binary)
P4Broker.json (for the 'p4broker' binary)
P4Proxy.json (for the 'p4p' binary)

These P4*.json release list files are aware of a wide list of supported
platforms for a range of Helix Core binaries.

These release list files are packaged with the SDP, and updated for each
major release.

OPTIONS:
-r <HelixMajorVersion>
Specify the Helix Version, using the short form. The form is rYY.N, e.g. r21.2
to denote the 2021.2 release. The default: is r24.2

The form of 'rYY.N', e.g. 'r24.1', is the default form of the version, matching
what is used in URLS on the Perforce Helix FTP server. For flexibility, similar
forms that clearly convent the intended version are also accepted. For example:

© 2007-2024 Perforce Software, Inc. 57

58 of 213 - Chapter 8. Tools and Scripts

38

"-r 23.1" is implicitly converted to '-r r23.1".
'-r 2023.1" is implicitly converted to ' -r r23.1".

-b <Binary1>[,<Binary2>,...]

Specify a comma-delimited list of Helix binaries. The default is: p4 p4d p4broker

Alternately, specify '-b none' in conjunction with '-api' to download only APIs
and none of the p4* binaries.

-api

Specify '-api' to download P4API, the C++ client API. This will acquire one or
more client API tarballs, depending on the current platform. The API files will
look something like these examples:

*

p4api-glibc2.3-openssl1.1.1.tgz
pdapi-glibc2.3-openssl3.tgz
p4api-glibc2.12-openssl1.1.1.tgz
p4api-glibc2.12-openssl3.tgz

* ¥ ok

*

p4api-openssl1.1.1.tgz
pdapi-openssl3.tgz

*

All binaries that match 'pdapi*tgz' in the relevant directory on the Perforce
FTP server for the current architecture and Helix Core version are downloaded.

Unlike binary downloads, the old versions are not checked, because file names are
fixed as they are with binares.

APIs are not needed for normal operations, and are only downloaded if requested
with the '-api' option. They may be useful for developing custom automation such
as custom triggers. Be warned, custom triggers are not supported by Perforce

Support.

-sbd <StageBinDir>

Specify the staging directory to install downloaded binaries.

By default, this script downloads files into the current directory, which

is expected and required to be /p4/sdp/helix_binaries. Documented workflows
for using this script involve first cd'ing to that directory. Using this
option disables the expected directory check and allows binaries to be
installed in any directory, which may be useful if this script is used

as a standalone script outside the SDP (e.g. for setting up test
environments or enabling Helix native DVCS features by installing binaries
into /usr/local/bin on a non-SDP machine.

This option also sets the location in which this script searches for the
P4*.json release list files.

-n Specify the '-n' (No Operation) option to show the commands needed

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 59 of 213

to fetch the Helix binaries from the Perforce FTP server without attempting
to execute them.

-d Set debugging verbosity.

-D Set extreme debugging verbosity using bash 'set -x' mode. Implies '-d'.
HELP OPTIONS:

-h Display short help message

-man Display this manual page

EXAMPLES:
Example 1 - Typical Usage with no arguments:

cd /p4/sdp/helix_binaries
./get_helix_binaries.sh

This acquires the latest patch of all 4 binaries for the r24.2
release (aka 2024.2).

This will not download APIs, which are not needed for general operation.
Example 2 - Specify the major version:

cd /p4/sdp/helix_binaries
./get_helix_binaries.sh -r r21.2

This gets the latest patch of for the 2021.2 release of all 4 binaries.

Note: Only supported Helix binaries are guaranteed to be available from the
Perforce FTP server.

Note: Only the latest patch of any given binary is available from the Perforce
FTP server.

Example 3 - Get r22.2 and skip the proxy binary (p4p):

cd /p4/sdp/helix_binaries
./get_helix_binaries.sh -r r22.2 -b p4,p4d,p4broker

Example 4 - Download r23.1 binaries in a non-default directory.

cd /any/directory/you/want
./get_helix_binaries.sh -r r23.1 -sbd .

or:
./get_helix_binaries.sh -r r23.2 -sbd /any/directory/you/want

Example 5 - Download C++ client API only:

© 2007-2024 Perforce Software, Inc. 59

60 of 213 - Chapter 8. Tools and Scripts
./get_helix_binaries.sh -r r24.1 -b none -api

DEPENDENCIES:
This script requires outbound internet access. Depending on your environment,
it may also require HTTPS_PROXY to be defined, or may not work at all.

If this script doesn't work due to lack of outbound internet access, it is
still useful illustrating the locations on the Perforce FTP server where
Helix Core binaries can be found. If outbound internet access is not
available, use the '-n' flag to see where on the Perforce FTP server the
files must be pulled from, and then find a way to get the files from the
Perforce FTP server to the correct directory on your local machine,
/p4/sdp/helix_binaries by default.

EXIT CODES:

An exit code of @ indicates no errors were encountered. An
non-zero exit code indicates errors were encountered.

8.2.2. upgrade.sh

The upgrade.sh script is used to upgrade p4d and other Perforce Helix binaries on a given server

machine.
The links for different versions of p4d are described in Section A.3, “P4D versions and links”
Usage

USAGE for upgrade.sh v4.12.4:

upgrade.sh <instance> [-p|-I] [-M] [-0d] [-Osp] [-c] [-y] [-L <log>] [-d|-D]

or

upgrade.sh [-h|-man]

DESCRIPTION:
This script upgrades the following Helix Core software:

* p4d, the Perforce Helix Core server
* pdbroker, the Helix Broker server

* pdp, the Helix Proxy server

p4, the command line client

*

The preferred process for using this script is to start with the services
to be upgraded (p4d, pdbroker, and/or p4p) up and running at the

start of processing. The p4d service must be online if it is to be
upgraded.

60 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 61 of 213

Details of each upgrade are described below. Prior to executing any upgrades, a
preflight check is done to help ensure upgrades will go smoothly. Also, checks
are done to determine what (if any) of the above software products need to be
updated.

To prepare for an upgrade, new binaries must be update in the

/p4/sdp/helix_binaries

THE

THE

directory. This is generally done using the get_helix_binaries.sh script in
that directory. Binaries in this directory are not referenced by live running
servers, and so it is safe to upgrade files in this directory to stage for a
future upgrade at any time. Also, the SDP standard PATH does not include this
directory, as verified by the verify_sdp.sh script.

INSTANCE BIN DIR

The 'instance bin' directory, /p4/<instance>/bin, (e.g. /p4/1/bin for instance
1), is expected to contain *_init scripts for services that operate on the
current machine.

For example, a typical commit server machine for instance 1 might have the
following in /p4/1/bin:

pdbroker_1_init script

pdbroker_1 symlink

p4d_1_init script

p4d_1 symlink or script

p4_1 symlink (a reference to the 'p4' command line client)

* 0% kX X

A server machine for instance 1 that runs only the proxy server would have the
following in /p4/1/bin:

* p4p_1_init script
* p4p_1 symlink
* p4_1 symlink

The instance bin directory is never modified by the 'upgrade.sh' script.
The addition of new binaries and update of symlinks occur in .

The existence of *_init scripts for any given binary determines whether this
script attempts to manage the service on a given machine, stopping it before
upgrades, restarting it afterward, and other processing in the case of p4d.
Note that Phase 2, adding new binaries and updating symlinks, will occur for
all binaries for which new staged versions are available, regardless of
whether they are operational on the given machine.

COMMON DIR

This script performs it operations in the SDP common bin dir, .

Unlike the instance bin directory, the directory is expected
© 2007-2024 Perforce Software, Inc. 61

62 of 213 - Chapter 8. Tools and Scripts

to be identical across all machines in a topology. Scripts and symlinks
should always be the same, with only temporary differences while global
topology upgrades are in progress.

Thus, all binaries available to be upgraded will be upgraded in Phase 2, even
if the binary does not operate on the current machine. For example, if a new
version of 'p4p' binary is available, a new version will be copied to

and symlink references updated there. However, the p4p binary will

not be stopped/started.

GENERAL UPGRADE PROCESS

This script determines what binaries need to be upgraded, based on what new

binaries are available in the /p4/sdp/helix_binaries directory compared to what
binaries

the current instance uses.

There are 5 potential phases. Which phases execute depend on the set of binaries
being upgraded. The phases are:

* PHASE 1 - Establish a clean rollback point.
This phase executes on the master if p4d is upgraded.

* PHASE 2 - Install new binaries and update SDP symlinks in .
This phase executes for all upgrades.

* PHASE 3 - Stop services to be upgraded.
This phase executes for all upgrades involving p4d, p4p, pdbroker.
Only a 'p4' client only upgrade skips this phase.

* PHASE 4 - Perforce p4d schema upgrades

This step involves the 'p4d -xu' processing. It executes if p4d is upgraded
to a new major version, and occurs on the master as well as all replicas/edge
servers. The behavior of 'p4d -xu' differs depending on whether the server is
the master or a replica.

This phase is skipped if upgrading to a patch of the same major version, as
patches do not require 'p4d -xu' processing.

* PHASE 5 - Start upgraded services.
This phase executes for all upgrades involving p4d, p4p, p4broker.
Only a 'p4' client only upgrade skips this phase.

SPECIAL CASE - TO OR THRU P4D 2019.1

If you are upgrading from a version that is older than 2019.1, services
are NOT restarted after the upgrade in Phase 5, except on the master.
Services must be restarted manually on all other servers.

For these 'to-or-thru' 2019.1 upgrades, after ensuring all replicas/edges
are caught up (per 'p4 pull -1j'), shutdown all servers other than the

62 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 63 of 213
master.

Proceeding outer-to-inner, execute this script like so on all machines
except the master:

. Deploy new executables in /p4/sdp/helix_binaries

. Stop p4d.

. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.

. Run 'upgrade.sh -M" to update symlinks.

. Do the upgrade manually with: p4d -xu

Leave the server offline.

o Ul B~ D W=,

On the master, execute like this:

1. Deploy new executables in /p4/sdp/helix_binaries
2. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports

3. upgrade.sh

When the script completes (it will wait for 'p4 storage' upgrades),
restart services manually after the upgrade in the 'inner-to-outer'
direction. Restart services on replicas/edges going inner-to-outer

This procedure requiring extra steps is specific to 'to-or-thru' P4D 2019.1
upgrades. For upgrades starting from P4D 2019.1 or later, things are simpler.

UPGRADES FOR P4D 2019.1+

For upgrades where the P4D start version is 2019.1 and going to any subsequent
version, run this script going outer-to-inner. On each machine, it leaves the
services online and running. Going in the outer-to-inner direction an all
servers, do:

1. Deploy new executables in /p4/sdp/helix_binaries
2. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.

3. upgrade.sh
UPGRADE PREPARATION

The steps for deploying new binaries to server machines and running verify_sdp.sh
(and potentially correcting any issues it discovers) can and should be done before
the time or even day of any planned upgrade.

UPGRADING HELIX CORE - P4D
The p4d process, the Perforce Helix Core Server, is the center of the Perforce

Helix universe, and the only server with a significant database component.
Most of the upgrade phases above are about performing the p4d upgrade.

© 2007-2024 Perforce Software, Inc. 63

64 of 213 - Chapter 8. Tools and Scripts

64

This 'upgrade.sh' script requires that the 'p4d' service be running at the
beginning of processing if p4d is to be upgraded, and will abort if p4d is
not running.

ORDER OF UPGRADES

Any given Perforce Helix installation will have least one p4d master server, and
may have several other p4d servers deployed on different machines as replicas and
edge servers. When upgrading multiple p4d servers for any given instance (i.e.
any given data set, with a unique set of changelist numbers and users), the order
in which upgrades are performed matters. Upgrades must be done in "outer to
inner" order.

The master server, at the center of the topology, is the innermost server and
must be upgraded last. Any replicas or edge servers connected directly to the
master constitute the next outer circle. These can be upgraded in any order
relative to each other, but must be done before the master and after any
replicas farther out from the master in the topology. So this 'upgrade.sh'
script should be run first on the server machines that are "outermost" from
the master from a replication perspective, and moving inward. The last run is
done on the master server machine.

Server machines running only proxies and brokers do not have a strict order
dependency for upgrades. These are commonly done in the same "outer to inner"
methodology as p4d for process consistency rather than strict technical need.

See the SDP_Guide.Unix.html for more information related to performing global
topology upgrades.

COMMIT SERVER JOURNAL ROTATIONS

This script helps minimize downtime for upgrades by taking advantage of the SDP
offline checkpoint mechanism. Rather than wait for a full checkpoint, a journal
is rotated and replayed to the offline_db. This typically takes very little
time compared to a checkpoint, reducing downtime needed for the overall upgrade.
It also prepares the offline_db in case a rollback is needed.

When the commit server is upgraded, two rotations of the commit server's journal
occur during processing for major upgrades, and a single journal rotation is done
for patch upgrades. The first journal rotation occurs before any upgrade
processing occurs, i.e. before the new binaries are added and symlinks are
updated. This gives a clean rollback point. This journal is immediately replayed
to the offline_db.

Later, after p4d has started performs its journaled upgrade processing, a second
journal rotation occurs in Phase 5 if a major upgrade was done. This second
journal rotation captures all upgrade-related processing in a separately numbered
journal. This second journal is not applied to the offline_db by this script.
Instead, the replay of the second journal to the offline_db will occur the next
time a call is made to the daily_checkpoint.sh or rotate_journal.sh, e.g. via
routine crontab. For a p4d patch upgrade, there will not be any upgrade

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 65 of 213

processing.

In the very unlikely event that a rollback were to ever be needed, the
offline_db is left in a state that it could be used for a fast rollback
on the commit server.

MULTI-SERVER OUTER-TO-INNER UPGRADES
Before starting an outer-to-inner upgrade involving multiple p4d servers,
(standby, edge, and other p4d replica servers), a manual journal rotation
should be done on the commit server before starting to call upgrade.sh
on each of the p4d servers in outer-to-inner order. Take note of the
journal counter used for this pre-start journal rotation. It can be
useful in event of a rollback. That journal may need to be replayed
to the offline_db on all servers other than the commit in a rollback
scenario.

In prepartion in days or weeks before an upgrade, every p4d server in
the topology should be checked to ensure its offline_db is healthy
and current.

ROLLBACK
In the very unlikely event that a rollback is needed, bear in mind the
following:
* There is no standard procedure for rolling back, because a procedure
would need to take into account the reason a decision was made to
rollback. Presumably the decision would be driven by some kind of
failure. A large factor in determining whether rollback is practical
is the point in the process at which a rollback is needed. In some
situations, a 'Fix and Roll Forward' approach may be more pragmatic
than a rollback, and should always be considered.
* This script and supporting documentation will help prepare your data
for as smooth a rollback as possible should it ever become necessary.
* To best prepare for a rollback, it is essential to manage user
lockout as part of your overall maintenance procedure. Then let users
back in after you have confirmed you are moving forward. User lockout
is outside the scope of this script, but can be managed using several
possible methods such as:
Crafting a special Protections table to be used during maintenance,
Using "Down for Maintenance" brokers,
Using network and/or on-host firewall rules,
- Using temporary ports for maintenance.
* If Phase 2 (update of symlinks and binaries) completed and must be
undone, than can be achieved by putting the pre-upgrade binaries in
place in the directory /p4/sdp/helix_binaries, named simply p4, p4d,
pdbroker, and p4p. Then run a command like this example for Instance 1:

upgrade.sh 1 -M -TI -y

This will change symlinks back to reference the older versions. The
new binaries will still exist in /p4/common/bin, but will no longer
be referenced for Instance 1.

© 2007-2024 Perforce Software, Inc. 65

66

66

of 213 - Chapter 8. Tools and Scripts

UPGRADING HELIX BROKER

Helix Broker (p4broker) servers are commonly deployed on the same machine as a
Helix Core server, and can also be deployed on stand-alone machines (e.g.
deployed to a DMZ host to provide secure access outside a corporate firewall).

Helix Brokers configured in the SDP environment can use a default confiquration
file, and may have other configurations. The default configuration is the done
defined in /p4/common/config/p4_N.broker.cfg (or a host-specific override file
if it exists named /p4/common/config/p4_N.broker.<short_hostname>.cfg). Other
broker configurations may exist, such as a DFM (Down for Maintenance) broker
config /p4/common/config/p4_N.broker.dfm.cfg.

During upgrade processing, this 'upgrade.sh' script only stops and restarts the
broker with the default configuration. Thus, if coordinating DFM brokers, first
manually shutdown the default broker and start the DFM brokers before calling
this script. This script will leave the DFM brokers running while adding the
new binaries and updating the symlinks. (Note: Depending on how services

are configured, this DFM configuration might not survive a machine reboot.
typically the default broker will come online after a machine reboot).

This 'upgrade.sh' script will stop the p4broker service if it is running at the
beginning of processing. If it was stopped, it will be restarted after the new
binaries are in place and symlinks are updated. If p4broker was not running at the
start of processing, new binaries are added and symlinks updated, but the

pdbroker server will not be started.

UPGRADING HELIX PROXY

Helix Proxy (p4p) are commonly deployed on a machine by themselves, with no p4d
and no broker. It may also be run on the same machine as p4d.

This 'upgrade.sh' script will stop the pdp service if it is running at the
beginning of processing. If it was stopped, it will be restarted after the new
binaries are in place and symlinks are updated. If p4p was not running at the
start of processing, new binaries are added and symlinks updated, but the p4p
server will not be started.

UPGRADING HELIX P4 COMMAND LINE CLIENT

The command line client, 'p4', is upgraded in Phase 2 by addition of new
binaries and updating of symlinks.

STAGING HELIX BINARIES

If your server can reach the Perforce FTP server over the public internet, a
script can be used from the /p4/sdp/helix_binaries directory to get the latest
binaries:

$ cd /p4/sdp/helix_binaries
© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 67 of 213
$./get_helix_binaries.sh

If your server cannot reach the Perforce FTP server, perhaps due to outbound
network firewall restrictions or operating on an "air gapped" network,
use the '-n' option to see where Helix binaries can be acquired from:

$ cd /p4/sdp/helix_binaries
$./get_helix_binaries.sh -n

OPTIONS:

<instance>
Specify the SDP instance name to add. This is a reference to the Perforce
Helix Core data set. This defaults to the current instance based on the
$SDP_INSTANCE shell environment variable. If the SDP shell environment is
not loaded, this option is required.

-p Specify '-p' to halt processing after preflight checks are complete,
and before actual processing starts. By default, processing starts
immediately upon successful completion of preflight checks.

-0d
Specify '-0d' to override the rule preventing downgrades.

WARNING: This is an advanced option intended for use by or with the
guidance of Perforce Support or Perforce Consulting.

-Osp
Specify "-Osp' to override the sudo preflight, skipping that check.

WARNING: This is an advanced option intended for use by or with the
guidance of Perforce Support or Perforce Consulting.

Specify '-I' to ignore preflight errors. Use of this flag is STRONGLY
DISCOURAGED, as the preflight checks are essential to ensure a safe
and smooth migration. If used, preflight checks are still done so
their errors are recorded in the upgrade log, and then the migration
will attempt to proceed.

WARNING: This is an advanced option intended for use by or with the
guidance of Perforce Support or Perforce Consulting.

Specify '-M" if you plan to do a manual upgrade. With this option,
only Phase 2 processing, adding new staged binaries and updating
symlinks, is done by this script.

If '-M' is used, this script does not check that services to
be upgraded are online at the start of processing, nor does it
attempt to start to stop services. If '-M' is used, the
services should be stopped manually before calling this script,

© 2007-2024 Perforce Software, Inc. 67

68 of 213 - Chapter 8. Tools and Scripts
and then started manually after.

WARNING: This is an advanced option intended for use by or with the
guidance of Perforce Support or Perforce Consulting.

Specify '-c' to execute a command to upgrade the Protections table
comment format after the p4d upgrade, by using a command like:

p4 protect --convert-p4admin-comments -o | p4 -s protect -i

By default, this Protections table conversion is not performed. In some
environments with custom policies related to update of the protections
table, this command may not work.
The new style of comments and the '
was introduced in P4D 2016.1.

--convert-p4admin-comments' option

-L <log>
Specify the path to a log file, or the special value 'off' to disable
logging. By default, all output (stdout and stderr) goes to this file
in the /p4/N/logs directory (where N is the SDP instance name):

upgrade.p4_N.<datestamp>.1log

NOTE: This script is self-logging. That is, output displayed on the
screen is simultaneously captured in the log file. Redirection
operators like '> log' and '2>&1' are not required, nor is 'tee'.

Logging can only be disabled with '-L off' if the '-n' or '-p' flags
are used. Disabling logging for actual upgrades is not allowed.

Specify the '-y' option to confirm that the upgrade should be done.

By default, this script operates in No-Op mode, meaning no actions

that affect data or structures are taken. Instead, commands that would
be run are displayed. This mode can be educational, showing various
steps that will occur during an actual upgrade.

DEBUGGING OPTIONS:
-d Increase verbosity for debugging.

-D Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

EXAMPLES :
EXAMPLE 1: Preflight Only

68 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 69 of 213

To see if an upgrade is needed for this instance, based on binaries
staged in /p4/sdp/helix_binaries, use the '-p' flag to execute only the preflight
checks, and disable logging, as in this example:

$ cd /p4/common/bin
$./upgrade.sh 1 -p -L off

EXAMPLE 2: Typical Usage

Typical usage is with just the SDP instance name as an argument, e.qg.
instance '1', and no other parameters, as in this example:

$ cd /p4/common/bin
$./upgrade.sh 1

This first runs preflight checks, and aborts if preflight checks
detected any issues. The it gives a preview of the upgrade. A
successful preview completes with a line near the end that looks like
this sample:

Success: Finished p4_1 Upgrade.

If the preview is successful, then proceed with the real upgrade using
the -y flag:

$./upgrade.sh 1 -y
EXAMPLE 3: Simplified

If the standard SDP shell environment is loaded, upgrade.sh will be in
the path, so the 'cd' command to /p4/common/bin is not needed. Also,
the SDP_INSTANCE shell environment variable will be defined, so the
"instance' parameter can be dropped, with simply a call to the script
needed. First do a preview:

$ upgrade.sh

Review the output of the preview, looking for the 'Success: Finished'
message near the end of the output. If that exists, then execute again
with the '-y' flag to execute the actual migration:

$ upgrade.sh -y

CUSTOM PRE- AND POST- UPGRADE AUTOMATION HOOKS:
This script can execute custom pre- and post- upgrade scripts. This
can be useful to incorporate site-specifc elements of an upgrade.

If the file /p4/common/site/upgrade/pre-upgrade.sh exists and is
executable, it will be executed as a pre-upgrade script. If the file
/p4/common/site/upgrade/post-upgrade.sh exists and is executable,

© 2007-2024 Perforce Software, Inc. 69

70 of 213 - Chapter 8. Tools and Scripts
it will be executed as a post-upgrade script.

Pre- and post- upgrade scripts are called with an SDP instance
parameter, and an optional '-y' flag to confirm actual processing is
to be done. Custom scripts are expected to operate in preview mode
by default, taking no actions that affect data (just as this script
behaves). If this upgrade.sh script is given the '-y' flag, that
option is passed to the custom script as well, indicating active
processing should occur.

Pre- and post- upgrade scripts are expected to exit with a zero exit
code to indicate success, and non-zero to indicate failure.

The custom pre-upgrade script is executed after standard preflight
checks complete successfully. If the '-I' flag is used to ignore the
status of preflight checks, the custom pre-upgrade script is

executed regardless of the status of preflight checks. Preflight
checks are executed before actual upgrade processing commences. If a
custom pre-upgrade script indicates a failure, the overall upgrade
process aborts.

The post-upgrade custom script is executed after the main upgrade
is successful.

Success or failure of pre- and post- upgrade scripts is reported in
the log. These scripts do not require independent logging, as all
standard and error output is captured in the log of this upgrade.sh
script.

TIP: Be sure to fully test custom scripts in a test environment
before incorporating them into an upgrade on production systems.

SEE ALSO:
The /verify_sdp.sh script is used for preflight checks.

The /p4/sdp/helix_binaries/get_helix_binaries.sh script acquires new binaries
for upgrades.

Both scripts sport the same '-h' (short help) and '-man' (full manual)
usage options as this script.

LIMITATIONS:
This script does not handle upgrades of 'p4dtg', Helix Swarm,
Helix4Git, or any other software. It only handles upgrades of
p4d, pdp, pdbroker, and the p4 client binary on the SDP-managed
server machine on which it is executed.

8.2.3. sdp_upgrade.sh

This script will perform an upgrade of the SDP itself - see Section 6.3, “Upgrading the SDP”

70 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 71 of 213
Usage

USAGE for sdp_upgrade.sh v2.3.2:
sdp_upgrade.sh [-y] [-p] [-L <log>|off] [-D]
or

sdp_upgrade.sh -h|-man

This script must be executed from the 'sdp_upgrade' directory in the extracted
SDP tarball, which can be in one of two locations. If the /opt/perforce/helix-sdp/sdp
directory exists, start the upgrade process like this (as the 'root' user):

cd /opt/perforce/helix-sdp/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh

Otherwise, start the upgrade like this, as the operating system user account
under which the p4d service runs as (e.g. 'perforce' or 'pdadmin' but never
as 'root'):

cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh

Running sdp_upgrade.sh without "-y' will do a dry run. Review the output and check
for a SUCCESS indication at the end. If you get the success message, proceedd
with:

./sdp_upgrade.sh -y

DESCRIPTION:

This script upgrades Perforce Helix Server Deployment Package (SDP) from
SDP 2020.1 to the version included in the latest SDP version, SDP
2024.2.

== Pre-Upgrade Planning ==

This script will upgrade the SDP if the pre-upgrade starting SDP version
is SDP 2020.1 or later, including any/all patches of SDP
2020.1.

If the current SDP version is older than 2020.1, it must first be upgraded
to SDP 2020.1 using the SDP Legacy Upgrade Guide. For upgrading from
pre-20.1 versions dating back to 2007, in-place or migration-style upgrades
can be done. See:

https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/view/main/doc/SDP_Legacy_Upgrades.Unix.html

© 2007-2024 Perforce Software, Inc. 71

72 of 213 - Chapter 8. Tools and Scripts

72

The SDP should always be upgraded to the latest version first before
Helix Core binaries p4d/p4broker/p4p are upgraded using the SDP
upgrade.sh script.

Upgrading the SDP first ensures the version of the SDP you have

is compatible with the latest versions of p4d/p4broker/p4p/p4, and
will always be compatible with all supported versions of these
Helix Core binaries.

When this script is used, i.e. when the current SDP version is 2020.1

or newer, the SDP upgrade procedure does not require downtime for any
running Perforce Helix services, such as p4d, pdbroker, or p4p. This

script is safe to run in environments where live p4d instances are running,
and does not require p4d, p4dbroker, p4p, or any other services to be stopped
or upgraded. Upgrade of the SDP is cleanly separate from the upgrade the
Helix Core binaries. The upgrade of the SDP can be done immediately prior to
Helix Core upgrades, or many days prior.

There can be multiple SDP instances on a given server machine. This script
will upgrade the SDP on the machine, and thus after the upgrade all
instances will immediately use new SDP scripts and updated instance
configuration files, e.g. the /p4/common/config/p4_N.vars files. However,
all instances will continue running the same Helix Core binaries. Any live
running Helix Core server process on the machine are unaffected by the
upgrade of SDP.

This script will upgrade the SDP on a single machine. If your Perforce
Helix topology has multiple machines, the SDP should be upgraded on all
machines. The upgrade of SDP on multiple machines can be done in any order,
as there is no cross-machine dependency requiring the SDP to be the same
version. (The order of upgrade of Helix Core services and binaries such as
p4d in global topologies with replicas and edge servers does matter, but is
outside the scope of this script).

Planning Recap:

1. The SDP can be upgraded without downtime when this script is used, i.e.
when the starting SDP version is 2020.1 or later.

2. Upgrade SDP on all machines, in any order, before upgrading p4d and other
Helix binaries.

== Diretory Structure Changes for /p4/sdp and /p4/common ==

There is a structure change with SDP affecting where the /p4/sdp and
/p4/common symlinks are targeted. This change is part of a phased
rollout of a new structure to be used by a future helix-sdp 0S package.
Nothing in the structural changes affects behaviors of routine

SDP daily scripts. The changes affect how SDP upgrades work, and on

what volumes files like Helix Core server binaries exist on. The gist
of the change is that that /hxdepots/p4/commnon and /hxdepots/sdp
folders (which are on NFS if /hxdepots is NFS-mounted) are changeed from
being actively used folders to become backup directories,

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 73 of 213

The active directories are moved to local storage on the machine
in the new /opt/perforce/helix-sdp structure.

Prior to SDP 2024.2, this was the typical symlink structure is:
* /hxdepots/sdp, symlinked as /p4/sdp

* /hxdepots/p4/common, symlinked as /p4/common

* /hxdepots/downloads, no symlnk

If /hxdepots is NFS mounted, then the active folders are on NFS.
Starting with 2024.2, a new structure is available, and will be

used if the install_sdp.sh script was used for the initial SDP
install. In that structure, we have the following:

*

/opt/perforce/helix-sdp/p4/sdp, symlinked as /p4/sdp
/opt/perforce/helix-sdp/p4/common, symlinked as /p4/common
/opt/perforce/helix-sdp/downloads, no symlink
/opt/perforce/helix-sdp/sdp, immutable root-owned structure,
updated only by SDP upgrades (i.e. this script).

* ¥ ok

During upgrades, the legacy structure is changed in ways that
are safe even if /hxdepots is NFS-shared with machines not
being upgraded. For safety, some structures are abandoned and
untouched.

* A new /hxdepots/sdp/backup folder is created, and contain
/hxdepots/sdp/backup/opt/perforce/helix-sdp

* Dirs other than backup under /helix/sdp are unusued/untouched

* /hxdepots/p4/common is unused/untouched

* /hxdepots/downloads is moved to /hxdepots/sdp/backup/downloads,

and the /hxdepots/sdp becomes a symlink to /opt/perforce/helix-sdp/downloads.

== NFS Sharing of HxDepots ==

In some environments, the HxDepots volume is shared across multiple server
machines with NFS, typically mounted as /hxdepots. This script updates the
/hxdepots/p4/common and /hxdepots/sdp directories, both of which are on the
NFS mount. Thus upgrading SDP on a single machine will effectively and
immediately upgrade the SDP on all machines that share /hxdepots from the
same NFS-mounted storage. This is a safe and valid configuration, as
upgrading the SDP does not affect any live running p4d servers.

== Acquiring the SDP Package - 0S Package Structure ==
If the /opt/perforce/helix-sdp structure exists on your machine, then
upgrade using the procedure in this section. Otherwise see the section

below "Acquiring the SDP Package - Classic Structure".

Become the root user first:
© 2007-2024 Perforce Software, Inc. 73

74 of 213 - Chapter 8. Tools and Scripts

sudo su -
cd /opt/perforce/helix-sdp/downloads
[[-e sdp.Unix.tgz 1] && mv -f sdp.Unix.tgz sdp.Unix.$(date +'%Y-%m-%d-

SHIMSS') . tgz

curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

74

tar -tzf sdp.Unix.tgz 2>&1 | grep -q sdp/Version && echo OK

If this does not display an OK message, the tarball is not valid. Investigate
and resolve this issue before proceeding. As root:

cd /opt/perforce/helix-sdp

[[-d backup 11 || mkdir backup

mv sdp backup/sdp.old.$(date +'%Y-%m-%d-%H%M%S")
tar -xzf downloads/sdp.Unix.tgz

cd /opt/perforce/helix-sdp/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh -man

== Acquiring the SDP Package - Classic Structure ==

If the /opt/perforce/helix-sdp structure exists on your machine, then
upgrade using the procedure above in the 0S Package Structure section.

This script is part of the SDP package (tarball). It must be run from an
extracted tarball directory. Acquiring the SDP tarball is a manual operation.

The SDP tarball must be extracted such that the 'sdp' directory appears as
<HxDepots>/downloads/new/sdp, where <HxDepots> defaults to /hxdepots. To
determine the value for <HxDepots> at your site you can run the following:

bash -c¢ 'cd /p4/common; d=$(pwd -P); echo ${d%/p4/common}’

On this machine, that value is: /hxdepots

Following are sample commands to acquire the latest SDP, to be executed
as the user perforce:

cd /hxdepots

[[-d downloads]] || mkdir downloads

cd downloads

[[-d new]] && mv new old.$(date +'%Y%m%d-%H%M')
curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

1s -1 sdp.Unix.tgz

mkdir new

cd new

tar -xzf ../sdp.Unix.tgz

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 75 of 213

After extracting the SDP tarball, cd to the directory where this
sdp_upgrade.sh script resides, and execute it from there.

cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh -man

== Preflight Checks ==

Prior to upgrading, preflight checks are performed to ensure the

upgrade can be completed successfully. If the preflight checks

fail, the upgrade will not start.

Sample Preflight Checks:

* The existing SDP version is verified to be SDP 2020.1+.

* Various basic SDP structural checks are done.

* The /p4/common/bin/p4_vars is checked to confirm it can be upgraded.

* A1l /p4/common/config/p4_N.vars files are checked to confirm they can be
upgraded.

== Automated Upgrade Processing ==

Step 1: Backup /p4/common.

The existing <HxDepots>/p4/common structure is backed up to:

<HxDepots>/p4/common.bak.<YYYYMMDD-hhmm>

Step 2: Update /p4/common.

The existing SDP /p4/common structure is updated with new
versions of SDP files.

Step 3: Generate the SDP Environment File.

Regenerate the SDP general environment file,
/p4/common/bin/p4_vars.

The template is /p4/common/config/p4_vars.template.
Step 4: Generate the SDP Instance Files.

Regenerate the SDP instance environment files for all instances based on
the new template.

The template is /p4/common/config/instance_vars.template.

For Steps 3 and 4, the re-generation logic will preserve current
settings. If upgrading from SDP r20.1, any custom logic that
exists below the '### MAKE LOCAL CHANGES HERE' tag will be

split into separate files. Custom logic in p4_vars will be moved

© 2007-2024 Perforce Software, Inc. 75

76 of 213 - Chapter 8. Tools and Scripts

76

to /p4/common/site/config/p4_vars.local. Custom logic in
p4_N.vars files will be moved to /p4/common/site/config/p4_N.vars.local.

Note: Despite these changes, the mechanism for loading the SDP shell
environment remains unchanged since 2007, so it looks like:

$ source /p4/common/bin/p4_vars N

Changes to the right-side of assignments for specific are preserved

for

all defined SDP settings. For p4_vars, preserved settings are:
OSUSER (determined by current owner of /p4/common)

KEEPLOGS

KEEPCKPS

KEEPINLS

instance_vars files, preserved settings are:
MAILTO

MAILFROM

PAUSER

PAMASTER_ID

SSL_PREFIX

PAPORTNUM

P4BROKERPORTNUM
PAMASTERHOST

PROXY_TARGET

PROXY_PORT

PROXY_MON_LEVEL
PROXY_V_FLAGS

PADTG_CFG

SNAPSHOT _SCRIPT
SDP_ALWAYS_LOGIN
SDP_AUTOMATION_USERS
SDP_MAX_START_DELAY_P4D
SDP_MAX_START_DELAY_P4BROKER
SDP_MAX_START_DELAY_P4P
SDP_MAX_STOP_DELAY_P4D
SDP_MAX_STOP_DELAY_P4BROKER
SDP_MAX_STOP_DELAY_P4P
VERIFY_SDP_SKIP_TEST_LIST
The 'umask' setting.
KEEPLOGS (if set)

KEEPCKPS (if set)

KEEPINLS (if set)

Note that the above list excludes any values that are calculated.

Step 5: Remove Deprecated Files.

Deprecated files will be purged from the SDP structure. The list of
files to be cleaned are listed in this file:

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 77 of 213
/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade/deprecated_files.txt

Paths listed in this file are relative to the '/p4' directory (or
more accurately the SDP Install Root directory, which is always
'/p4" except in SDP test production environments).

Step 6: Update SDP crontabs.
No crontab updates are required for this SDP upgrade.
== Post-Upgrade Processing ==

This script provides guidance on any post-processing steps. For some
releases, this may include upgrades to crontabs.

OPTIONS:
-y Specify the '-y' option to confirm that the SDP upgrade should be done.

By default, this script operates in No-Op mode, meaning no actions

that affect data or structures are taken. Instead, commands that would
be run are displayed. This mode can be educational, showing various
steps that will occur during an actual upgrade.

-p Specify '-p' to halt processing after preflight checks are complete,
and before actual processing starts. By default, processing starts
immediately upon successful completion of preflight checks.

-0d Specify '-0d' to override the rule preventing downgrades.

WARNING: This is an advanced option intended for use by or with the
guidance of Perforce Support or Perforce Consulting.

-L <log>
Specify the log file to use. The default is /tmp/sdp_upgrade.<timestamp>.log

The special value 'off' disables logging to a file. This cannot be

specified if '-y' is used.
-d Enable debugging verbosity.
-D Set extreme debugging verbosity.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

FILES AND DIRECTORIES:
Name: SDPCommon
Path: /p4/common
Notes: This sdp_upgrade.sh script updates files in and under this folder.

© 2007-2024 Perforce Software, Inc. 77

78 of 213 - Chapter 8. Tools and Scripts

Name: HxDepots

Default Path: /hxdepots

Notes: The folder containing versioned files, checkpoints, and numbered
journals, and the SDP itself. This is commonly a mount point.

Name: DownloadsDir
Default Path: /hxdepots/downloads

Name: SDPInstallRoot
Path: /p4

EDITME - Add new structure dirs /opt/perforce/helix-sdp

EXAMPLES:
This script must be executed from 'sdp_upgrade' directory in the extracted
SDP tarball. Typical operation starts like this:

cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh -h

A1l following examples assume operation from that directory.
Example 1: Prelight check only:

sdp_upgrade.sh -p

Example 2: Preview mode:

sdp_upgrade.sh

Example 3: Live operation:

sdp_upgrade.sh -y

LOGGING:
This script generates a log file, ~/sdp_upgrade.<timestamp>.log
by default. See the '-L' option above.

CUSTOM PRE- AND POST- UPGRADE AUTOMATION HOOKS:
This script can execute custom pre- and post- upgrade scripts. This
can be useful to incorporate site-specific elements of an SDP upgrade.

If the file /p4/common/site/upgrade/pre-sdp_upgrade.sh exists and is
executable, it will be executed as a pre-upgrade script. If the file
/p4/common/site/upgrade/post-sdp_upgrade.sh exists and is executable,
it will be executed as a post-upgrade script.

Pre- and post- upgrade scripts are passed the '-y' flag to confirm
actual processing is to be done. Custom scripts are expected to
operate in preview mode by default, taking no actions that affect data
(just as this script behaves). If this sdp_upgrade.sh script is given

78 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 79 of 213

the '-y' flag, that option is passed to the custom script as well,
indicating active processing should occur.

Pre- and post- upgrade scripts are expected to exit with a zero exit
code to indicate success, and non-zero to indicate failure.

The custom pre-upgrade script is executed after standard preflight
checks complete successfully. Preflight checks are executed before
actual upgrade processing commences. If a custom pre-upgrade script
indicates a failure, the overall upgrade process aborts.

The post-upgrade custom script is executed after the main SDP upgrade
is successful.

Success or failure of pre- and post- upgrade scripts is reported in

the log. These scripts do not require independent logging, as all
standard and error output is captured in the log of this sdp_upgrade.sh
script.

TIP: Be sure to fully test custom scripts in a test environment
before incorporating them into an upgrade on production systems.

EXIT CODES:
An exit code of @ indicates no errors were encountered during the

upgrade. A non-zero exit code indicates the upgrade was aborted
or failed.

8.3. Legacy Upgrade Scripts

8.3.1. clear_depot_Map_fields.sh

The clear_depot_Map_fields.sh script is used when upgrading to SDP from versions earlier than SDP
2020.1. Its usage is discussed in SDP Legacy Upgrade Guide (for UNIX/Linux).

Usage
USAGE for clear_depot_Map_fields.sh v1.2.0:
clear_depot_Map_fields.sh [-i <instance>] [-L <log>] [-v<n>] [-p|-n] [-D]
or
clear_depot_Map_fields.sh [-h|-man|-V]
DESCRIPTION:
This script obsoletes the SetDefaultDepotSpecMapField.py trigger.

It does so by following a series of steps. First, it ensures that
the configurable server.depot.root is set correctly, setting it

© 2007-2024 Perforce Software, Inc. 79

SDP_Legacy_Upgrades.Unix.html

80 of 213 - Chapter 8. Tools and Scripts
if it is not already set.

Next, the Triggers table is checked to ensure the call to the
SetDefaultDepotSpecMapField.py is not called; it is deleted from
the Triggers table if found.

Last, it resets the 'Map:' field of depot specs for depot

types where that is appropriate, setting it to the default value of
'<DepotName>/...", so that it honors the server.depot.root
configurable. This is done for depots of these types:

stream
local
spec
unload
graph

* 0% F X X

but not these:
* archive
* remote

If an unknown depot type is encountered, the 'Map:' field is reset
as well if it is set.

This script does a preflight check first, reporting any cases
where the starting conditions are not as expected. These conditions
are treated as Errors, and will abort processing:

* Depot Map field set to something other than the default.
* Confiqurable server.depot.root is set, but to something other
than what it should be.

The following are treated as Warnings, and will be reported but
will not prevent processing.

* Configurable server.depot.root is already set.

* SetDefaultDepotSpecMapField.py not found in triggers.

* Depot already has 'Map:' field set to the default value:
<DepotName>/...

OPTIONS:
-v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

-L <log>
Specify the path to a log file, or the special value 'off' to disable
logging. By default, all output (stdout and stderr) goes to
EDITME_DEFAULT_LOG

NOTE: This script is self-logging. That is, output displayed on the screen

is simultaneously captured in the log file. Do not run this script with
redirection operators like '> log' or '2>&1"', and do not use 'tee.’

80 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 81 of 213

-p Run preflight checks only, and then stop. By default, actual changes
occur if preflight checks find no issues.

-n No-Op. No actions are taken that would affect data significantly;
instead commands are displayed rather than executed.

-D Set extreme debugging verbosity.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message
-V Display version info for this script and its libraries.

EXAMPLES:
A typical flow for this script is to do a preflight first, and then
a live run, for any given instance:
clear_depot_Map_fields.sh -i 1 -p
clear_depot_Map_fields.sh -i 1

Note that if using '-n', the '-v5' flag should also be used.

8.4. Core Scripts

The core SDP scripts are those related to checkpoints and other scheduled operations, and all run
from /p4/common/bin.

If you source /p4/common/bin/p4_vars <instance> then the /p4/common/bin directory will be added to
your $PATH.

8.4.1. p4_vars

The /p4/common/bin/p4_vars defines the SDP shell environment, as required by the Perforce Helix
server process. This script uses a specified instance number as a basis for setting environment
variables. It will look for and open the respective p4_<instance>.vars file (see next section).

This script also sets server logging options and configurables.

It is intended to be used by other scripts for common environment settings, and also by users for
setting the environment of their Bash shell.

Usage

source /p4/common/bin/p4_vars 1

See also: Section 4.4, “Setting your login environment for convenience”

8.4.2. p4_<instance>.vars

Defines the environment variables for a specific instance, including P4PORT etc.
© 2007-2024 Perforce Software, Inc. 81

82 of 213 - Chapter 8. Tools and Scripts
This script is called by Section 8.4.1, “p4_vars” - it is not intended to be called directly by a user.

For instance 1:
pd_1.vars

For instance art:
p4_art.vars

Occasionally you may need to edit this script to update variables such as PAMASTERHOST or similar.

Location: /p4/common/config

8.4.3. p4master_run

The /p4/common/bin/p4master_run is a wrapper script to other SDP scripts. This ensures that the shell
environment is loaded from p4_vars before executing the script. It provides a '-c' flag for silent
operation, used in many crontab so that email is sent from the scripts themselves.

This is especially useful for calling scripts that do not set their own shell environment, such as
Python or Perl scripts. Historically it was used as a wrapper for all SDP scripts.

Many of the bash shell scripts in the SDP set their own environment (by doing
@ source /p4/common/bin/p4_vars N for their instance); those bash shell scripts do not
v need to be called with the p4master_run wrapper.

8.4.4. daily_checkpoint.sh

The /p4/common/bin/daily_checkpoint.sh script configured by default to run six days a week using
crontab. The script:

* truncates the journal
 replays it into the offline_db directory
* creates a new checkpoint from the resulting database files

* recreates the offline_db database from the new checkpoint.
This procedure rebalances and compresses the database files in the offline_db directory.

These can be rotated into the live (root) database, by the script Section 8.4.12,
“refresh_P4ROOT_from_offline_db.sh”

Usage

/p4/common/bin/daily_checkpoint.sh <instance>
/p4/common/bin/daily_checkpoint.sh 1

82 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 83 of 213
8.4.5. keep_offline_db_current.sh

The /p4/common/bin/keep_offline_db_current.sh script is for use only on a standby replica. It will not
run on any other type of replica.

This script ensures the offline_db has the most current journals replayed.

It is intended for use on standby replicas as an alternative to sync_replica.sh or replica_cleanup.sh.
It is ideal for use in an environment where the checkpoints folder of the PATARGET server is shared
(e.g. via NFS) with this server. It is also suitable for use in Windows to Linux migrations for
operation on the Linux standby of the Windows commit server, where the rsync commands in the
sync_replica.sh script are unable to pull the checkpoints folder of the (Windows) PATARGET server
to the Linux standby. This keep_offline_db_current.sh should be run instead of sync_replica.sh
until after the failover to Linux is done, at which point daily_checkpoint.sh should be run instead.

This script does NOT do full checkpoint operations, and requires that the offline_db be in a good
state before starting — this is verified with a call to verify_sdp.sh.

This uses checkpoint.log as its primary log. It is only intended for use on a machine where other
scripts that update checkpointlog don’t run, e.g. daily_checkpoint.sh, live_checkpoint.sh, or
rotate_journal.sh.

Usage

/p4/common/bin/keep_offline_db_current.sh <instance>
/p4/common/bin/keep_offline_db_current.sh 1

8.4.6. live_checkpoint.sh

The /p4/common/bin/1live_checkpoint.sh is used to initialize the SDP offline_db. It must be run once,
typically manually during initial installation, before any other scripts that rely on the offline_db
can be used, such as daily_checkpoint.sh and rotate_journal.sh.

This script can also be used in some cases to repair the offline_db if it has has become corrupt, e.g.
due to a sudden power loss while checkpoint processing was running.

Be aware this script locks the live database for the duration of the checkpoint

o which can take hours for a large installation (please check the
/p4/1/1ogs/checkpoint.log for the most recent output of daily_checkpoint.sh to see
how long checkpoints take to create/restore).

Note that when a live_checkpoint.sh runs, the server will be unresponsive to users for a time. On a
new installation this "hang time" will be imperceptible (seconds), but over time it can grow to
minutes and eventually hours. The idea is that live_checkpoint.sh should be used only very
sparingly, and is not scheduled as a routine operation.

If you have a large set of database files and checkpoints take many hours, then p4d
>= 2022.2 offers parallel checkpointing options which can reduce the time
substantially.

© 2007-2024 Perforce Software, Inc. 83

84 of 213 - Chapter 8. Tools and Scripts

This performs the following actions:

* Does a journal rotation, so the active PAJOURNAL file becomes numbered.
* Creates a checkpoint from the live database db.* files in the P4AROOT.

» Recovers the offline_db database from that checkpoint to rebalance and compress the files

Run this script when creating the server instance and if an error occurs while replaying a journal
during the off-line checkpoint process.

Usage

/p4/common/bin/live_checkpoint.sh <instance>
/p4/common/bin/1live_checkpoint.sh 1

8.4.7. mkrep.sh

The SDP mkrep.sh script should be used to expand your Helix Topology, e.g. adding replicas and
edge servers.

Usage
USAGE for mkrep.sh v3.4.2:

mkrep.sh -t <Type> -s <Site_Tag> -r <Replica_Host> [-f <From_ServerID>] [-os] [-p] [-
pdconfig <PathToFile>] [-N <N>] [-i <SDP_Instance>] [-L <log>] [-v<n>] [-n] [-D]

or

mkrep.sh [-h|-man|-V]

DESCRIPTION:
This script simplifies the task of creating Helix Core replicas and
edge servers, and helps ensure they are setup with best practices.

This script executes as two phases. In Phase 1, this script does all
the metadata configuration to be executed on the master server that
must be baked into a seed checkpoint for creating the replica/edge.
This essentially captures the planning for a new replica, and can be
done before the physical infrastructure (e.g. hardware, storage, and
networking) is ready. Phase 1, fully automated by this script, takes
only seconds to run.

In Phase 2, this script provides information for the manual steps
needed to create, transfer, and load seed checkpoints onto the
replica/edge. The guidance is specific to type of replica created,
based on the command line flags provided to this script. This
processing can take a while for large data sets, as it involves
creating and transporting checkpoints.

84 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 85 of 213

Before using this script, a set of geographic site tags must be defined.
See the FILES: below for details on a site tags.

This script adheres to the these SDP Standards:

* Server Spec Naming Standard:
https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/view/main/doc/SDP_Guide.Unix.html#_server_spec_naming_standard

* Journal Prefix Standard: https://swarm.workshop.perforce.com/projects/perforce-
software-sdp/view/main/doc/SDP_Guide.Unix.html#_the_journalprefix_standard

In Phase 1, this script does the following to help create a replica or
edge server:

* Generates the server spec for the new replica.

* Generates a server spec for master server (if needed).

* Sets configurables ('p4 configure' settings) for replication.
Selects the correct 'Services' based on replica type.

Creates service user for the replica, and sets a password.

Creates service user for the master (if needed), and sets a password.
Adds newly created service user(s) to the group 'ServicelUsers'.
Verifies the group ServiceUsers is granted super access in the
protections table (and with '-p', also updates Protections).

*

* % %k

After these steps are completed, in Phase 2, detailed instructions are
presented to guide the user through the remaining steps needed to complete
the deployment of the replica. This starts with creating a new

checkpoint to capture all the metadata changes made by this

script in Phase 1.

SERVICE USERS:
Service users created by this script are always of type 'service',
and so will not consume a licensed seat.

Service users also have an 'AuthMethod' of 'perforce' (not
'ldap') as is required by 'p4d' for 'service' users. Passwords
set for service users are long 32 character random strings

that are not stored, as they are never needed. Login tickets for
service users are generated using: p4login -service -v

OPTIONS:
-t <Type>[N]
Specify the replica type tag. The type corresponds to the 'Type:' and
'Services:' field of the server spec, which describes the type of services
offered by a given replica.

Valid type values are:

* ha: High Availability standby replica, for 'p4 failover' (P4D 2018.2+)

* ham: High Availability metadata-only standby replica, for 'p4 failover' (P4D
2018.2+)

* ro: Read-Only standby replica. (Discouraged; Use 'ha' instead for 'p4
failover' support.)

© 2007-2024 Perforce Software, Inc. 85

86 of 213 - Chapter 8. Tools and Scripts

* rom: Read-Only standby replica, Metadata only. (Discouraged; Use 'ham' instead
for 'p4 failover' support.)
* fr: Forwarding Replica (Unfiltered).
* fs: Forwarding Standby (Unfiltered).
frm: Forwarding Replica (Unfiltered, Metadata only).
fsm: Forwarding Standby (Unfiltered, Metadata only).
ffr: Filtered Forwarding Replica. Not a valid failover target.
edge: Edge Server. Filtered by definition.

*

* ¥ ok

Replicas with 'standby' are always unfiltered, and use the 'journalcopy'
method of replication, which copies a byte-for-byte verbatim journal file
rather than one that is merely logically equivalent.

The tag has several purposes:
1. Short Hand. Each tag represents a combination of 'Type:' and fully
qualified 'Services:' values used in server specs.

2. Distillation. Only the most useful Type/Services combinations have a
shorthand form

3. For forwarding replicas, the name includes the critical distinction of
whether any replication filtering is used; as filtering of any kind disqualifies
a replica from being a potential failover target. (No such distinction is

needed for edge servers, which are filtered by definition).

-s <Site_Tag>
Specify a geographic site tag indicating the location and/or data center where
the replica will physically be located. Valid site tags are defined in the site
tags file:

/p4/common/config/SiteTags.cfg
A sample SiteTags.cfg file that is here:
/p4/common/config/SiteTags.cfg.sample

-r <Replica_Host>
Specify the DNS name of the server machine on which the new replica will
run. This is used in the 'ExternalAddress:' field of the replica's
ServerID, and also used in instructions to the user for steps after
metadata configuration is done by this script.

-f <From_ServerID>
Specify ServerID of the PATARGET server from which we are replicating.
This is used to populate the 'ReplicatingFrom' field of the server
spec. The value must be a valid ServerID.

This option should be used if the target is something other than the

master. For example, to create an HA replica of an edge server, you might
specify something like '-f p4d_edge_syd'.

86 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 87 of 213

-0S Specify the '-os' option to overwrite an exising server spec. By
default, this script will abort of the server spec to be generated
already exists on the Helix Core server. Specify this option to
overwrite the existing server spec.

-p This script always performs a check to ensure that the Protections table
grants super access to the group ServiceUsers.

By default, an error is displayed if the check fails, i.e. if super user
access for the group ServiceUsers cannot be verified. This is

because, by default, we want to avoid making changes to the Protections
table. Some sites have local policies or custom automation that requires
site-specific procedures to update the Protections table.

If "-p' is specified, an attempt is made to append the Protections table
an entry like:

super group ServicelUsers * //...

This option may not be suitable for use on servers that have custom
automation managing the Protections table.

-p4config <PathToFile>
Use the '-p4config' option use this SDP mkrep.sh script to create a
replica spec on an arbitrary p4d server. That arbitrary server can be
any p4d version, operating on any platform, and need not be managed with SDP.

To use this option, first create a PACONFIG file that defines settings
needed to access the other server. As a convention, identify a short tag
name for the other server to use in the P4CONFIG file. In the example
below, we use 'mot' for "my other server". Create a P4CONFIG file text
named /p4/common/site/config/.p4config.mot that contains these settings:

PAPORT=ss1:my_other_server:1666

PAUSER=p4admin
PATICKETS=/p4/common/site/config/.p4tickets.mot
PATRUST=/p4/common/site/config/.p4trust.mot

The P4TRUST setting is only needed if the port is SSL-enabled. If it
is enabled, next trust the port:

p4 -E PACONFIG=/p4/common/site/config/.p4config.mot trust -y

Next, generate a ticket on that connection:
p4 -E P4CONFIG=/p4/common/site/config/.p4config.mot login -a

Provide the password if prompted.

Finally, call mkrep.sh and specify the config file. When using this
option, using '-L' to specify a non-default log file name
is useful to keep logs from external servers cleanly separated.

© 2007-2024 Perforce Software, Inc. 87

88 of 213 - Chapter 8. Tools and Scripts

mkrep.sh -p4config /p4/common/site/config/.p4config.mot -L /mkrep.mot.log

This will run the mkrep against the server specify in that P4CONFIG
file.

-N <N>
Specify "-N <N>', where N is an integer. This is used to indicate that
multiple replicas of the same type are to be created at the same site.
The value specified with '-N' must be a numeric value. Left-padding with
zeroes is allowed. For example, '-N 04' is allowed, and 'N A7' is not
(as it is not numeric).

This affects the ServerID to be generated. For example, the options
'-t edge -s syd' would result in a ServerID of p4d_edge_syd. To
create a second edge in the same site, use '-t edge -s syd -N 2' to
generate p4d_edge2_syd.

-i <SDP_Instance>
Specify the SDP Instance. If not specified and the SDP_INSTANCE environment
is defined, that value is used. If SDP_INSTANCE is not defined, the
"-i <SDP_Instance>' argument is required.

-v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

-L <log>
Specify the path to a log file, or the special value 'off' to disable
logging. By default, all output (stdout and stderr) goes in the logs
directory referenced by $L0GS environment variable, in a file named
mkrep.<timestamp>.log

NOTE: This script is self-logging. That is, output displayed on the screen
is simultaneously captured in the log file. Using redirection operators like
"> log' or '"2>&1' are not necessary, nor is using 'tee.’

-n No-Op. Prints commands instead of running them.
-D Set extreme debugging verbosity.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message
-V Display version info for this script and its libraries.

FILES:
This Site Tags file defines the list of valid geographic site tags:
/p4/common/config/SiteTags.cfg

The contains one-1line entries of the form:

88 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 89 of 213
<tag>: <description>

where <tag> is a short alphanumeric tag name for a geographic location,
data center, or other useful distinction. This tag is incorporated into
the ServerID of replicas or edge servers created by this script. Tag
names should be kept short, ideally no more than about 5 characters in
length.

The <description> is a one-line text description of what the tag
refers to, which may contain spaces and ASCII punctuation.

Blank lines and lines starting with a '#' are considered comments
and are ignored.

REPLICA SERVER MACHINE SETUP:
The replica/edge server machine must be have the SDP structure installed,
either using the mkdirs.sh script included in the SDP, or the Helix
Installer for 'green field' installations.

When setting up an edge server, a replica of an edge server, or filtered
replica, confirm that the JournaPrefix Standard (see URL above) structure
has the separate checkpoints folder as identified in the 'Second Form' in
the standard. A baseline SDP structure can typically be extended by running
commands like like these samples (assuming a ServerID of p4d_edge_syd or
p4d_ha_edge_syd):

mkdir /hxdepots/p4/1/checkpoints.edge_syd
cd /p4/1
1n -s /hxdepots/p4/1/checkpoints.edge_syd

CUSTOM PRE- AND POST- OPERATION AUTOMATION HOOKS:
This script can execute custom pre- and post- processing scripts. This
can be useful to incorporate site-specific elements of replica setup.

If the file /p4/common/site/mkrep/pre-mkrep.sh exists and is
executable, it will be executed before mkrep.sh processing. If the file
/p4/common/site/mkrep/post-mkrep.sh exists and is executable,

it will be executed after mkrep.sh processing.

Pre- and post- processing scripts are called with the same command line
arguments passed to this mkrep.sh script.

The pre- and post- processing scripts can use or ignore arguments as
needed, though it is required to implement the '-n' flag to operate in
preview mode, taking no actions that affect data (just as this script

behaves).

Pre- and post- processing scripts are expected to exit with a zero exit
code to indicate success, and non-zero to indicate failure.

The custom pre-processing script is executed after standard preflight
© 2007-2024 Perforce Software, Inc. 89

90 of 213 - Chapter 8. Tools and Scripts

checks complete successfully. If a custom pre-processing script
indicates a failure, processing is aborted before standard mkrep.sh
processing occurs.

The post-processing custom script is executed after the standard
mkrep.sh processing is successful. If a post-processing custom script
is detected, the instructions that would be provided to the user in
Phase 2 are not displayed, as it is expected that the custom post-
processing will alter or handle these steps.

Success or failure of pre- and post- processing scripts is reported in
the log. These scripts do not require independent logging, as all
standard and error output is captured in the log of this mkrep.sh
script.

TIP: Be sure to fully test custom scripts in a test environment
before incorporating them into production systems.

EXAMPLES:
EXAMPLE 1 - Set up a High Availability (HA) Replica of the master.

Add an HA replica to instance 1 to run on host bos-helix-02:
mkrep.sh -i 1 -t ha -s bos -r bos-helix-02

EXAMPLE 2 - Add an Edge Server to the topology.

Add an Edge server to instance acme to run on host syd-helix-04:

mkrep.sh -i acme -t edge -s syd -r syd-helix-04

EXAMPLE 3 - Setup an HA replica of an edge server.

Add a HA replica of the edge server to instance acme to run on host syd-helix-05:
mkrep.sh -i acme -t ha -f p4d_edge_syd -s syd -r syd-helix-05

EXAMPLE 4 - Add a second edge server in the same site as another edge.

mkrep.sh -i acme -t edge -N 2 -s syd -r syd-helix-04

EXAMPLE 5 - Set up a High Availability (HA) Replica of the master *from* the
replica server via -p4config.

Add an HA replica to instance 1 to run on host bos-helix-02:

mkrep.sh -i 1 -t ha -s bos -r bos-helix-02 -p4config
/p4/common/site/config/.p4config.mot -L /mkrep.mot.log

8.4.8. p4verify.sh

The /p4/common/bin/p4verify.sh script verifies the integrity of the 'archive' files, all versioned files

90 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 91 of 213
in your repository. This script is run by crontab on a regular basis, typically weekly.

It verifies both shelves and submitted archive files
Any errors in the log file (e.g. /p4/1/1ogs/pdverify.log) should be handled according to KB articles:

* MISSING! errors from p4 verify

* BAD! error from p4 verify
If in doubt contact support-helix-core@perforce.com

Our recommendation is that you should expect this to be without error, and you should address
errors sooner rather than later. This may involve obliterating unrecoverable errors.

when run on replicas, this will also append the -t flag to the p4 verify command
to ensure that MISSING files are scheduled for transfer. This is useful to keep
replicas (including edge servers) up-to-date.

Usage

/p4/common/bin/pdverify.sh <instance>
/p4/common/bin/p4verify.sh 1

USAGE for v5.20.1:

pdverify.sh [<instance>] [-N] [-nu] [-nr] [-ns] [-nS] [-a] [-nt] [-nz] [-no_z] [-o
BAD|MISSING] [-pdconfig <PathToFile>] [-chunks <ChunkSize>|-paths <paths_file>] [-w
<Wait>] [-q <MaxActivePullQueueSize>] [-Q MaxTotalPullQueueSize] [-recent | -recent=N]
[-d1f <depot_list_file>] [-I|-ignores <regex_ignores_file>] [-Ocache] [-n] [-L <log>]
[-v] [-d] [-D]

or
p4verify.sh -h|-man
DESCRIPTION:

This script performs a 'p4 verify' of all submitted and shelved versioned
files in depots of all types except 'remote' and 'archive' type depots.

The singular Extensions depot is also verified, if present.
The singular Traits depot is also verified, if present.

Archive depots are not verified by defefault, but can be with the '-a'
option.

If run on a replica, it schedules archive failures for transfer to the
replica.

© 2007-2024 Perforce Software, Inc. 91

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_verify.html
https://portal.perforce.com/s/article/3186
https://portal.perforce.com/s/article/2404
mailto:support-helix-core@perforce.com

92 of 213 - Chapter 8. Tools and Scripts

92

OPTIONS:
<instance>

-Nu

-nr

-NsS

-nS

-nt

Specify the SDP instance. If not specified, the SDP_INSTANCE
environment variable is used instead. If the instance is not
defined by a parameter and SDP_INSTANCE is not defined, pdverify.sh
exists immediately with an error message.

Specify "-N' (Notify Only On Failure) to disable the default behavior
which will always send a notification which includes a report of the p4
verify status. Specifying '-N' which change the behavior to only send
a notification if there is an error during the p4 verify execution.
Notification methods are email, AWS SNS, and PagerDuty. Details on
configuration can be found in the SDP documentation. Providing the
environment variable NOTIFY_ONLY_ON_FAILURE=1 is equivalent to the '-N'
command line arqument.

Specify '-nu' (No Unload) to skip verification of the singleton depot
of type 'unload' (if created). The 'unload' depot is verified
by default.

Specify '-nr' (No Regular) to skip verification of regular submitted
archive files. The '-nr' option is not compatible with '-recent'.
Regular submitted archive files are verified by default.

This option also causes Extension and Traits depots (if present)
not to be verified.

Specify "-ns' (No Spec Depot) to skip verification of singleton depot
of type 'spec' (if created). The 'spec' depot is verified by default.

Specify '-nS' (No Shelves) to skip verification of shelved archive
files, i.e. to skip the 'p4 verify -qS'.

Specify "-a' (Archive Depots) to do verification of depots of type
"archive'. Depots of type 'archive' are not verified by default, as
archive depots are often physically removed from the server's
storage subsystem for long-term cold storage.

Specify the '-nt' option to avoid passing the '-t' flag to 'p4 verify'

on a replica. By default, pdverify.sh detects if it is running on a
replica, and if so automatically applies the '-t' flag to 'p4 verify'.
That causes the replica to attempt to self-heal, as files that fail
verification are scheduled for transfer from the PATARGET server. This
default behavior results in 'Transfer scheduled' messages in the log,

and MISSING/BAD files are listed as 'info:' rather than 'error:'. There
is no clear indication of whether or which of the scheduled transfers
complete successfully, and so there may be a mix of transient/correctable
and "real"/persistent transfer errors for files that are also BAD/MISSING
on the master server. Specify '-nt' to ensure the log contains a list

of files that currently fail a 'p4 verify' without attempting to transfer

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 93 of 213
them from the master.

-nz Specify '-nt' to skip the gzip of the old log file. By default, if a
log with the default name or the name specified with '-L' exists at the
start of processing, the old log is rotated and gzipped. With this option
the old log is not zipped when rotated.

-no_z Specify '-no_z' to avoid passing the '-z' option 'p4 verify' commands.
Typically, verifies are done with '-qz'; with this option, '-q' is used
instead.

See 'p4 help verify' for more information.

-0 BAD|MISSING
Specify '-o MISSING' to check only whether expected archive files exist
or not, skipping the checksum calculation of existing files. This results
in dramatically faster, if less comprehensive, verification. This
is particularly well suited when verification is being used to schedule
archive file transfers of missing files on replicas. This translates into
passing the '--only MISSING' option to 'p4 verify'.

Specify '-o BAD' to check only for BAD revisions. This translates into
passing the "--only BAD' option to 'p4 verify'.

This option requires p4d to be 2021.1 or newer. For older p4d versions,
this option is silently ignored.

-p4config <PathToFile>
Use the '-pdconfig' option use this SDP pdverify.sh script to verify
an arbitrary p4d server. That arbitrary server can be any p4d version,
operating on any platform, and need not be managed with SDP.

To use this option, first create a PACONFIG file that defines settings
needed to access the other server. As a convention, identify a short tag
name for the other server to use in the P4CONFIG file. In the example
below, we use 'mot' for "my other server". Create a P4CONFIG file text
named /p4/common/site/config/.p4config.mot that contains these settings:

PAPORT=ss1:my_other_server:1666

P4USER=p4admin
PATICKETS=/p4/common/site/config/.p4tickets.mot
PATRUST=/p4/common/site/config/.p4trust.mot

The P4TRUST setting is only needed if the port is SSL-enabled. If it
is enabled, next trust the port:

p4 -E PACONFIG=/p4/common/site/config/.p4config.mot trust -y

Next, generate a ticket on that connection:
p4 -E P4CONFIG=/p4/common/site/config/.p4config.mot login -a

© 2007-2024 Perforce Software, Inc. 93

94 of 213 - Chapter 8. Tools and Scripts
Provide the password if prompted.

Finally, call pdverify.sh and specify the config file. When using this
option, using '-L' to specify a non-default log file name
is useful to keep logs from external servers cleanly separated.

pdverify.sh -pdconfig /p4/common/site/config/.pdconfig.mot -L /pdverify.mot.log

This will run the varify against the server specify in that P4CONFIG
file.

-chunks <ChunkSize>
Specify the maximum amount of content by size to verify at once. If
this is specified, the depot_verify_chunks.py script is used to
break up depots into chunks of a given size, e.g. 100M or 4G.

The <ChunkSize> parameter must be a size value valid to pass to the
depot_verify_chunks.py script with the "-m' option. That is,
specifying '-chunks 200M' translates to calling depot_chunks_verify.sh
with '-m 200M".

This requires the perforce-p4python3 module to be installed and the
python3 in the PATH must be the correct one that uses the P4 module.

Using '-chunks' is likely to result in a significantlly slower overall
verify operation, though chuking can make it less impactful when it
runs. Using the '-chunks' option may be necessary on very large data
sets, e.g. if there insufficient resources to process the largest
depots.

The '-recent' and '-chunks' options are mutually exclusive.

The '-chunks' and '-paths' options can be used together; see the
description of the '-paths' option below.

Chunking logic applies only in depots of type 'stream' or 'local'.
-paths <paths_file>

Specify a file containing a list of depot paths to verify, with one
line per entry. Valid entries in the file start with '//', e.qg.

//mydepot/main/src/...

In this example, when //mydepot depot is processed, only specified
paths will be verified. A1l other depots will be processed in full.
To verify only specified paths, combine '-paths <paths_file>" with
'-d1f <depot_list_file>' where the depot list file contains only
'mydepot' (per the example above).

The '-chunks' and '-paths' options can be used together for combined
94 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 95 of 213

effects. If both options are specified, depots that contain specified
paths are chunked based on the specified paths rather than the entire
depot, and other paths in that depot are not processed. Depots that
do not have any specified paths listed in the <paths_file> are
chunked at the top/depot level directory.

The '-paths' option can be combined with '-recent' to verify only
recent changelists in the specified paths.

This option disables processing of the Extensions and Traits
depots by default, though '-paths' can specify paths in those depots.

Paths specified must be in depots of type 'stream' or 'local', or
the singular Extensions or Traits depots.

-w <Wait>
Specify the '-w' option, where <Wait> is a positive integer
indicating the number of seconds to sleep between individual calls
to 'p4 verify' commands. For example, specifying '-w 300' results
in a delay of 5 minutes between verify commands.

This can be used with '-chunks' to inject a delay between chunked
depot paths. Otherwise, the delay is injected between each depot
processed. This can significantly lengthen the overall duration
of 'pdverify.sh' operation, but can also spread out the resource
consumption load on a server machine.

If shelves are procossed (regardless of whether '-chunks' is used),
the delay is injected between each individual shelved changelist, as
shelved changes are verified one changelist at a time. For data sets
with a large number of shelves, it may be be wise to process shelves
separately from submitted files if '-w' is used, a delay value to
apply between depots may be different from that applied to

individual changelists.

See the '-q' option for a description of how '-q' and '-w' can be
used together.

-q <MaxActivePullQueueSize>
Specify the '-q' option, where <MaxActivePullQueueSize> is a positive
integer indicating the maximum number of active pulls allowed before
a 'p4 verify' command will be executed to transfer archives.

The absolute maximum number of possible active pulls is affected by
the number of 'startup.N' threads configured to pull archives files,
and whether those threads indicate batching.

The threads that pull archive files are those that confiqured to use

the 'pull' command the '-u' option. Typically, a small number of pull
threads are configured, between 2 and 10 or perhaps 20.

© 2007-2024 Perforce Software, Inc. 95

96 of 213 - Chapter 8. Tools and Scripts

96

If "-q 1" is specified, new 'p4 verify' commands will only be run
when the active pull queue is quiet. Specifying a too-high value,
e.g. '-q 50" if only 3 'pull -u' archive pull threads are configured,
will be ineffective, as the active pull threads will never exceed

3 (let alone 50).

The current active pull queue on a replica is reported by:
p4 -ztag -F %replicaTransfersActive% pull -1s

This option can be useful if using this pdverify.sh script to pull

many or even all archives on a new replica server machine from its
target server. The injected delays can give the server time to transfer
archives scheduled in one call to 'p4 verify' before calling it again
with the goal of avoidng overloading the pull queue.

If "-w' and "-q' options are both used, the delay specified by '-w'
is ignored unless the active pull queue size is greater than or equal
to the specified maximum active pull queue size. The '-w' then
essentially determines how frequently the 'p4 pull -1s' is run to
check the active pull queue size. A reasonable set of values might
be '-q 1 -w 10".

The '-q' option in mutually exclusive with '-nt".

The '-q' option in mutually exclusive with '-Q'.

-Q <MaxTotalPullQueueSize>

Specify the '-Q' option, where <MaxTotalPullQueueSize> is a positive
integer indicating the maximum number of total pulls allowed before
a 'p4 verify' command will be executed to transfer archives.

In certain scenarios, the pull queue can become quite massive. For
example, if a fresh standby replica is seeded from a checkpoint
but has no archive files, and then a 'pdverify.sh' is run, the
verify will schedule all files to be transferred, perhaps millions.

If the pull queue gets too large, it can impact metadata replication.
Setting this value may help mitigate issues related to scheduling
too many archives pulls at once, by delaying scheduling new archive
pulls until enough previously scheduled pulls are completed.

This option can be useful in such scenarios, if this pdverify.sh script
is used to pull many or even all archives on a new replica server machine
from its target server. The injected delays can give the server time to
transfer archives scheduled in one call to 'p4 verify' before calling it
again with the goal of avoidng overloading the pull queue.

If individual depots contain large numbers of files, such that
a verify on a single depot will schedule too many files to be
transferred at once, it may be necessary to combine this option with

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 97 of 213
the '-chunks' option to avoid overloading the transfer queue.

WARNING: If there are files that cannot be tranferred from the
replica's target server, the value of '-Q' must be set to higher than
that number, or an infinite loop may occur. For example, if there are
500 permanent "legacy" verify errors on the commit server from 10
years ago that have long since been abandoned, those files can never
be transferred to any replica. Running p4verify.sh on the replica will
cause those files to be scheduled, but as they cannot be pulled, they
will land in the total pull queue. In this scenario, the value set
with '-Q' must be greater than 500, or an infinite loop is possible.

Specify '-Q @' to disable checking the total pull queue.
The current total pull queue on a replica is reported by:
p4 -ztag -F %replicaTransfersTotal% pull -1s

This option can be useful if using this p4verify.sh script to pull

many or even all archives on a new replica server machine from its
target server. The injected delays can give the server time to transfer
archives scheduled in one call to 'p4 verify' before calling it again
with the goal of avoidng overloading the pull queue.

If "-w' and '"-Q' options are both used, the delay specified by '-w'
is ignored unless the total pull queue size is greater than or equal
to the specified maximum total pull queue size. The '-w' then
essentially determines how frequently the 'p4 pull -1s' is run to
check the total pull queue size. A reasonable set of values might
be '-q 50000 -w 10'.

The '-Q' option in mutually exclusive with '-nt'.

The '-Q" option in mutually exclusive with '-q'.

-recent[=N]
Specify that only recent changelists should be verified.

This can be specified as '-recent' or '-recent=N', where N is an integer
indicating the number of recent changelists to verify.

If '-recent' is used without the optional '=N' syntax, the
$SDP_RECENT_CHANGES_TO_VERIFY variable defines how many changelists
are considered recent; the default is 200.

If the default is not appropriate for your site, add

"export SDP_RECENT_CHANGES_TO_VERIFY" to /p4/common/site/config/p4_N.vars.local to
change the default for an instance, or to /p4/common/site/config/p4_vars.local to
change it globally. If $SDP_RECENT_CHANGES_TO_VERIFY is unset, the

default is 200.

© 2007-2024 Perforce Software, Inc. 97

98 of 213 - Chapter 8. Tools and Scripts

98

When -recent is used, files in the unload depot are not verified.

-d1f <depot_list_file>

Specify a file containing a list of depots to process in the desired
order. By default, all depots in the order reported by reported by
'p4 depots' are processed, which effectively results in depots being
processed in alphabetical order, with the singleton Extensions and
Traits depots (if present) being processed after other depots.

This '-d1f' option can be useful in time-sensitive situations where the
order of processing can be prioritized, and/or to prevent processing
certain depots.

The format fo the depot list file is straighforward, one line per
depot, without the '//' nor trailling /..., so a list might look
like this sample:

ProjA
ProjB
spec
.swarm
unload
archive
ProjC

Blank lines and lines starting with a '#' are treated as comments and
ignored.

WARNING: This is not intended to be the primary method of verification,
because it would be easy to forget to add new depots to the list file.

If the depot list file is not readable, processing aborts.
This option disables processing of the singleton Extensions and Traits

depots unless those depots are explicitly included in the depot list
file.

-ignores <regex_ignores_file>

Specify the 'verify ignores' file, a file containing a series of
regular expression patterns representing files or file revisions
to ignore when scanning for verify errors. Errors matching the

pattern will be suppressed from the output captured in the log,

and will not be considered a verification error.

If the '-ignores' is not specified, the default verify ignores
file is:

/p4/common/config/pdverify.N.ignores

where 'N' is the SDP instance name. If this file exists, it is
considered the 'verify ignores' file.

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 99 of 213

Specify '-ignores none' to avoid processing the standard ignores
file.

The patterns can be specific files, specific file paths, or broader
patterns (e.g. in the case of entirely abandoned depots). The file
provided is passed as the '-f <file>' option to the 'grep' utility,
and is expected to contain a series of one-line entries, each
containing an expression to exclude from being considered as verify
errors reported by this script.

You can test your expression by first using it with grep to
ensure it suppresses errors by using a command like this sample,
providing an older log from this script that contains errors to
be suppressed:

grep -Ev -f /path/to/regex_file /path/to/old/p4verify.log

If your server is case-sensitive, change that command to use '-i':
grep -a -Evi -f /path/to/regex_file /path/to/old/p4verify.log
This sample entry ignores a single file revision:
//Alpha/main/docs/Expenses from February 1999.x1s#3

This sample entry ignores all revisions of a single file:

//Alpha/main/docs/Expenses from February 1999.xls

This sample entry ignores all entries in the spec depot
related to client specs:

//spec/client

This sample uses the MD5 checksum from the verify error, just
to illustrate that this can be used as an alternative to
specifying file paths:

D34989BFB3D9IBAFBIB66C4A604A05410

This sample ignores BAD! (but not MISSING!) errors under the
//Beta/main/src directory tree:

//Beta/main/src/.* BAD!
WARNING: Ensure that the regex file provided does NOT contain
any blank lines or comments. The file should contain only tested

regex patterns.

This option is intended to provide a way to ignore unrecoverably lost
© 2007-2024 Perforce Software, Inc. 99

100 of 213 - Chapter 8. Tools and Scripts

file revisions from things like past infrastructure failures, for

which search and recovery efforts have been abandoned. This option
subtly changes the question answered by this script from "Are there any
verify errors?" to "Are there any new verify errors, errors we don't
already know about?"

WARNING: This option is not intended to be incorporated into the primary
method of verification, because ignoring archive errors in this script
does not solve the problem at its source. Ideally, the root cause of
the verify errors should be addressed by recovering lost archives,
injecting replacement content, or other means. So long as verify errors
remain, even if ignored by this option, users attempting to access the
revisions will still see Librarian errors, and replicas will encounter
errors trying to pull the missing archives. This option could increase
the risk that such revisions are never dealt with.

-Ocache
Specify '-Ocache' to attempt a verification on a replica confiqured
with a 'lbr.replication' replication configuration setting value
of 'cache'. By default, if the 'lbr.replication' configurable is
set to 'cache', this script aborts, as replication of such a depot
will schedule transfers that are likely unintended. This is a
safety feature.

The 'cache' mode is generally used on replicas or edge servers with
limited disk space. Because running a verify will cause transfers
of any missing files, this could result in filling up the disk.

Use of '-Ocache' is strongly discouraged unless combined with
other options to ensure that only targeted paths are scheduled
for transfer.

-V Verbose. Show output of verify attempts, which is suppressed by default.
Setting SDP_SHOW_L0G=1 in the shell environment has the same effect as -v.

The default behavior of this script is to generate no terminal output,
but instead to write output into a log file -- see LOGGING below. If
'-v' is specified, the generated log is sent to stdout at the end of
processing. This flag is not recommended for routine cron operation or

for large data sets.
The -chunks and -recent options are mutually exclusive.

-L <log>
Specify the log file to use. The default is /p4/N/logs/pdverify.log

Log rotation and old log cleanup logic does not apply to log files
specified with -L. Thus, using -L is not recommended for routine
scheduled operation, e.g. via crontab.

DEBUGGING OPTIONS:
100 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 101 of 213
-n No-Operation (NO_OP) mode, for debugging.

Display certain commands that would be executed without executing
them. When '-n' is used, commands that might take a long time to
run or affect data are only displayed.

Even in '-n' mode, some information-gathering commands such as
listing shelved CLs are executed, which may cause the script to take
a bit of time to run on a large data set even in dry run mode.

-d Specify that debug messages should be displayed.
-D Use bash 'set -x' extreme debugging verbosity, and imply '-d'.

-L off
The special value '-L off' disables logging. This can only be used
with '-n' for debugging.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

USAGE TIPS:
On a p4d server machine on which this script runs, the P4USER
usually has an unlimited ticket in the P4TICKETS file. If this
is not the case, ensure that the ticket duration is sufficient
for the verify operation to complete. If the '-p4config' option
is used, ensure the defined P4USER references a P4TICKETS file
with sufficiently far out expiration to prevent issues with ticket
expiration.

Depending on scale of data and system resources, this pdverify.sh
script may run for hours or even days. A ticket duration of less
than a defined minimum results in an warning being displayed in

the log (but does not prevent the script from attempting the verify).

The minimum ticket duration is 31 days @ hours @ minutes @ seconds.

EXAMPLES:
Example 1: Full Verify

This script is typically called via cron with only the instance
parameter as an argument, e.g.:

pdverify.sh 1
Example 2: Fast Verify
A "fast" verify is one in which only the check for MISSING archives

is done, while the resource-intensive checksum calculation of
potentially BAD existing archives is skipped. This is especially

© 2007-2024 Perforce Software, Inc. 101

102 of 213 - Chapter 8. Tools and Scripts
useful when used on a replica.

pdverify.sh 1 -o MISSING
Example 3: Fast and Recent Verify

The '-o MISSING' and '-recent' flags can be combined for a very
fast check. This check might be incorporated into a failover
procedure.

pdverify.sh 1 -o MISSING -recent
Example 4: Submitted Files Only

This will verify only use submitted files, ignoring shelves and the
spec and unload depots, putting the results in a specified log:

pdverify.sh 1 -ns -nS -nu -L -L /p4/1/1logs/p4verify.submitted.log
Example 5: Shelved Files Only

This will verify only use submitted files, ignoring shelves and the
spec and unload depots, putting them in a specified log:

pdverify.sh 1 -nr -ns -nu -L /p4/1/1logs/p4verify.shelved.log
Example 6: A Dry Run

The '-n' option can be used for a dry run. Output may also be
displayed to the screen ('-v') for a dry run and the log file optionally
discarded:

pdverify.sh 1 -n -nS -L off -v
Example 7: Archive File Load for New Replica

The p4dverify.sh script can be used to schedule transfers of a large
number of files from a replica. When doing so, however, overloading
the new replicas pull queue with too many files may impact metadata
replication. This can be addressed by combining a variety of
options, such as '-chunks' and '-Q'. For example:
pdverify.sh 1 -chunks 200M -Q 10000 -w 20 -o MISSING

NOHUP USAGE:
Because archive verification is typically a long running task,
it is advisable to use 'nohup' to call each command, and combine
that by running the command as a background process. Alternately,
use 'screen' or similar.

Any of the examples above can be used with 'nohup', without output
102 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 103 of 213

redirected to /dev/null (i.e. to "the void", as this script handles
logging and output redirection).

To use 'nohup', start the command line with 'nohup', and then after
the command, add this text exactly:

< /dev/null > /dev/null 2>&1 &
As a example, Example 2 above, called with nohup, would look like:
nohup /p4/common/bin/p4verify.sh 1 -o MISSING < /dev/null > /dev/null 2>&1 &

With the ampersand '&' at the end, the command will appear to return
immediately as the process continues to run in the background.

Then optionally monitor the log:
tail -f /p4/1/1ogs/phverify.log

LOGGING:
This script generates no output by default. All (stdout and stderr) is
logged to /p4/N/logs/pdverify.log.

The exception is usage errors, which result an error being sent to
stderr followed usage info on stdout, followed by an immediate exit.

NOTIFICATIONS:
In addition to logging, a short summary of the verify is sent as a
notification. The summary is reliably short even if the output of the
verifications done by this script results in a large log file.

There are two notification schemes with this script:
* Email notification is always attempted.

* AWS SNS notification is attempted if the SNS_ALERT_TOPIC_ARN custom
setting is defined. This is typically set in:

/p4/common/site/config/p4_N.vars.local

TIMING:
The log file captures various timing information, including the
time required to verify each depot, or each chunk or path if
'-paths' or '-chunks' are used. The time to verify shelves
in all depots is reported separately from submitted files.

Timing indications all start with the text 'Time: ' on the beginning
of a line of output in the log file, and can be extracted with a
command like this example (adjusting the log file name as needed):

grep -a ATime: /p4/1/1logs/p4verify.log
© 2007-2024 Perforce Software, Inc. 103

104 of 213 - Chapter 8. Tools and Scripts

EXIT CODES:
An exit code of @ indicates no errors were encountered attempting to
perform verifications, AND that all verifications attempted
reported no problems.

A exit status of 1 indicates that verifications could not be
attempted for some reason.

A exit status of 2 indicates that verifications were successfully
performed, but that problems such as BAD or MISSING files
were detected, or else system limits prevented verification.

8.4.9. p4login

The /p4/common/bin/p4login script is a convenience wrapper to execute a series of p4 Tlogin
commands, using the administration password configured in mkdirs.cfg and subsequently stored in
a text file: /p4/common/config/.pdpasswd .p4_<instance>.admin.

Usage
USAGE for p4login v4.4.5:
p4login [<instance>] [-p <port> | -service] [-automation] [-all]
or
p4login -h|-man
DESCRIPTION:

In its simplest form, this script simply logs in P4USER to P4PORT
using the defined password access mechanism.

It generates a login ticket for the SDP super user, defined by
PAUSER when sourcing the SDP standard shell environment. It is
called from cron scripts, and so does not normally generate any
output.

If run on a replica with the -service option, the serviceUser defined
for the given replica is logged in.

The $SDP_AUTOMATION USERS variable can be defined in

/p4_N.vars. If defined, this should contain a

comma-delimited list of automation users to be logged in when the
-automation option is used. A definition might look like:

export SDP_AUTOMATION_USERS=builder,trigger-admin,p4review

Login behavior is affected by external factors:

104 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 105 of 213
1. PAAUTH, if defined, affects login behavior on replicas.

2. The auth.id setting, if defined, affects login behaviors (and
generally simplifies them).

3. The $SDP_ALWAYS_LOGIN variable. If set to 1, this causes p4login
to always execute a 'p4 login' command to generate a login ticket,
even if a 'p4 login -s' test indicates none is needed. By default,
the login is skipped if a 'p4 login -s' test indicates a long-term
ticket is available that expires 31+days in the future.

Add "export SDP_ALWYAYS_LOGIN=1" to /p4_N.vars to

change the default for an instance, or to /p4/common/bin/p4_vars to
change it globally. If unset, the default is @.

4. If the PAPORT contains an ssl: prefix, the P4TRUST relationship
is checked, and if necessary, a p4 trust -f -y is done to establish
trust.

OPTIONS:

<instance>
Specify the SDP instances. If not specified, the SDP_INSTANCE
environment variable is used instead. If the instance is not
defined by a parameter and SDP_INSTANCE is not defined, p4login
exists immediately with an error message.

-service
Specify -service when run on a replica or edge server to login
the super user and the replication service user.

This option is not compatible with '-p <port>'.

-p <port>
Specify a P4PORT value to login to, overriding the default
defined by P4PORT setting in the environment. If operating
on a host other than the master, and auth.id is set, this
flag is ignored; the P4TARGET for the replica is used
instead.

This option is not compatible with '-service'.
-automation
Specify -automation to login external automation users defined
by the $SDP_AUTOMATION_USERS variable.
-V Show output of login attempts, which is suppressed by default.
Setting SDP_SHOW_L0G=1 in the shell environment has the same

effect as -v.

-L <log>
Specify the log file to use. The default is /p4/N/logs/p4login.log

© 2007-2024 Perforce Software, Inc. 105

106 of 213 - Chapter 8. Tools and Scripts
-d Set debugging verbosity.

-D Set extreme debugging verbosity.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

EXAMPLES:
1. Typical usage for automation, with instance SDP_INSTANCE defined
in the environment by sourcing p4_vars, and logging in only the super
user P4USER to P4PORT:
source /p4/common/bin/p4_vars abc
p4login

Login in only P4USER to the specified port, PAMASTERPORT in this example:
p4login -p $PAMASTERPORT

Login the super user P4USER, and then login the replication serviceUser
for the current ServerID:
p4login -service

Login external automation users (see SDP_AUTOMATION_USERS above):
p4login -automation

Login all users:
p4login -all

Or: p4login -service -automation

LOGGING:
This script generates no output by default. All (stdout and stderr) is
logged to /p4/N/logs/p4login.log.

The exception is usage errors, which result an error being sent to
stderr followed usage info on stdout, followed by an immediate exit.

If the '-v' flag is used, the contents of the log are displayed to
stdout at the end of processing.

EXIT CODES:
An exit code of @ indicates a valid login ticket exists, while a
non-zero exit code indicates a failure to login.

8.4.10. p4d_<instance>_init

Starts the Perforce server instance. Can be called directly or as describe in Section 4.2.3,
“Configuring Automatic Service Start on Boot” - it is created by mkdirs.sh when SDP is installed.

n Do not use directly if you have configured systemctl for systemd Linux
106 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 107 of 213

distributions such as CentOS 7.x. This risks database corruption if systemd does not
think the service is running when it actually is running (for example on shutdown
systemd will just kill processes without waiting for them).

This script sources /p4/common/bin/p4_vars, then runs /p4/common/bin/p4d_base (Section 8.6.12,
“p4d_base”).

Usage

/p4/<instance>/bin/p4d_<instance>_init [start | stop | status | restart]
/p4/1/bin/p4d_1_init start

8.4.11. recreate_offline _db.sh

The /p4/common/bin/recreate_offline_db.sh recovers the offline_db database from the latest
checkpoint and replays any journals since then.

If you have a problem with the offline database then it is worth running this script first before
running Section 8.4.6, “live_checkpoint.sh” please note warnings as to how long that might take!.

Run this script if an error occurs while replaying a journal during daily checkpoint process.

This script recreates offline_db files from the latest checkpoint. If it fails, then check to see if the
most recent checkpoint in the /p4/<instance>/checkpoints directory is bad (ie doesn’t look like the
right size compared to the others), and if so, delete it and rerun this script.

If the error you are getting is that the journal replay failed, then the only option may be to run
Section 8.4.6, “live_checkpoint.sh” script!

o Please note the warnings about how long this process may take at Section 8.4.6,
“live_checkpoint.sh”

Usage

/p4/common/bin/recreate_offline_db.sh <instance>
/p4/common/bin/recreate_offline_db.sh 1

8.4.12. refresh_ PAROOT from_offline db.sh

The /p4/common/bin/refresh_P4ROOT_from_offline_db.sh script is intended to be used occasionally,
perhaps monthly, quarterly, or on-demand, to help ensure that your live (root) database files are
defragmented.

It will:

* stop p4d
* truncate/rotate live journal

* replay journals to offline_db
© 2007-2024 Perforce Software, Inc. 107

108 of 213 - Chapter 8. Tools and Scripts

e switch the links between root and offline_db

* restart p4d
It also knows how to do similar processes on edge servers and standby servers or other replicas.

Usage

/p4/common/bin/refresh_P4ROOT_from_offline_db.sh <instance>
/p4/common/bin/refresh_P4ROOT_from_offline_db.sh 1

8.4.13. run_if master.sh

The /p4/common/bin/run_if_master.sh script is explained in Section 8.4.16,
“run_if_master/edge/replica.sh”

8.4.14. run_if_edge.sh

The /p4/common/bin/run_if_edge.sh script is explained in Section 8.4.16,
“run_if_master/edge/replica.sh”

8.4.15. run_if replica.sh

The /p4/common/bin/run_if_replica.sh script is explained in Section 8.4.16,
“run_if_master/edge/replica.sh”

8.4.16. run_if_master/edge/replica.sh

The SDP uses wrapper scripts in the crontab: run_if_master.sh, run_if_edge.sh, run_if_replica.sh.
We suggest you ensure these are working as desired, e.g.

Usage
/p4/common/bin/run_if_master.sh 1 echo yes

/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

It is important to ensure these are returning the valid results for the server machine you are on.

Any issues with these scripts are likely configuration issues with /p4/common/config/p4_1.vars (for
instance 1)

8.4.17. sdp_health_check.sh

This script is described in the appendix Appendix H, SDP Health Checks.

USAGE for sdp_health_check.sh v1.13.2:

sdp_health_check.sh
108 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 109 of 213

or
sdp_health_check.sh -h|-man
DESCRIPTION:

This script does a health check of the SDP. It generates a
report log, which can be emailed to support@perforce.com.
It identifies SDP instances and reports on general SDP health.

It must be run as the 0S user who owns the /p4/common/bin
directory. This should be the user account which runs the
p4d process, and which owns the /p4/common/bin directory
(often 'perforce' or 'pdadmin').

Characteristics of this script:
* Tt is always safe to run. It does only analysis and reporting.
* It does only fast checks, and has no interactive prompts.
Some log files are captured such as checkpoint.log, but not
potentially large ones such as the p4d server log.
* Tt requires no command line arguments.
* It works for any and all UNIX/Linux SDP version since 2007.

Assumptions:
* The SDP has always used /p4/common/bin/p4_vars as the shell
environment file. This is consistent across all SDP versions.

OPTIONS:
-D Set extreme debugging verbosity.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

EXAMPLES:
This script is typically called with no arguments.

LOGGING:
This script generates a log file and also displays it to stdout at the
end of processing. By default, the log is:
/tmp/sdp_health_check.<datestamp>.1log
or

/tmp/sdp_health_check.log

The exception is usage errors, which result an error being sent to
stderr followed usage info on stdout, followed by an immediate exit.

© 2007-2024 Perforce Software, Inc.

109

110 of 213 - Chapter 8. Tools and Scripts

EXIT CODES:
An exit code of @ indicates no errors or warnings were encountered.

8.5. More Server Scripts

These scripts are helpful components of the SDP that run on the server machine, but are not
included in the default crontab schedules.

8.5.1. p4.crontab
Contains crontab entries to run the server maintenance scripts.

Location: /p4/sdp/Server/Unix/p4/common/etc/cron.d

8.5.2. verify_sdp.sh
The /p4/common/bin/verify_sdp.sh does basic verification of SDP setup.

Usage
USAGE for verify_sdp.sh v5.30.0:

verify_sdp.sh [<instance>] [-online] [{-skip,-warn,-extra,-only} <test>[,<test2>,...]]
[-skip_summary] [-c] [-si] [-L <log>|off] [-d|-D]

or
verify_sdp.sh -h|-man
DESCRIPTION:

This script verifies the current SDP setup for the specified instance,
and also performs basic health checks of configured servers.

This uses the SDP instance bin directory /p4/N/bin to determine
what server binaries (p4d, p4broker, p4p) are expected to be configured
on this machine.

Existence of the '*_init' script indicates the given binary is
expected. For example, for instance 1, if /p4/1/bin/p4d_1_init
exists, a p4d server is expected to run on this machine.

Checks may be executed or skipped depending on what servers are
configured. For example, if a p4d is configured, the $P4R00T/server.id
file should exist. If p4p is configured, the 'cache' directory

should exist.

OPTIONS:

<instance>
f nnt+ cnanafaind +ha CND TNCT
1 D|JCL 11iIcy, LIIT OUr _1nol

L
110 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 111 of 213

environment variable is used instead. If the instance is not
defined by a parameter and SDP_INSTANCE is not defined,
exits immediately with an error message.

-online
Online mode. Does additional checks that expect p4d, pdbroker,
and/or p4p to be online. Any servers for which there are
*_init scripts in the Instance Bin directory are checked. An
error is reported if p4d is expected to be online and is not;
warnings are displayed if pdbroker or p4p are not online.
The Instance Bin directory is the /p4/N/bin directory, where N
is the SDP instance name.

-c¢ Specify '-c' to call ccheck.sh to compare configurables, using
the default config file: /configurables.cfg

See 'ccheck.sh -man' for more information.
This option can only be used in Online mode; if '-c' is specified,
"-online' is implied.

-skip <test>[,<test2>,...]
Specify a comma-delimited list of named tests to skip.
Valid test names are:

* cron|crontab: Skip crontab check. Use this if you do not expect crontab to
be confiqured, perhaps if you use a different scheduler.
* excess: Skip checks for excess copies of p4d/p4p/pdbroker in PATH.
* init: Skip compare of init scripts w/templates in /p4/common/etc/init.d
* license: Skip license related checks.
* commitid: Skip check ensuring ServerID of commit starts with 'commit' or
‘master’.
* masterid: Synonym for commitid.
offline_db: Skip checks that require a healthy offline_db.
owner: Skip checks that require ownership of specific files/folders.
pdroot: Skip checks that require healthy P4ROOT db files.
pdt_files: Skip checks for existence of P4TICKETS and PATRUST files.
passwd|password: Skip SDP password checks.
version: Skip version checks.

o

*

As an alternative to using the '-skip' option, the shell environment
variable VERIFY_SDP_SKIP_TEST_LIST can be set to a comma-separated
list of named tests to skip. Using the command line parameter is the
best choice for temporarily skipping tests, while specifying the
environment variable is better for making permanent exceptions (e.g.
always excluding the crontab check if crontabs are not used at this
site). The variable should be set in /p4/common/config/p4_N.vars.

If the '-skip' option is provided, the VERIFY_SDP_SKIP_TEST_LIST
© 2007-2024 Perforce Software, Inc. 111

112 of 213 - Chapter 8. Tools and Scripts

112

variable is ignored (not appended to). So it may make sense to
reference the variable on the command line. For example, if the
value of the variable is 'crontab', to skip crontab and license
checks, you could specify:

-skip $VERIFY_SDP_SKIP_TEST_LIST,license

The '-skip' option can be used with '-warn' and '-extra', but is
mutually exclusive with '-only'.

-warn <test>[,<test2>,...]

Specify a comma-delimited list of named tests that will be reported
as warnings rather than errors.

The list of valid test names as the same as for the '-skip' option.

As an alternative to using the '-warn' option, the shell environment
variable VERIFY_SDP_WARN_TEST_LIST can be set to a comma-separated
list of name tests to skip. Using the command line parameter is the
best choice for temporarily converting errors to warnings, while
specifying the environment variable is better for making the
conversion to warnings permanent. The variable should be set in
/p4/common/config/p4_N.vars file.

If the '-warn' option is provided, the VERIFY_SDP_WARN_TEST_LIST
variable is ignored (not appended to). So it may make sense to
reference the variable on the command line. For example, if the
value of the variable is 'crontab', to convert to warnings for
crontab and excess binaries tests, you could specify:

-warn $VERIFY_SDP_WARN_TEST_LIST,excess

The '-warn' option can be used with '-skip' and '-extra', but is
mutually exclusive with '-only'.

-extra <test>[,<test2>,...]

Some tests are not executed by default, but are instead invoked
only on request with the '-extra' option. The following tests
are executed if specified with the '-extra' option:

commit_defined: Do a test to check defined server specs, and
ensure that exactly one server spec has a 'Services' field value
of 'commit-server', and that no server specs are defined with a
'Services' field value of 'standard' (the obsolete predecessor to
‘commit-server'). This test requires p4d to be online and thus
implies '-online'.

server_type_known: Do a test to confirm that exactly one of
run_if_master.sh, run_if_replicas.sh, and run_if_edge.sh returns
true. If @ or more than 1 are true, report that as an error.

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 113 of 213

The '-extra' option can be used with '-skip' and '-warn', but is
mutually exclusive with '-only'.

-only <test>[,<test2>,...]
Use the '-only' option to execute only specified tests. If this
option is used, even tests that cannot be skipped with '-skip'
and thus are usually always executed are not executed. This
option is primarily intended to support testing of verify_sdp.sh.

Only a limited set of tests can be specified wih '-only', including:

version
crontab
excess
commitid
* commit_defined
* server_type_known

*
*
*
*

The '-only' option is mutually exclusive with '-skip', '-warn',
and '-extra'.

-skip_summary
By default, if any errors or warnings are displayed in the output,
a summary of those errors appears at the end. Specify this
option to avoid displaying the summary at the end.

-Si Silent mode, useful for cron operation. Both stdout and stderr
are still captured in the log. The '-si' option cannot be used
with '-L off'.

-L <log>
Specify the log file to use. The default is /p4/N/logs/verify_sdp.log
The special value 'off' disables logging to a file.
Note that '-L off' and '-si' are mutually exclusive.

-d Enabled debug messages.

-D Set extreme debugging verbosity using bash 'set -x' mode. Implies -d.

HELP OPTIONS:
-h Display short help message

-man Display man-style help message

EXAMPLES:
Example 1: Typical usage:

This script is typically called after SDP update with only the instance
name or number as an argument, e.g.:

© 2007-2024 Perforce Software, Inc. 113

114 of 213 - Chapter 8. Tools and Scripts
verify_sdp.sh 1

Example 2: Skipping some checks.

verify_sdp.sh 1 -skip crontab

Example 3: Automation Usage

If used from automation already doing its own logging, use -L off:
verify_sdp.sh 1 -L off

LOGGING:
This script generates a log file and also displays it to stdout at the
end of processing. By default, the log is:
/p4/N/logs/verify_sdp.log.

The exception is usage errors, which result an error being sent to
stderr followed usage info on stdout, followed by an immediate exit.

If the '-si' (silent) flag is used, the log is generated, but its
contents are not displayed to stdout at the end of processing.

EXIT CODES:
An exit code of @ indicates no errors were encountered attempting to
perform verifications, and that all checks verified cleanly.

8.6. Other Scripts and Files

The following table describes other files in the SDP distribution. These files are usually not invoked
directly by you; rather, they are invoked by higher-level scripts.

8.6.1. backup_functions.sh
The /p4/common/bin/backup_functions.sh script contains Bash functions used in other SDP scripts.

It is sourced (source /p4/common/bin/backup_functions.sh) by other scripts that use the common
shared functions.

It is not intended to be called directly by the user.

8.6.2. broker rotate.sh

The /p4/common/bin/broker_rotate.sh rotates the broker log file. It is intended for use on a server
machine that has only broker running. When a broker is run on a p4d server machine, the
daily_checkpoint.sh take care of rotating the broker log.

It can be added to a crontab for e.g. daily log rotation.

114 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 115 of 213
Usage

/p4/common/bin/broker_rotate.sh <instance>
/p4/common/bin/broker_rotate.sh 1

8.6.3. ccheck.sh

The script /p4/common/bin/ccheck.sh script compares configurables against a set of defined best
practices.

Usage
USAGE for ccheck.sh v1.3.0:
ccheck.sh [<SDPInstance>] [-p <Profile>] [-c <CfgFile>] [-y] [-v] [-d|-D]
or

ccheck.sh [-h|-man]|-V]

DESCRIPTION:
This script compares configurables set on the current server with best
practices defined a data file.

OPTIONS:
-p <Profile>
Specify a profile defined in the config file, such as 'demp' or 'hcc'. A profile
defines a set of expected configurable values that can differ from the expected
values in other profiles. For example, for a demo environment, the
filesys.P4RO0OT.min
might have an expected value of 128M, while the expected value in a prod
(production)
profile might be 5G, and the same value might be 30G for 'prodent', the profile
for
production at large enterprise scale.

The 'always' profile defines settings that always apply whether '-p' is specified
or not. The profile specified with '-p' applies in addition to the 'always'
configuration, adding to and possibly overriding settings from the 'always'
configuration.

The defaut profile is 'prod', the production profile.

Specify the special value '-p none' to use only the settings defined in the

"always' profile.

-c <CfgFile>
Specify an alternate config file that defines best practice configurables. This
is intended for testing.

© 2007-2024 Perforce Software, Inc. 115

116 of 213 - Chapter 8. Tools and Scripts

-L <log>
Specify the path to a log file, or the special value 'off' to disable
logging. By default, all output (stdout and stderr) goes to
$L0GS/ccheck.log

NOTE: This script is self-logging. That is, output displayed on the screen
is simultaneously captured in the log file. Using redirection operators like
'> log' or '2>&1' are unnecessary, nor is using 'tee'.

-y Live operation mode. By default, any commands that affect data, such as
setting configurables, are displayed, but not executed. With the '-y' option,
commands may be executed.

This option is included for future needs. This current version of
ccheck.sh does not execute any commands that affect data.

-d Display debug messages.
-D Set extreme debugging verbosity using bash 'set -x' mode. Implies -d.
-si Silient Mode. No output is displayed to the terminal (except for usage errors
on startup). Output is captured in the log. The '-si' cannot be used with
"-L off'.
HELP OPTIONS:
-h Display short help message

-man Display man-style help message

FILES:
The standard configurables config file is:

/p4/common/config/configurables.cfg

EXAMPLES:
Example 1: Check configurables with the default profile, and no logging:

ccheck.sh -L off
Example 2: Check configurables with the 'prod' (Production) profile:
ccheck.sh -p prod

Example 3: Check configurables with the 'demo' profile, doing a verbose
comparison:

ccheck.sh -p demo -v

FUTURE ENHANCEMENTS:
Presently, this ccheck.sh v1.3.0 only reports configurables. It does not
support changing configurables.

116 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 117 of 213

As the script is currently only capable of reporting, the
effect.

-y' option has no

Some possible future enhancements are:
* Extend reporting to suggesting configuration changes.

* Provide an option to make changes to configurables that are safe to change
immediately, and provide guidance on those confiqgurables that are best set with
guidance and plannning.

* Provide a way to specify custom exemptions for certain configurables.

* Added multi-version support for backward compatibility. This version assumes
PAD 2023.1+ (though will be useful for older versions).

8.6.4. edge_dump.sh
The /p4/common/bin/edge_dump.sh script is designed to create a seed checkpoint for an Edge server.

An edge server is naturally filtered, with certain database tables (e.g. db.have) excluded. In addition
to implicit filtering, the server spec may specify additional tables to be excluded, e.g. by using the
ArchiveDataFilter field of the server spec.

The script requires the SDP instance and the edge ServerlID.

Usage

/p4/common/bin/edge_dump.sh <instance> <edge server id>
/p4/common/bin/edge_dump.sh 1 p4d_edge_syd

It will output the full path of the checkpoint to be copied to the edge server and used with Section
8.6.25, “recover_edge.sh”

8.6.5. edge_vars
The /p4/common/bin/edge_vars file is sourced by scripts that work on edge servers.

It sets the correct list db.* files that are edge-specific in the federated architecture. This version is
dependent on the version of p4d in use; this script accounts for the P4D version.

It is not intended for users to call directly.

8.6.6. edge_shelf replicate.sh

The /p4/common/bin/edge_shelf_replicate.sh script is intended to be run on an edge server and will
ensure that all shelves are replicated to that edge server (by running p4 print on them).

Only use if directed to by Perforce Support or Perforce Consulting.

© 2007-2024 Perforce Software, Inc. 117

118 of 213 - Chapter 8. Tools and Scripts
8.6.7. load_checkpoint.sh

The /p4/common/bin/load_checkpoint.sh script loads a checkpoint into root and offline_db for
commit/edge/replica instance.

o This script will replace your /p4/<instance>/root database files! Be careful!

If you want to create db files in offline_db then use Section 8.4.11, “recreate_offline_dh.sh”.

Usage
USAGE for load_checkpoint.sh v3.2.6:

load_checkpoint.sh {<checkpoint> [<jnl.1> <jnl.2> ...] | -latest | -latest_jnls | -jo
<jnl.1> [<jn1l.2> ...] | -jo_latest } [-R|-F <SafetyFactor>] [-i <instance>] [-s
<ServerID>] [-t <Type>] [-no_start | [-no_xu] [-verify {default|"Verify Options"} [-
delay <delay>]1] [-c] [-11 [-r] [-b] [-y] [-L <log>] [-si] [-d|-D]

or

load_checkpoint.sh [-h|-man]

DESCRIPTION:
This script can load a specified checkpoint and/or numbered journals
into P4ROOT (/p4/N/root) and/or /p4/N/offline_db (where 'N' is the SDP
instance name). It supports a variety of use cases for replaying
checkpoints and journals, including:

* Seeding or Reseeding a replica or edge server.
* Loading a checkpoint on the commit, e.g. in a recovery scenario.

Checkpoints and/or journals can be specified in one of two ways: they can
be specified as parameters to this script, or they can be determined by
this script if they appear in the SDP standard location according to the
journalPrefix standard. They key methods are:

* Specify the path to the checkpoint to replay. The checkpoint can be in the
form of a compressed .gz file, an uncompressed checkpoint file, or a directory
(for parallel checkpoints).

* Use '-latest' to have this script find the latest checkpoint available. For
a commit server, /p4/N/checkpoints/p4_N is searched. For other servers, their
journalPrefix is used. The timestamp on the latest available *.md5 file is
used to determine what checkpoint is the latest available, regardless of
checkpoint form (compressed or uncompressed file, or a directory for parallel
checkpoints).

* Use '-latest_jnls' to find the latest checkpoint as with '-latest', and then
also find and replay any available subsequent numbered journals.

* Use "-jo' ("journal only") to specify path(s) to one or more numbered
journals to be supplied as parameters to this script. Journal files provided
may be compressed or uncompressed.

118 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 119 of 213

* Use '-jo_latest' to find any numbered journals available to be replayed
based on the journal counter of the data set.

At the start of processing, preflight checks are done. Preflight checks
include:

* The specified checkpoint and corresponding *.md5 file must exist.

* The specified checkpoint can be a compressed or uncompressed file or a
directory (for parallel checkpoints).

* A1l journal files to replay (if any are specified) must exist.

* The $P4R0O0T/server.id file must exist, unless '-s' is specified.

* If the $P4R00T/server.id file exists and '-s' is specified, the values
must match.

* The $P4R00T/license file must exist, unless '-1' is specified or if
the replica type does not require a license (such as an edge server).

* The SDP structure and key files must exist.

* Disk space checks are done to attempt to determine if sufficient space
is available to replay the checkpoint.

If the preflight passes, the p4d_N service is shutdown. The p4broker_N
service is shutdown if it is configured.

If a PALOG file exists, it is moved aside so there is a fresh p4d server
log corresponding to operation after the checkpoint load.

If a PAJOURNAL file exists, it is moved aside as the old journal data is
no longer relevant after a checkpoint replay. (Exception: If the P4JOURNAL
is speciffed in a list of journals to reply, then it is not moved aside).

Next, any existing state* files in P4ROOT are removed.

Next, any existing database it is files in P4ROOT are preserved and moved aside,
unless '-R' is specified to remove them.

Next, the specified checkpoint is loaded. Upon successful completion,

"p4d -xu' is executed (by default) to help ensure the service can be started
with the p4d binary used to replay the checkpoint. Then the Helix Core
service is started with the current p4d binary.

If the server to be started is a replica, the serviceUser configured for
the replica is logged into the P4TARGET server. Any needed 'p4 trust' and

'p4 login' commands are done to enable replication.

Note that this part of the processing will fail if the correct super user
password is not stored in the standard SDP password file,

/p4/common/config/.p4passwd.p4_N.admin

After starting the server, a local 'p4 trust' is done if needed, and then
a 'p4login -service -v' and 'p4login -v'.

By default, the p4d_N service is started, but the p4broker_N service is not.
© 2007-2024 Perforce Software, Inc. 119

120 of 213 - Chapter 8. Tools and Scripts

Specify '-b' to restart both services.

Finally, the offline_db is rebuilt using the same specified checkpoint and
journals.

ARGUMENTS AND OPTIONS:

120

<checkpoint>

Specify the path to the checkpoint file or directory to load. Exactly one
checkpoint must be specified. If a checkpoint file is specified, a serial
checkpoint replay will be done. If a checkpoint directory is specified,

a parallel replay will be done using the individual files in the
directory.

For checkpoint files:

The file may be a compressed or uncompressed checkpoint, and it may be a case
sensitive or case-insensitive checkpoint. The checkpoint file must have a
corresponding *.md5 checksum file in the same directory, with one of two name
variations: If the checkpoint file is /somewhere/foo.gz, the checksum file may
be named /somewhere/foo.gz.md5 or /somewhere/foo.md5.

For checkpoint directories:

This option is required unless the '-latest' option is used.

<jnl.1> [<jnl.2> ...]

Specify the path to the one or more journal files to replay after the
checkpoint, in the correct sequence order.

-latest

Specify this as an alternative to providing a specific checkpoint file or
directory. The script will then search for the latest *.md5 file in the
standard checkpoints directory and use that to replay.

The standard checkpoints directory search is one of the following:

Commit servers: /p4/N/checkpoints
Standby servers: /p4/N/checkpoints

Edge servers: /p4/N/checkpoints.<ShortServerID>

For standby servers that target an edge server, where the ServerID
starts with p4d_ha_edge, p4d_ham_edge, p4d_fs_edge, or p4d_fsm_edge,
the directory for the target edge server is searched. (If NFS sharing,
this directory will naturally exist. Otherise, the directory should

be created and populated as needed on the standby of the edge for
seeing with checkpoints from the edge.

The most recent *.md5 file found in the standard checkpoints directory
determines which checkpoint to load. The actual checkpoint can be a
file (gzipped or not) or directory (for parallel checkpoints).

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 121 of 213

This option is mutually exclusive with '-latest_jnls’.

-latest_jnls
This option is similar to '-latest'. However, with '-latest_jnls', in
addition to replaying the latest checkpoint, any subsequent numbered
journals available in the standard checkpoints directory are also
replayed.

This option will only replay numbered journals, not the live P4JOURNAL
file. However, if the $P4JOURNAL is provided, then it will be
replayed after all available numbered journals are replayed.

This option is mutually exclusive with '-latest’.

If used with '-jo', where the checkpoint and possibly some numbered
journals will already have been replayed into P4RO0T, then the meaning
of this option changes. It will replay needed numbered journal up to
the latest available, so long as those journals appear in the standard
checkpoints directory with the usual naming convention. With this option,
the journal needed are calculated based on the journal counter stored in
database in the P4ROOT dir.

-R Specify '-R' to remove db.* files in P4ROOT rather than moving them aside.

By default, databases are preserved for possible future for investigation.
A folder named 'MovedDBs.<datestamp>' is created under the P4ROOT directory,
and databases are moved there.

Keeping an extra set of databases requires sufficient disk space to hold
the extra set of db.* files.

If -R specified, old databases in P4ROOT are removed, along with state*
and other files, and the server.locks directory.

-F <SafetyFactor>
When replacing an existing set of db.* files, a safety factor
is used. This is simply the factor by which the size of pre-existing
databases is multiplied when comparing against available disk space.

Specify '-F @' to disable the safety factor check.

The disk space safety check is only meaningful if P4ROOT was previously
populated with a full set of data.

Specifying a nubmer greater than 1, say 1.2 (the default) gives more
breathing room.

Specifying a value lower than 1, say 0.95, may be OK if you are certain
the expanded-from-a-checkpoint db.* files are significantly smaller
than size the prior set of db.* files.

© 2007-2024 Perforce Software, Inc. 121

122 of 213 - Chapter 8. Tools and Scripts

122

This option is mutually exclusive with "-R'. If '-R' is used, databases
are removed, and there is no need to calculate disk space.

<instance>
Specify the SDP instance. This can be omitted if SDP_INSTANCE is already
defined.

<ServerID>
Specify the ServerID. This value is written into $P4R00T/server.id file.

If no $P4R0O0T/server.id file exists, this flag is required.

If the $P4RO0T/server.id file exists, this argument is not needed. If this
"-s <ServerID>" is given and a $P4R00T/server.id file exists, the value in
the file must match the value specified with this argument.

<Type>

Specify the replica type tag if the checkpoint to be loaded is for an edge
server or replica. The set of valid values for the replica type

tag are defined in the documentation for mkrep.sh. See: mkrep.sh -man

If the type is specified, the '-s <ServerID>' is required.

If the SDP Server Spec Naming Standard is followed, the ServerID
specified with '-s' will start with 'p4d_". In that case, the
value for '-t edge' value is inferred, and '-t' is not required.

If the type is specified or inferred, certain behaviors change based

on the type:

* If the type is edge, only the correct edge-specific subset of database
tables are loaded.

* The P4R0O0T/license file check is suppressed unless the type is

ha, ham, fs, for fsm (standby replicas usable with 'p4 failover').

Do not use this '-t <Type>' option if the checkpoint being loaded is
for a commit server.

For an edge server, an edge seed checkpoint created with edge_dump.sh
must be used if the edge is filtered, e.qg. if any of the *DataFilter
fields in the server spec are used. If the edge server is not filtered
by means other than being an edge server (for which certain tables are
filtered by nature), a standard full checkpoint from the commit can be
used.

For a filtered forwarding replica, a proper seed checkpoint must be
loaded. This can be created on the commit using key options to p4d,
including '-P <ServerID> -jd <SeedCkp' on the commit (possibly using
the 'offline_db' to avoid downtime, similar to how edge_dump.sh
works for edge servers).

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 123 of 213

WARNING: While this script is useful for seeding a new edge server, this
script is NOT to be used for recovering or reseeding an existing edge server,
because all edge-local database tables (mostly workspace data) would be lost.
To recover an existing edge server, see the recover_edge.sh script.

Warning: If this option is specified with the incorrect type for the
checkpoint specified, results will be unpredictable.

-verify default [-delay <delay>]
-verify "Verify Options" [-delay <delay>]

Specify '-verify' to initiate a call to 'pdverify.sh' after the server

is online. On a replica, this can be useful to cause the server to pull
missing archive files from its PATARGET server. If this load_checkpoint.sh
script is used in a recovery situation for a commit server, this '-verify'
option can be used to discover if archive files are missing after the
metadata is recovered.

The 'p4verify.sh' script has a rich set of options. See 'pdverify.sh -man'
for more info. The options to pass to pdverify.sh can be passed in a
quoted list, or '-verify default' can be used to indicate these default
options:

-0 MISSING

By default, a fast verify is used if the p4d version is new enough (2021.1+).
See 'pdverify.sh -man' for more information, specifically the description
of the '-o MISSING' option.

In all cases, pdverify.sh is invoked as a background process; this
load_checkpoint.sh script does not wait for it to complete. The pdverify.sh
script will email as per normal when it completes.

The optional delay option specifies how long to wait until kicking off the
pdverify.sh command, in seconds. The default is 600 seconds.

This is intended to give the replica time get get caught up with metadata
before the archive pulls are scheduled. The delay is a workaround for job@79842.

This option is cannot be used with '-no_start'.

-c Specify that SSL certificates are required, and not to be generated with
"p4d_N -Gc'.

By default, if '-c¢' is not supplied and SSL certs are not available, certs
are generated automatically with 'p4d_N -Gec'.

-1 Specify that the server is to start without a license file. By default, if
there is no $P4R00T/1license file, this script will abort. Note that if '-1'
is specified and a license file is actually needed, the attempt this script makes
to start the server after loading the checkpoint will fail.

© 2007-2024 Perforce Software, Inc. 123

124 of 213 - Chapter 8. Tools and Scripts

124

If '-t <type>' is specified, the license check is skipped unless the type is
'ha', 'ham', 'fs,' or 'fsm'. Replicas that are potential targets for a 'p4
failover' need a license file for a failover to work.

-r Specify '-r' to replay only to P4ROOT. By default, this script replays both

to P4ROOT and the offline_db.

-no_start

Specify '-no_start' to avoid starting the p4d service after loading the
checkpoint.

This option is cannot be used with '-verify'.

-N0_Xu

Specify '-no_xu' to skip the 'p4d -xu' step that upgrade the database schema.

By default, a 'p4d -xu' is done to help ensure the service can be started
with the current p4d binary after the checkpoint is replayed.

If the p4d binary used to replay the checkpoint is a newer major version
than the one used to create the checkpoint, the service will not start
after the replay until the 'p4d -xu' step is done. If this "-no_xu' option
is used and the p4d binary is a newer major version, have a plan to get

the 'p4d -xu' done before the service is started.

In EXAMPLES below, see the example titled "Multi Pass Replay of Checkpoints
and Journals" for an example of using this option as part of a migration
procedure.

-jo <jnl.1> [<jnl.2> ...]

Specify '-jo' to replay only one or more numbered journals without

first replaying a full checkpoint. With this option, the cleanup that
normally occurs before the replay is disabled. The db.* and state* files
in P4ROOT, as well as P4L0G and P4JOURNAL files, etc. are left in place.

With '-jo', the paths to journal files must be specified.

This option is mutually exclusive to the similar option '-jo_latest'.

This option implies '-r'.

-jo_latest

Specify '-jo_latest' to replay only one or more numbered journals without
first replaying a full checkpoint. With this option, the cleanup that
normally occurs before the replay is disabled. The db.* and state* files
in P4ROOT, as well as P4L0G and P4JOURNAL files, etc. are left in place.

With '-jo_latest', numbered journals to replay are calculated and determined,
not specified as parameters.

This option is mutually exclusive to the similar option '-jo'.
© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 125 of 213

This option implies '-r'.

-b Specify '-b' to start the a pdbroker process (if configured). By default
the p4d process is started after loading the checkpoint, but the p4broker
process is not. This can be useful to ensure the human administrator has
an opportunity to do sanity checks before enabling the broker to allow
access by end users (if the broker is deployed for this usage).

-y Use the '-y' flag to bypass an interactive warning and confirmation
prompt.

-L <log>
Specify the path to a log file. By default, all output (stdout and stderr)
goes to:
/p4/<instance>/logs/load_checkpoint.<timestamp>.log

NOTE: This script is self-logging. That is, output displayed on the screen
is simultaneously captured in the log file. Do not run this script with
redirection operators like '> log' or '2>&1', and do not use 'tee.'

-si Operate silently. All output (stdout and stderr) is redirected to the log
only; no output appears on the terminal.

-d Set debugging verbosity.
-D Extreme debugging verbosity using bash 'set -x' mode.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

USAGE TIP:
A1l the non-interactive examples below illustrate the practice of using
redirects to create an extra log file named 'load.log' in the $LOGS
directory for the instance. This load.log file is identical to, and in
addition to, the standard timestamped log generated by this script. The
intent of this practice is to make it easier to find the log for the
last checkpoint loaded on any given server machine. This convention is only
useful if used consistently.
Several examples below illustrate the instance option, '-i' option to
specify the SDP instance. This is optional and can safely be omitted in an
environment where the standard SDP shell environment is sourced on login,
and where there is only a single instance on the server machine.

EXAMPLES:
EXAMPLE 1: Non-interactive Usage

Non-interactive usage (bash syntax) to load a checkpoint:

© 2007-2024 Perforce Software, Inc. 125

126 of 213 - Chapter 8. Tools and Scripts

nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.9z -1 1 -y < /dev/null >
/p4/1/10gs/1oad.log 2>&1 &

Then, monitor with:
tail -f $(1s -t $L0GS/1load_checkpoint.*.log|head -1)

EXAMPLE 2: Checkpoint Load then Verify, for the SDP Instance alpha.

Non-interactive usage (bash syntax) to load a checkpoint followed by a full
verify of recent archives files only with other options passed to verify.sh:

nohup /load_checkpoint.sh /p4/alpha/checkpoints/p4_alpha.ckp.95442.9z -i alpha
-verify -recent -nu -ns -y < /dev/null > /p4/alpha/logs/load.log 2>&1 &

EXAMPLE 3: Load Checkpoint and Journals

Non-interactive usage (bash syntax) to loading a checkpoint and subsequent
journals:

nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.9z
/p4/1/checkpoints/p4_1.jn1.4025 /p4/1/checkpoints/p4_1.jnl.4026 -i 1 -y < /dev/null >
/p4/1/1ogs/load.log 2>&1 &

Then, monitor with:
tail -f $(1s -t $L0GS/1load_checkpoint.*.log|head -1)

EXAMPLE 4: Interactive usage.
Interactive usage to load a checkpoint with no license file.

/load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.9z -1 1 -1

With interactive usage, logging still occurs; all output to the screen is
captured.

Note that non-interactive usage with nohup is recommended for checkpoints
with a long replay duration, to make operation more reliable in event of a
shell session disconnect. Alternately, running interactively in a 'screen'
session (if 'screen' is available) provides similar protection against
shell session disconnects.

EXAMPLE 5: Seed New Edge
Seeding a new edge server.

nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.9z -1 1 -s p4d_edge_syd
< /dev/null > /p4/1/1logs/load.log 2>&1 &

WARNING: While this script is useful for seeding a new edge server, this
126 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 127 of 213

script is NOT to be used for recovering or reseeding an existing edge server,
because all edge-local database tables (mostly workspace data) would be lost.
To recover an existing edge server, see the recover_edge.sh script.

EXAMPLE 6: Seed New Edge and Verify
Seeding a new edge server and then do a verify with default options.

nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.9z -1 1 -s p4d_edge_syd
-verify default < /dev/null > /p4/1/1logs/load.log 2>&1 &

EXAMPLE 7: Load a Parallel Checkpoint on an Edge and Verify Recent

This non-interactive example loads a parallel checkpoint directory. The
usage difference is that the checkpoint path provided is a parallel
checkpoint directory rather than a single checkpoint file. This example
loads the checkpoint for a new edge server, and verifes only the most
recent 3 changes in each depot. The delay before calling p4verify.sh,
10 minutes (600) by default, is shortened to 5 seconds in this example.

nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025 -i 1 -s p4d_edge_syd
-verify "-o MISSING -recent=3 -ns -L /p4/1/logs/pdverify.fast_and_recent.log" -delay 5
-y < /dev/null > /p4/1/1logs/load.log 2>&1 &

EXAMPLE 8: Multi Pass Replay of Checkpoints and Journals

In this example, we want to use a multi-pass procedure involving replay of

a checkpoint at one point in time, and then later replay subsequent numbered
journals later. This method can be useful to reduce downtime required for
migration procedures involving a checkpoint replay if the checkpoint replay
takes a while, e.g. a few hours or more. The gist of the approach is to replay
the checkpoint a day or so a head of the scheduled maintenance. Then replay
subsequent numbered journals each day after. Then in the maintenance

window, replay just the last numbered journal from the old environment in

the new environment.

This approach involves a few options:

* When the checkpoint is replayed, '-no_start' and '-no_xu'. Either specify

the path to the checkpoint, or use '-latest'.

* When the numbered journals are replayed in days leading up to the maintenance
window, use the '-jo_latest' option to replay only a numbered journal.

* During the maintenance window, load any final numbered journals, then start the
service.

Pass 1, 3 days before maintenance:
nohup load_checkpoint.sh -latest -no_start -no_xu -r -y < /dev/null >
/p4/1/10gs/1oad.log 2>&1 &

Pass 2, 2 days before maintenance:
nohup load_checkpoint.sh -jo_latest -no_start -no_xu -y < /dev/null >
/p4/1/1ogs/1load.log 2>&1 &

© 2007-2024 Perforce Software, Inc. 127

128 of 213 - Chapter 8. Tools and Scripts

Pass 3, 1 day before maintenance:
nohup load_checkpoint.sh -jo_latest -no_start -no_xu -y < /dev/null >
/p4/1/1ogs/1oad.log 2>&1 &

Pass 4, during the maintenance window:
nohup load_checkpoint.sh -jo_latest -y < /dev/null > /p4/1/1logs/1load.log 2>&1 &

8.6.8. gen_default_broker_cfg.sh

The /p4/common/bin/gen_default_broker_cfg.sh script generates an SDP instance-specific variant of
the generic P4Broker config file. Display to standard output.

Usage:

cd /p4/common/bin
gen_default_broker_cfg.sh 1 > /tmp/p4broker.cfg.ToBeReviewed

The final p4broker.cfg should end up here:

/p4/common/config/p4_${SDP_INSTANCE}.${SERVERID}.broker.cfg

8.6.9. journal_watch.sh

The /p4/common/bin/journal_watch.sh script will check diskspace available to P4JOURNAL and
trigger a journal rotation based on specified thresholds. This is useful in case you are in danger of
running out of disk space and your rotated journal files are stored on a separate partition than the
active journal.

This script is using the following external variables:
* SDP_INSTANCE - The instance of Perforce that is being backed up. If not set in environment,

pass in as argument to script.

* P4AJOURNALWARN - Amount of space left (K,M,G,%) before min journal space where an email
alert is sent

* PAJOURNALWARNALERT - Send an alert if warn threshold is reached (true/false, default: false)

* PAJOURNALROTATE - Amount of space left (K,M,G,%) before min journal space to trigger a
journal rotation

* PAOVERRIDEKEEP]JNL - Allow script to temporarily override KEEPJNL to retain enough journals
to replay against oldest checkpoint (true/false, default: false)

Usage

/p4/common/bin/journal_watch.sh <P4JOURNALWARN> <P4JOURNALWARNALERT> <P4JOURNALROTATE>
<PAOVERRIDEKEEPINL (Optional)>

128 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 129 of 213

Examples

Run from CLI that will warn via email if less than 20% is available and rotate journal when less
than 10% is available

./journal_watch.sh 20% TRUE 10% TRUE

Cron job that will warn via email if less than 20% is available and rotate journal when less than
10% is available

30 * * * * [-e /p4/common/bin] && /p4/common/bin/run_if_master.sh ${INSTANCE}
/p4/common/bin/journal_watch.sh ${INSTANCE} 20\% TRUE 10\% TRUE

8.6.10. kill _idle.sh

The /p4/common/bin/kill_idle.sh script runs p4 monitor terminate on all processes showing in the
output of p4 monitor show that are in the IDLE state.

Usage

/p4/common/bin/kill_idle.sh <instance>
/p4/common/bin/kill_idle.sh 1

8.6.11. mkdirs.sh

The mkdirs.sh script is intended for the setup and configuration of a new Helix Core instance. It
should be run only for adding a new instance, not against an existing instance.

Usage
USAGE for mkdirs.sh v7.2.5:
mkdirs.sh <instance> [-r <P4BinRel>] [-s <ServerID>] [-t <ServerType>] [-tp
<TargetPort>] [-1p <ListenPort>] [-I <sve>[,<sve2>]] [-MDD /bigdisk] [-MCD /ckps] [-
MLG /jn1] [-MDB1 /db1] [-MDB2 /db2] [-f] [-p] [-no_init|-no_systemd|-no_enable] [-fs|-
1s] [-no_cron] [-no_firewall] [-test [-clean]] [-n] [-L <log>] [-d|-D]
OR

mkdirs.sh <instance> [-c <CfgFile>] [-f] [-p] [-no_init|-no_systemd|-no_enable] [-fs|-
1s] [-no_cron] [-no_firewall] [-test [-clean]] [-n] [-L <log>] [-d]|-D]

or

mkdirs.sh [-h|-man]

DESCRIPTION:

© 2007-2024 Perforce Software, Inc. 129

130 of 213 - Chapter 8. Tools and Scripts
== Qverview ==
This script initializes an SDP instance on a single machine.
This script is intended to support two scenarios:

* First time SDP installation on a given machine. In this case, the
user calls the install_sdp.sh script, which in turn calls this script.
See 'install_sdp.sh -man' for more information.

* Adding new SDP instances (separate Helix Core data sets) to an existing
SDP installation on a given machine. For this scenario, this mkdirs.sh
script is called directly.

An SDP instance is a single Helix Core data set, with its own unique
set of one set of users, changelist numbers, jobs, labels, versioned
files, etc. An organization may run a single instance or multiple
instances.

This is intended to be run either as root or as the operating system
user account (OSUSER) that p4d is configured to run as, typically
"perforce’. It should be run as root for the initial install.
Subsequent additions of new instances do not require root.

== Directory Structure ==

If an initial install as done by a user other than root, various
directories must exist and be writable and owned by 'perforce' before starting:

/p4

/hxcheckpoints

/hxdepots

/hxlogs

/hxmetadata

/hxmetadata2

/opt/perforce/helix-sdp (optional; used for package installations)

L R S G

The directories starting with '/hx' are configurable, and can be changed by
settings in the mkdirs.cfg file (or mkdirs.N.cfg), or with command line
options as illustrated here:

-MDD /bigdisk
-MCD /ckps
-MLG /jnl
-MDB1 /db1
-MDB2 /db2

This script creates an init script in the /p4/N/bin directory.

== Crontab ==
130 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 131 of 213

Crontabs are generated for all server types.

After running this script, set up the crontab based on templates
generated as /p4/common/etc/cron.d. For convenience, a sample crontab
is generated for the current machine as /p4/p4.crontab.<SDPInstance>
(or /p4/p4.crontab.<SDPInstance>.new if the former name exists).

These files should be copied or merged into any existing files named
with this convention:

/p4/common/etc/cron.d/crontab.<osuser>.<host>

where <osuser> is the user that services run as (typically 'perforce'),
and <host> is the short hostname (as returned by a "hostname -s' command).

== Init Mechanism ==

If this script is run as root, the init mechanism (Systemd or SysV) is
configured for installed services.

The Systemd mechanim is used if the the /etc/systemd/system folder exists and
systemctl is in the PATH of the root user. Otherwise, the SysV init mechanism
is used.

== Firewall Configuration ==

This script checks to see if a known firewall type is available. The

firewalld is checked using the command 'firewall-cmd --state' command,

and the ufw firewall is checked using the 'ufw status'. If either firewall

is detected, the ports required for Helix Core applications installed are

opened in the firewall. For more information, see the templates in these folders:

/p4/common/etc/firewalld
/p4/common/etc/ufw

If the firewall service is not online, no firewall coniquration is performed.
== SELinux Configuration ==

If Systemd is used and the semanage and restorecon utilities are available in
the PATH of the root user, then SELinux configuration for the installed
services is done.

REQUIRED PARAMETERS:

<instance>
Specify the SDP instance name to add. This is a reference to the Perforce
Helix Core data set.

OPTIONS:
-s <ServerID>

© 2007-2024 Perforce Software, Inc. 131

132 of 213 - Chapter 8. Tools and Scripts

Specify the ServerID, overriding the REPLICA_ID setting in the configuration
file.

-S <TargetServerID>
Specify the ServerID of the P4TARGET of the server being installed.
Use this only when setting up an HA replica of an edge server.

-t <ServerType>
Specify the server type, overriding the SERVER_TYPE setting in the config
file. Valid values are:
* p4d_commit - A master/commit server.
* p4d_master - A synonym for p4d_commit.
* p4d_replica - A replica with all metadata from the master (not
filtered in any way).
* p4d_filtered_replica - A filtered replica or filtered forwarding
replica.
* p4d_edge - An edge server.
* p4d_edge_replica - Replica of an edge server. If used,
'-S <TargetServerID>" is required.
* pdbroker - An SDP host running only a standalone p4broker, with no p4d.
* p4p - An SDP host running only a standalone p4p, with no p4d.
* pdproxy - A synonym for p4dp.

-tp <TargetPort>
Specify the target port. Use only if ServerType is p4p and p4dbroker.

-1p <ListenPort>
Specify the listen port. Use only if ServerType is p4p and pdbroker.

-I [<sve>[,<sve2>]]
Specify additional init scripts to be added to /p4/<instance>/bin
for the instance.

By default, the p4p service is installed only if '-t pdproxy' is
specified. p4dtg is never installed by default. Valid values
to specify are 'p4p' and 'dtg' (for the P4DTG init script).

If services are not installed by default, they can be added later
using templates in /p4/common/etc/init.d. Also, templates for
systemd service files that call the init scripts are supplied in
/p4/common/etc/systemd/system.

-MDD /bigdisk

-MCD /ckps

-MLG /jnl

-MDB1 /db1

-MDB2 /db2
Specify the '-M*' optons to specify mount points, overriding
DD/CD/LG/DB1/DB2 settings in the config file. Sample:

-MDD /bigdisk -MLG /jnl -MDB1 /fast
132 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 133 of 213

If -MDB2 1is not specified, it is set the the same value as -MDB1 if
that is set, or else it defaults to the same default value as DB1.

-c <CfgFile>
Specify the path to the configuration file to use, overriding the
default logic of finding the file based on naming convention.

-f Specify -f 'fast mode' to skip chown/chmod commands on depot files.
This should only be used when you are certain the ownership and
permissions are correct, and if you have large amounts of existing
data for which the chown/chmod of the directory tree would be
time-consuming and unnecessary.

-p Specify '-p' to halt processing after preflight checks are complete,
and before actual processing starts. By default, processing starts
immediately upon successful completion of preflight checks.

-no_init
Specify '-no_init' to avoid any service configuration, which
is done by default if running as root (using systemd if available,
otherwise SysV). If '-no_init' is used, then neither systemd nor
SysV init mechanism is configured for installed services.

This option is implied if not running as root.
This option is implied if '-test' is used.

-no_systemd
Specify '-no_systemd' to avoid using systemd, even if it
appears to be available. By default, systemd is used if it
appears to be available.

This is helpful in operating in containerized test environments
where systemd does not work even if it appears to be available.

This option is implied if the systemctl command is not available
in the PATH of the root user.

This option is implied if '-no_init' is used.

-no_enable
Specify '-no_enable' to avoid enabling systemd services to start
automatically after a reboot. If this option is used, systemd
services will still be created, allowing services to be manually
started and stopped.

Specifically, this options means the 'systemctl enable' command
is not run for generated services.

-no_cron

© 2007-2024 Perforce Software, Inc. 133

134 of 213 - Chapter 8. Tools and Scripts

Specify '-no_cron' to avoid loading the crontab.

A crontab file is generated in the /p4 directory, but
but with "-no_cron, this file is not loaded as the active crontab.

-no_firewall

-fs

-1s

Specify '-no_firewall' to avoid attempting firewall configuration.

By default, if the firewalld service is found to be running,
it is configured so that the ports for p4d and p4broker are
open.

Specify '-full' when calling gen_sudoers.sh to install a new, full
sudoers file. This option is only available if running as root.

This option is mutually exclusive with '-1s'.
See 'gen_sudoers.sh -man' for more info.

Specify '-limited' when calling gen_sudoers.sh to install a new,
limited sudoers file. This option is only available if running as
root.

This option is mutually exclusive with '-fs'.

See 'gen_sudoers.sh -man' for more info.

<log>

Specify the path to a log file, or the special value 'off' to disable
logging. By default, all output (stdout and stderr) goes to this file
in the current directory:

mkdirs.<instance>.<datestamp>.log

NOTE: This script is self-logging. That is, output displayed on the
screen is simultaneously captured in the log file. Do not run this

script with redirection operators like '> log' or '2>&1', and do not
use 'tee'.

DEBUGGING OPTIONS:
-test

Specify '-test' to execute a simulated install to /tmp/p4 as the install
root (rather than /p4), and with the mount point directories specified in
the configuration file prefixed with /tmp/hxmounts, defaulting to:

* /tmp/hxmounts/hxdepots

* /tmp/hxmounts/hxlogs

* /tmp/hxmounts/hxmetadata

This option implies '-no_init'.

-clean

134

© 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 135 of 213

Specify '-clean' with '-test' to clean up from prior test installs,
which will result in removal of files/folders installed under /tmp/hxmounts
and /tmp/p4.

Do not specify '-clean' if you want to test a series of installs.

-n No-Op. In No-Op mode, no actions that affect data or structures are
taken. Instead, commands that would be run are displayed. This is
an alternative to -test. Unlike '-p' which stops after the preflight
checks, with '-n' more processing logic can be exercised, with greater

detail about what commands that would be executed without '-n'.
-d Increase verbosity for debugging.
-D Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
-h Display short help message
-man Display man-style help message

FILES:
The mkdirs.sh script uses a configuration file for many settings. A
sample file, mkdirs.cfg, is included with the SDP. After determining
your SDP instance name (e.g. '1' or 'abc'), create a configuration
file for it named mkdirs.<N>.cfg, replacing 'N' with your instance.

Running 'mkdirs.sh N' will load configuration settings from mkdirs.N.cfq.

UPGRADING SDP:
This script can be useful in testing and upgrading to new versions of
the SDP, when the '-test' flag is used.

EXAMPLES:
Example 1: Setup of first instance

Setup of the first instance on a machine using the default instance name,
'1", executed after using sudo to become root:

$ sudo su -
$ cd /hxdepots/sdp/Server/Unix/setup
$ vi mkdirs.cfg

Adjust settings as desired, e.g P4PORT, P4BROKERPORT, etc.
$./mkdirs.sh 1
A Tog will be generated, mkdirs.1.<timestamp>.log

Example 2: Setup of additional instance named 'abc'.

Setup a second instance on the machine, which will be a separate Helix
© 2007-2024 Perforce Software, Inc. 135

136 of 213 - Chapter 8. Tools and Scripts

Core instance with its own P4R00T, its own set of users and
changelists, and its own license file (copied from the master instance).

Note that while the first run of mkdirs.sh on a given machine should be
done as root, but subsequent instance additions can be done as the
"perforce’ user (or whatever operating system user accounts Perforce
Helix services run as).

$ sudo su - perforce

$ cd /hxdepots/sdp/Server/Unix/setup

$ cp mkdirs.cfg mkdirs.abc.cfg

$ chmod +w mkdirs.abc.cfg

$ vi mkdirs.abc.cfg

Adjust settings in mkdirs.abc.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.
$./mkdirs.sh abc

A Tlog will be generated, mkdirs.abc.<timestamp>.log

Example 3: Setup of additional instance named 'alpha' to run a standalone p4p
targeting commit.example.com:1666 and listening locally on port 1666.

$ sudo su -
$ cd /hxdepots/sdp/Server/Unix/setup
$./mkdirs.sh alpha -t p4p -tp commit.example.com:1666 -1p 1666

Example 4: Setup of instance named '1' to run a standalone p4broker
targeting commit.example.com:1666 and listening locally on port 1666.

$ sudo su -

$ cd /hxdepots/sdp/Server/Unix/setup

$./mkdirs.sh 1 -t pdbroker -tp commit.example.com:1666 -1p 1666

Example 5: Setup 2 instances A and B with limited sudoers on a fresh new machine:
$ sudo su -

$ cd /hxdepots/sdp/Server/Unix/setup

$ cp mkdirs.cfg mkdirs.A.cfg

Adjust settings in mkdirs.A.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.

$ cp mkdirs.A.cfg mkdirs.B.cfg

Adjust settings in mkdirs.B.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.
Ensure port numbers do not conflict. Then generate Instance A:

$./mkdirs.sh A -1s

A Tog will be generated, mkdirs.A.<timestamp>.log

136 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 137 of 213

Next generate instnace B, updating the limited sudoers to reference both
instances.

$./mkdirs.sh B -1s

SEE ALSO:
See 'install_sdp.sh -man' for more info on installing on a new machine.

See 'gen_sudoers.sh -man' for more info on generating/replacing sudoers.

See template:

* systemd service file templates: /p4/common/etc/systemd/system
* firewalld templates: /p4/common/etc/firewalld

* ufw firewall templates: /p4/common/etc/ufw

* Init script templates: /p4/common/etc/init.d

8.6.12. p4d_base
The /p4/common/bin/p4d_base script is the script to start/stop/restart the p4d instance.

It is called by p4d_<instance>_init script (and thus also systemctl on systemd Linux distributions). It
is not intended to be called by users directly.

8.6.13. p4broker_base

The /p4/common/bin/p4broker_base script is very similar to Section 8.6.12, “p4d_base” but for the
p4broker service instance.

See p4broker in SysAdmin Guide

8.6.14. p4ftpd_base

The /p4/common/bin/p4ftpd_base script is very similar to Section 8.6.12, “p4d_base” but for the p4ftp
service instance. The p4ftp has been deprecated; this may be removed in a future SDP release.

This product is very seldom used these days!

See PAFTP Installation Guide.

8.6.15. p4p_base

The /p4/common/bin/p4p_base is very similar to Section 8.6.12, “p4d_bhase” but for the p4p (P4 Proxy)
service instance.

See p4proxy in SysAdmin Guide

8.6.16. p4pcm.pl

The /p4/common/bin/p4pcm.pl script is a utility to remove files in the proxy cache if the amount of
free disk space falls below the low threshold.
© 2007-2024 Perforce Software, Inc. 137

https://www.perforce.com/manuals/p4dist/Content/P4Dist/chapter.broker.html
https://www.perforce.com/manuals/p4ftp/index.html
https://www.perforce.com/manuals/p4dist/Content/P4Dist/chapter.proxy.html

138 of 213 - Chapter 8. Tools and Scripts
Usage

Usage:

p4pcm.pl [-d "proxy_cache_dir"] [-tlow <low_threshold>] [-thigh <high_threshold>]
[-n/-s]
or

pdpcm.pl -h

This utility removes files in the proxy cache if the amount of free disk

space available to the cache falls below the low threshold (default 12).

It removes cache files based on time last accessed starting with the least

recently accessed continuing until either all files are deleted or the free disk
space available to the cache specified by the high threshold (default 25)

is reached. Specify numeric threshold values in kilobyte units (kb), or as a number
less than 100 to specify percentage of the total disk space available to

the cache. A high_threshold near the available disk space typically results in a
full clear of the cache defeating the purpose of a proxy.

The '-d "proxy_cache_dir"' argument is required unless $P4PCACHE is defined.
The -d argument takes precedence. proxy_cache_dir should be a fully rooted path
starting with '/'. Relative or local paths are fatal to tool operation.

The log is $L0GS/p4pcm.log if $LOGS is defined, else pdpcm.log in the current
directory.

The removal nomination file list is $L0OGS/p4pcm.nomlist if $LOGS is

defined, else p4pcm.nomlist in the current directory. The nomination list

file contains an access time ordered list of all cache files. If the nomination
list file exists at the start of this tool, the tool exits assuming a separate
run is currently in progress. The nomination list file is deleted when the tool

completes operation unless the '-s' argument is specified.

Use '-n' or '-s' to show what files would be removed. '-s' also causes the
nomination list file to remain undeleted. The nomination list file must be
manually removed prior to a subsequent successful use of this tool.

8.6.17. p4review2.py

The /p4/common/bin/p4review?.py script sends out email containing the change descriptions to users
who are configured as reviewers for affected files (done by setting the Reviews: field in the user
specification).

This is not required if you have installed Swarm which also performs notification functions and is
easier for users to configure.

1. Run p4review2.py --sample-config > p4review.conf

2. Edit the file p4review.conf

3. Add a crontab similar to this:

138 © 2007-2024 Perforce Software, Inc.

Chapter 8. Tools and Scripts - 139 of 213
o **** python3 /path/to/p4review2.py -c /path/to/p4review.conf

Features:

* Prevent multiple copies running concurrently with a simple lock file.

* Logging support built-in.

» Takes command-line options.

* Configurable subject and email templates.

* Use P4Python when available and use P4 (the CLI) as a fallback.

» Option to send a single email per user per invocation instead of multiple ones.

* Reads config from a INI-like file using ConfigParser

* Have command line options that overrides environment variables.

* Handles unicode-enabled server and non-ASCII characters on a non-unicode-enabled server.
* Option to opt-in (--opt-in-path) reviews globally (for migration from old review daemon).
* Configurable URLs for changes/jobs/users (for swarm).

* Able to limit the maximum email message size with a configurable.

e SMTP auth and TLS (not SSL) support.

» Handles PAAUTH (optional; use of P4AAUTH is no longer recommended).

8.6.18. proxy_rotate.sh

The /p4/common/bin/proxy_rotate.sh rotates the proxy log file. It is intended for use on a server
machine that has only proxy running. When a proxy is run on a p4d server machine, the
daily_checkpoint.sh script takes care of rotating the proxy log.

It can be added to a crontab for e.g. daily log rotation.

Usage

/p4/common/bin/proxy_rotate.sh <instance>
/p4/common/bin/proxy_rotate.sh 1

8.6.19. p4sanity_check.sh
The /p4/common/bin/p4sanity_check.sh script is a simple script to run:

° p4 set
* p4info
* p4 changes-m 10

Usage

/p4/common/bin/p4sanity_check.sh <instance>

© 2007-2024 Perforce Software, Inc. 139

140 of 213 - Chapter 8. Tools and Scripts
/p4/common/bin/p4sanity_check.sh 1

8.6.20. p4dstate.sh

The /p4/common/bin/p4dstate.sh is a trouble-shooting script for use when directed by support, e.g. in
situations such as server hanging, major locking problems etc.

It is an "SDP-aware" version of the standard p4dstate.sh so that it only requires the SDP instance to
be specified as a parameter (since the location of logs etc are defined by SDP).

Usage

sudo /p4/common/bin/p4dstate.sh <instance>
sudo /p4/common/bin/p4dstate.sh 1

8.6.21. ps_functions.sh

The /p4/common/bin/ps_functions.sh library file contains common functions for using 'ps' to check
on process ids. It is not intended to be called by users.

get_pids ($exe)

Usage

Call with an exe name, e.g. /p4/1/bin/p4web_1

Examples

p4web_pids=$(qget_pids $PAWEBBIN)
pabroker_pids=$(get_pids $P4BROKERBIN)

8.6.22. pull.sh

The /p4/common/bin/pull.sh is a reference pull trigger implementation for External Archive
Transfer using pull-archive and edge-content triggers

It is a fast content transfer mechanism using Aspera (and can be adapted to other similar UDP
based products.) An Edge server uses this trigger to pull files from its upstream Commit server. It
replaces or augments the built in replication archive pull and is useful in scenarios where there are
lots of large (binary) files and commit/edge are geographically distributed with high latency and/or
low bandwidth between them.

See also companion trigger Section 8.6.30, “submit.sh”.

It is based around getting a list of files to copy from commit to edge, then doing the file transfer
using ascp (Aspera file copy).

140 © 2007-2024 Perforce Software, Inc.

https://portal.perforce.com/s/article/15261
https://portal.perforce.com/s/article/15337
https://portal.perforce.com/s/article/15337

Chapter 8. Tools and Scripts - 141 of 213
The configurable pull.trigger.dir should be set to a temp folder like /p4/1/tmp.

Startup commands look like:
startup.2=pull -i 1 -u --trigger --batch=1000
The trigger entry for the pull commands looks like this:
pull_archive pull-archive pull "/p4/common/bin/triggers/pull.sh %archivelist%"

There are some pull trigger options, but the are not necessary with Aspera. Aspera works best if
you give it the max batch size of 1000 and set up 1 or more threads. Note, that each thread will use
the max bandwidth you specify, so a single pull-trigger thread is probably all you will want.

The ascp user needs to have ssl public keys set up or export ASPERA_SCP_PASS.

The ascp user should be set up with the target as / with full write access to the volume where the
depot files are located. The easiest way to do that is to use the same user that is running the p4d
service.

ensure ascp is correctly configured and working in your environment:
@ https://www-01.ibm.com/support/docview.wss?uid=ibm10747281 (search for "ascp
et connectivity testing")

Standard SDP environment is assumed, e.g PAUSER, PAPORT, OSUSER, P4BIN, etc. are set, PATH is
appropriate, and a super user is logged in with a non-expiring ticket.

o Read the trigger comments for any customization requirements required for your
environment.

See also the test version of the script: Section 8.6.23, “pull_test.sh”

See the /p4/common/bin/triggers/pull.sh script for details and to customize for your environment.

8.6.23. pull_test.sh

The /p4/common/bin/pull_test.sh script is a test script.

THIS IS A TEST SCRIPT - it substitutes for Section 8.6.22, “pull.sh” which uses
Aspera’s ascp and replaces that with Linux standard scp utility. IT IS NOT
INTENDED FOR PRODUCTION USE!!!!

If you don’t have an Aspera license, then you can test with this script to understand the process.
See the /p4/common/bin/triggers/pull_test.sh script for details.
There is a demonstrator project showing usage: https://github.com/rcowham/p4d-edge-pull-demo

© 2007-2024 Perforce Software, Inc. 141

https://www-01.ibm.com/support/docview.wss?uid=ibm10747281
https://github.com/rcowham/p4d-edge-pull-demo

142 of 213 - Chapter 8. Tools and Scripts
8.6.24. purge_revisions.sh

The /p4/common/bin/purge_revisions.sh script will allow you to archive files and optionally purge
files based on a configurable number of days and minimum revisions that you want to keep. This is
useful if you want to keep a certain number of days worth of files instead of a specific number of
revisions.

Note: If you run this script with purge mode disabled, and then enable it after the fact, all
previously archived files specified in the configuration file will be purged if the configured criteria
is met.

Prior to running this script, you may want to disable server locks for archive to reduce impact to
end users.

See: https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/
configurables.configurables.html#server.locks.archive

Parameters:

» SDP_INSTANCE - The instance of Perforce that is being backed up. If not set in environment,
pass in as argument to script.

* P4_ARCHIVE_CONFIG - The location of the config file used to determine retention. If not set in
environment, pass in as argument to script. This can be stored on a physical disk or somewhere
in perforce.

* P4_ARCHIVE_DEPOT - Depot to archive the files in (string)

* P4 _ARCHIVE_REPORT_MODE - Do not archive revisions; report on which revisions would have
been archived (bool - default: true)

e P4 ARCHIVE_TEXT - Archive text files (or other revisions stored in delta format, such as files of
type binary+D) (bool - default: false)

* P4 PURGE_MODE - Enables purging of files after they are archived (bool - default: false)

Config File Format

The config file should contain a list of file paths, number of days and minimum of revisions to keep
in a tab delimited format.

<PATH> <DAYS> <MINIMUM REVISIONS>
Example:

//test/1.txt 10 1
//test/2.txt 1 3
//test/3.txt 10 10
//test/4.txt 30
//test/5.txt 30 8

142 © 2007-2024 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.locks.archive
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.locks.archive

Chapter 8. Tools and Scripts - 143 of 213
Usage

/p4/common/bin/purge_revisions.sh <SDP_INSTANCE> <P4_ARCHIVE_CONFIG>
<P4_ARCHIVE_DEPOT> <P4_ARCHIVE_REPORT_MODE (Optional)> 4_ARCHIVE_TEXT (Optional)>
<P4_PURGE_MODE (Optional)>

Examples

Run from CLI that will archive files as defined in the config file
./purge_revisions.sh 1 /p4/common/config/p4_1.p4purge.cfg archive FALSE
Cron job that will will archive files as defined in the config file, including text files

300 * ** [-e /p4/common/bin] && /p4/common/bin/run_if_master.sh ${INSTANCE}
/p4/common/bin/purge_revisions.sh $INSTANCE} /p4/common/config/p4_1.pdpurge.cfg
archive FALSE FALSE

8.6.25. recover_edge.sh

The /p4/common/bin/recover_edge.sh script is designed to rebuild an Edge server from a seed
checkpoint from the master while keeping the existing edge specific data.

You have to first copy the seed checkpoint from the master, created with Section 8.6.4,
“edge_dump.sh”, to the edge server before running this script. (Alternately, a full checkpoint from
the master can be used so long as the edge server spec does not specify any filtering, e.g. does not
use ArchiveDataFilter.)

Then run this script on the Edge server host with the instance number and full path of the master
seed checkpoint as parameters.

Usage

/p4/common/bin/recover_edge.sh <instance> <absolute path to checkpoint>
/p4/common/bin/recover_edge.sh 1 /p4/1/checkpoints/p4_1.edge_syd.seed.ckp.9188.9gz

8.6.26. replica_cleanup.sh

The /p4/common/bin/replica_cleanup.sh script performs the following actions for a replica:

* rotate logs
* remove old checkpoints and journals

* remove old logs

This should be used on replicas for which the sync_replica.sh is not used.

© 2007-2024 Perforce Software, Inc. 143

144 of 213 - Chapter 8. Tools and Scripts
Usage

/p4/common/bin/replica_cleanup.sh <instance>
/p4/common/bin/replica_cleanup.sh 1

8.6.27. replica_status.sh
The /p4/common/bin/replica_status.sh script is regularly run by crontab on a replica or edge (using

Section 8.4.15, “run_if_replica.sh”).

08 ***[-e /p4/common/bin] && /p4/common/bin/run_if_replica.sh ${INSTANCE}
/p4/common/bin/replica_status.sh ${INSTANCE} > /dev/null

08 ***[-e /p4/common/bin] && /p4/common/bin/run_if_edge.sh ${INSTANCE}
/p4/common/bin/replica_status.sh ${INSTANCE} > /dev/null

It performs p4 pull -1jv and p4 pull -1s commands on the replica to report current replication
status, and emails this to the standard SDP administrator email on a daily basis. This is useful for
monitoring purposes to detect replica lag or similar problems.

If you are using enhanced monitoring such as p4prometheus then this script may not be required.

Usage

/p4/common/bin/replica_status.sh <instance>
/p4/common/bin/replica_status.sh 1

8.6.28. request_replica_checkpoint.sh

The /p4/common/bin/request_replica_checkpoint.sh script is intended to be run on a standby replica.
It essentially just calls 'p4 admin checkpoint -Z' to request a checkpoint and exits. The actual
checkpoint is created on the next journal rotation on the master.

Usage

/p4/common/bin/request_replica_checkpoint.sh <instance>
/p4/common/bin/request_replica_checkpoint.sh 1

8.6.29. rotate_journal.sh

The /p4/common/bin/rotate_journal.sh script is a convenience script to perform the following
actions for the specified instance (single parameter):

* rotate live journal
* replay it to the offline_db

* rotate logs files according to the settings in p4_vars for things like KEEP_L0GS

144 © 2007-2024 Perforce Software, Inc.

https://github.com/perforce/p4prometheus

Chapter 8. Tools and Scripts - 145 of 213

It has several use cases:

 For sites with large, long-running checkpoints, it can be used to schedule journal rotations to
occur more frequently than daily_checkpoint.sh is run.

* It can be used to trigger checkpoints to run on edge servers.

Usage

/p4/common/bin/rotate_journal.sh <instance>
/p4/common/bin/rotate_journal.sh 1

8.6.30. submit.sh

The /p4/common/bin/submit.sh script is an example submit trigger for External Archive Transfer
using pull-archive and edge-content triggers

This is a reference edge-content trigger for use with an Edge/Commit server topology - the Edge
server uses this trigger to transmit files which are being submitted to the Commit instead of using
its normal file transfer mechanism. This trigger uses Aspera for fast file transfer, and UDP, rather
than TCP and is typically much faster, especially with high latency connections.

Companion trigger/script to Section 8.6.22, “pull.sh”

Uses fstat -0b with some filtering to generate a list of files to be copied. Create a temp file with the
filename pairs expected by ascp, and then perform the copy.

This configurable must be set:
rpl.submit.nocopy=1
The edge-content trigger looks like this:
EdgeSubmit edge-content //... "/p4/common/bin/triggers/ascpSubmit.sh %changelist%"

The ascp user needs to have ssl public keys set up or export ASPERA_SCP_PASS. The ascp user should
be set up with the target as / with full write access to the volume where the depot files are located.
The easiest way to do that is to use the same user that is running the p4d service.

ensure ascp is correctly configured and working in your environment:
@ https://www-01.ibm.com/support/docview.wss?uid=ibm10747281 (search for "ascp
v connectivity testing")

Standard SDP environment is assumed, e.g PAUSER, PAPORT, OSUSER, P4BIN, etc. are set, PATH is
appropriate, and a super user is logged in with a non-expiring ticket.

See the test version of this script below: Section 8.6.31, “submit_test.sh”

© 2007-2024 Perforce Software, Inc. 145

https://portal.perforce.com/s/article/15337
https://portal.perforce.com/s/article/15337
https://www-01.ibm.com/support/docview.wss?uid=ibm10747281

146 of 213 - Chapter 8. Tools and Scripts

See the /p4/common/bin/triggers/submit.sh script for details and to customize for your environment.

8.6.31. submit_test.sh

The /p4/common/bin/submit_test.sh script is a test script.

THIS IS A TEST SCRIPT - it substitutes for Section 8.6.30, “submit.sh” (which uses
Aspera) - and replaces ascp with Linux standard scp. IT IS NOT INTENDED FOR
PRODUCTION USE!!!!

If you don’t have an Aspera license, then you can test with this script to understand the process.
See the /p4/common/bin/triggers/submit_test.sh for details.

There is a demonstrator project showing usage: https://github.com/rcowham/p4d-edge-pull-demo

8.6.32. sync_replica.sh
The /p4/common/bin/sync_replica.sh script is included in the standard crontab for a replica.
It runs an rsync to mirror the checkpoints directory to the replica machine.

It then uses the latest checkpoint in that directory to update the local offline_db directory for the
replica.

This ensures that the replica can be quickly and easily reseeded if required without having to first
copy checkpoints locally (which can take hours over slow WAN links). It is also useful to have a
current and maintained offline_db in the even that a failover to a standby occurs, to provide
additional redundancy even post-failover to the new commit server.

Usage
/p4/common/bin/sync_replica.sh <instance>

/p4/common/bin/sync_replica.sh 1

8.6.33. templates directory

This sub-directory of /p4/common/bin contains some files which can be used as templates for new
commands if you wish:

template.pl - Perl
* template.py - Python

template.py.cfg - config file for python

template.sh - Bash

They are not intended to be run directly.

146 © 2007-2024 Perforce Software, Inc.

https://github.com/rcowham/p4d-edge-pull-demo

Chapter 8. Tools and Scripts - 147 of 213

8.6.34. update_limits.py

The /p4/common/bin/update_limits.py script is a Python script which is intended to be called from a
crontab entry one per hour. It must be wrapped with the p4master_run script.

It ensures that all current users are added to the limits group. This makes it easy for an
administrator to configure global limits on values such as MaxScanRows, MaxSearchResults etc.
This can reduce load on a heavily loaded instance.

For more information:

* Maximizing Perforce Helix Core Performance

* Multiple MaxScanRows and similar values

Usage

/p4/common/bin/update_limits.py <instance>
/p4/common/bin/update_limits.py 1

© 2007-2024 Perforce Software, Inc. 147

https://portal.perforce.com/s/article/2529
https://portal.perforce.com/s/article/2521

148 of 213 - Chapter 9. Sample Procedures
Chapter 9. Sample Procedures

This section describes sample procedures using the SDP tools described above, given certain
scenarios.

9.1. Installing Python3 and P4Python

Python3 and P4Python are useful for custom automation, including triggers.

Installing Python3 and P4Python is best done using packages. First, set up the machine to download
packages from Perforce Software, following the guidance appropriate for your platform on the
Perforce Packages page.

Then install Python3 and P4Python Packages with the command appropriate for your operating
system. For RHEL/Rocky Linux family, use:

sudo yum install perforce-p4python3
For the Debian/Ubuntu family, use:

sudo apt update
sudo apt install perforce-p4python3

It is possible to have multiple versions of Python installed, possibly Python 2.7 (the end of the
Python 2 line) and various Python 3.x versions, and possibly multiple versions either or both of
Python 2 and Python 3. Whether having multiple versions is desirable or necessary depends on
what software on the machine uses Python; that discussion is outside the scope of this document.
However, being are of this possibility is important for installing in various existing environments.

The behaviors of the perforce-python3 package install vary slightly depending on what is already
installed, and are optimized to avoid disrupting existing software.

* If no prior version of Python 3 exists on the machine when the perforce-p4python3 package is
installed, then the newly installed Python 3 will be established as the default, such that calling
python3 (a symlink) will implicitly refer to the just-installed Python 3 version. The P4Python
module will be available by calling python3.

 If Python 3.8 or 3.9 exist on the machine when the perforce-p4python3 package is installed,
P4Python wil be added to the existing Python 3.8/3.9 install. The P4Python module will be
available by calling python3.

o If there is already some other version of Python 3.x installed but not 3.8 or 3.9, such as Python
3.6, installing the perforce-p4python3 package will add a new Python 3.9 installation with the
version of Python 3 it uses (e.g. python3.9), but it will not adjust the existing python3 symlink.
The P4Python module will not be available by calling python3; python3.9 must be specified.
You can at that point decide to manually adjust the python3 symlink to point to python3.9, though
this has risk of breaking other things (such as custom triggers) that require the other version of

148 © 2007-2024 Perforce Software, Inc.

https://package.perforce.com

Chapter 9. Sample Procedures - 149 of 213
Pythona3 if it was actively used. Alternately, you can adjust the shebang lines of specific scripts
that use P4Python to refer to python3.9 specifically rather than just python3.

* In any case, avoid using python2, which refers to Python 2.7 on modern Linux.

 Using just python commonly refers to Python 2.7 on some Linux distros, and should not be
referenced on such systems.

* On more recent distros in 2024, python without a version identifer now refers by default to
Python 3.x rather than Python 2; Python 2 may not be installed at all. On such systems, confirm
that the P4Python module is available by calling just python before using it.

Be aware that the Helix Core triggers table is centralized across the topology. The
central triggers table must apply to all p4d servers, calling the correct version of
Python (to include P4Python), across the fleet of p4d server machines. Within the

(r) triggers table, you can include a specific interpreter for each line in the triggers

- table, which effectively overrides the shebang line in the script. Alternately, you
can avoid specifying the interpreter and call the script directly, in which case the
shebang line in the given script applies. Whichever strategy you choose, ensure
that it works for the p4d server fleet.

9.2. Installing CheckCaseTrigger.py

This trigger is very useful to avoid people accidentally checking in files on a case-sensitive server
which only differ in case from an existing file (or directory).

o This trigger requires python3, and must also have P4Python installed. See: Section
9.1, “Installing Python3 and P4Python”.

The trigger to install is part of the SDP but by default is in /p4/sdp/Unsupported/Samples/triggers.
To install:

1. Install p4python. See: Section 9.1, “Installing Python3 and P4Python”.

2. Copy the trigger and dependencies to approprpiate directory

mkdir -p /p4/common/site/bin/triggers

cp /p4/sdp/Unsupported/Samples/triggers/CheckCaseTrigger.py
/p4/common/site/bin/triggers/

cp /p4/sdp/Unsupported/Samples/triggers/PATrigger.py /p4/common/site/bin/triggers/

3. Edit the shebang line (first line) at the start of the trigger if necessary, e.g. change to:
#!/bin/env python3

Usually python3 is appropriate.

1. Test on an existing (small) changelist:
© 2007-2024 Perforce Software, Inc. 149

150 of 213 - Chapter 9. Sample Procedures

p4 changes -s submitted -m 9
pick a suitable changelist number, e.g. 1234
/p4/common/site/bin/triggers/CheckCaseTrigger.py 1234

2. Test that it works

a. Add appropriate line to triggers table:

CheckCaseTrigger change-submit //test/...
"/p4/common/site/bin/triggers/CheckCaseTrigger.py %changelist%"

b. Create test workspace
c. Submit simple Test.txt
d. Attempt to submit test.txt and check for error

3. Change triggers table to valid version/path:

CheckCaseTrigger change-submit //...
"/p4/common/site/bin/triggers/CheckCaseTrigger.py %changelist%

9.3. Swarm JIRA Link

Here is an example of linking to cloud JIRA in config.php:

'‘jira' => array(
"host' => "https://example.atlassian.net/",
'user' => 'p4jira@example.com',
"password' => '<API-Token>',
'link_to_jobs"' => "true',

)I

G No need to get complicated with .pem files or 'http_client_options' section. Just
- specify https:// prefix as above.

Login to user account on Atlassian URL as above, and then create an API token by going to this URL:
https://id.atlassian.com/manage-profile/security/api-tokens

This curl request tested the API:

curl https://example.atlassian.net/rest/api/latest/project --user

150 © 2007-2024 Perforce Software, Inc.

https://id.atlassian.com/manage-profile/security/api-tokens

Chapter 9. Sample Procedures - 151 of 213
p4jira@example.com:<API-TOKEN>

The above should list all active projects:

Example JSON response
{"expand":"description,lead, issueTypes,url,projectKeys,permissions,insight","self":"ht

tps://example.atlassian.net/rest/api/2/project/11904","id":"11904", "key":"ULG", "name":
"Ultimate Game"}

o Check that the provided JIRA account has access to all required projects to be
linked (and that it isn’t missing some)! See below.

Example list of projects accessible to JIRA account

$ curl --user 'p4jira@example.com:<API-TOKEN>'
https://example.atlassian.net/rest/api/latest/project | jq > projects.txt

$ egrep "name|key" projects.txt
egrep "name|key" projects.txt

Ilkeyll: "PRJA"'
"name": "Project A",
llkeyll: "PRJB"'

"name": "Project B",

9.4. Reseeding an Edge Server

Perforce Helix Edge Servers are a form of replica that replicates "persistent history" data such as
submitted changelists from the master server, while maintaining local databases for "work-in-
progress" data, to include user workspaces, lists of files checked out in user workspaces, etc. This
separation of persistent and work-in-progress data has significant benefits that make edge servers
perform optimally for certain use cases.

When a new edge server is deployed for the first time, it is "seeded" with a special seed checkpoint
from the master server. This is done using the SDP edge_dump. sh script.

Edge servers need to be reseeded in certain circumstances. When an edge server is reseeded, the
latest persistent history from the master server is combined with the latest work-in-progress data
from the edge server.

Some occasions that require reseeding include:

* When changing the scope of replication filtering, i.e. if the *DataFilter fields of the server spec
are changed.

* In some recovery situations involving hardware or other infrastructure failure.

* When advised by Perforce Support.

© 2007-2024 Perforce Software, Inc. 151

152
An

of 213 - Chapter 9. Sample Procedures

article Edge Server Metadata Recovery discusses the manual process in detail. The process

outlined in this article is implemented in the SDP with two scripts, edge_dump.sh and
recover_edge.sh.

Key aspects of this implementation:

No downtime is required for the master server process.

Downtime for the edge to be reseeded is required. This is kept to a minimum.

9.5. Edge Reseed Scenario

In this sample scenario, an edge server needs to be reseeded.

Sample details about this scenario:

The SDP instance is 1.
The perforce operating system runs the p4d process on all machines.

The perforce user’s ~/.bashrc ensures that the shell environment is set automatically on login,
by doing: source /p4/common/bin/p4_vars 1

The master server has a ServerID of master.1 and runs on the machine bos-helix-01.
The edge server has a ServerID of p4d_edge_syd and runs on the machine syd-helix-04.
Both the master and edge server are online and actively in use at the start of processing.
Users of the edge server to be reseeded have been notified about a planned outage.

No outage is planned or necessary for the master server

SSH keys are setup for the perforce user.

9.5.1. Step 0: Preflight Checks

Make sure the start state is healthy.

As perforce@bos-helix-01 (the master):

verify_sdp.sh 1 -online

As perforce@syd-helix-04 (the edge):

verify_sdp.sh 1

9.5.2. Step 1: Create New Edge Seed Checkpoint

On

the master server, create a new edge seed checkpoint using edge_dump.sh. This will contain

recent persistent history from the master.

This process uses the offline_db rathert

an P4ROOT,

so no downtime is needed.
© 2007-2024 Perforce Software, Inc.

o

https://portal.perforce.com/s/article/12127

Chapter 9. Sample Procedures - 153 of 213

Creating an edge seed requires that the offline_db directory not be interfered
with. The daily_checkpoint.sh script runs in the crontab of the perforce user on the
master, and that script must not be run when edge_dump.sh runs. Ensure that

(r) edge_dump.sh is run at a time when it won’t conflict with the operation of
daily_checkpoint.sh. If checkpoints take many hours, consider disabling the
crontab for daily_checkpoint.sh by commenting it out of the crontab until
edge_dump.sh completes — but don’t forget to re-enable it afterward!

Create the edge seed like so, as perforce@bos-helix-01 (the master):

nohup /p4/common/bin/p4master_run 1 edge_dump.sh 1 p4d_edge_syd < /dev/null >
/p4/1/1logs/dump.log 2>&1 &

Then monitor until completion with:
tail -f $(1s -t $L0GS/edge_dump.*.log | head -1)
The edge seed will appear as a file looking something like:

/p4/1/checkpoints/p4_1.edge_syd.seed.2035.9z
/p4/1/checkpoints/p4_1.edge_syd.seed.2035.9z.md5

When the .md5 file appears, the edge seed checkpoint is complete.
Notes:

* The nohup at the beginning of the command and the & at the end ensure this process will
continue to run even if the terminal window in which the command was executed disconnects.

9.5.3. Step 2: Transfer Edge Seed

Transfer the edge seed from the master to the edge like so, as perforce@bos-helix-01 (the master):

scp -p /p4/1/checkpoints/p4_1.edge_syd.seed.2035.9z syd-helix-04:/p4/1/checkpoints/.
scp -p /p4/1/checkpoints/p4_1.edge_syd.seed.2035.9z.md5 syd-helix-
04:/p4/1/checkpoints/.

9.5.4. Step 3: Reseed the Edge

Reseed the edge. As perforce@syd-helix-04 (the edge):

nohup /p4/common/bin/run_if_edge.sh 1 recover_edge.sh 1
/p4/1/checkpoints/p4_1.edge_syd.seed.2035.9z < /dev/null > /p4/1/logs/rec.log 2>&1 &

© 2007-2024 Perforce Software, Inc. 153

154

of 213 - Chapter 9. Sample Procedures

Notes:

154

The offline_db of the edge server is removed at the start of processing, but is replaced at the
end.

It is safe for the p4d process of the edge server to be up and running when this process starts. It
it is up at the start of processing, it will be shutdown by the recovered_edge.sh, but not
immediately. The script allows the p4d service to remain in use while the edge seed checkpoint
from the master is replayed into the offline_db.

After the edge seed checkpoint has been replayed, the p4d service is shutdown, and then the
process of combining persistent and work-in-progress data commences, the essence of the
reseed operation.

After the edge reseed is complete, the p4d process is started. It will then start replicating new
data from the master since the time of the edge seed checkpoint creation. The p4d service may
hang and be unresponsive for several minutes after it is started. If you choose to monitor
closely, when a p4 pull -1jv on the edge indicates it has caught up to the master, the service is
safe to use again.

The recover_edge.sh script continues to run after the service is back online, as it rebuilds the
offline_db of the edge server.

On the edge server, the edge server’s regular checkpoints land in /p4/1/checkpoints.edge_syd.
The /p4/1/checkpoints folder is used only for holding edge seed checkpoints transferred from
the master.

Typically, all steps described in the process are done on the same day. However, it is OK if the
edge_dump.sh, seed checkpoint transfer, and recover_edge.sh with some time lag between the
major steps, typically measured in journal rotations or simply days, with incremental impact on
the duration of the recovery step, and so long as the edge seed is not so far behind that the
master no longer has numbered journals to feed the edge once it starts.

Reseeding requires that the offline_db directory not be interfered with. The
daily_checkpoint.sh script runs in the crontab of the perforce user on the edge
server, and that script must not be run when recover_edge.sh runs. Ensure that
(;) recover_edge.sh is run at a time when it won’t conflict with the operation of
daily_checkpoint.sh. If checkpoints take many hours, consider disabling the
crontab for daily_checkpoint.sh by commenting it out of the crontab until
recover_edge.sh completes — but don’t forget to re-enable it afterward!

This sample procedure does not illustrate using a p4broker service to broadcast a
"Down for maintence" message on the edge server. If your SDP installation uses
O p4brokers on p4d server machines, they can be used to prevent regular users from
- attempting to access the edge server during the processing of recover_edge.sh. This
can help prevent users from experiencing a hang, for example, in the time after

the edge p4d process starts but before it catches up to the master.

© 2007-2024 Perforce Software, Inc.

Appendix A: SDP Package Contents and Planning - 155 of 213

Appendix A: SDP Package Contents and
Planning

The directory structure of the SDP is shown below in Figure 1 - SDP Package Directory Structure.
This includes all SDP files included in the SDP package/tarball, including documentation and

sample scripts. A subset of these files are deployed to server machines during the installation
process.

Figure 1 - SDP Package Directory Structure

sdp
doc
Server (Core SDP Files)
Unix
setup (Unix-specific setup)
p4

common
bin (Backup scripts, etc)
triggers (Example triggers)
config
etc
cron.d
init.d
systemd
lib
test
setup (cross platform setup - typemap, configure, etc)
test (automated test scripts)
Unsupported (folder containing unsupported extras)

A.1. SDP Classic and OS Package Structures

As the SDP evolves toward OS package installation, changes have been made to the directory
structure. These changes to the the SDP structure have no effect on SDP scripts.

Any custom scripts at your site reference the SDP logical pathing structure using

symlinks starting with /p4, such as /p4/common/bin, will be unaffectd by the
0 eventual converion to the SDP Package Structure. However, if any custom scripts
ot reference physical mount points directly, e.g. referencing /hxdepots/p4/common/bin,

such scripts will need to be adpated before converting to the Package Structure.

The new structure is currently available only for new installs on new machines using the
install_sdp.sh script.

A brief timeline:

* November 2024: SDP OS Package Structure is available for new instalations only using

© 2007-2024 Perforce Software, Inc. 155

156 of 213 - Appendix A: SDP Package Contents and Planning

install_sdp.sh. SDP upgrades (using sdp_upgrade.sh) process only the Classic structure.

* December 2024: SDP Upgrades (using sdp_upgrade.sh) is compatible with both SDP Classic and
OS Package structures. Upgrading will not convert the structure.

» Future: At some point in the future, sdp_upgrade.sh may be updated to convert from the Classic

to OS Package structure during upgrades.

* Future: Conversion to the OS Package Structure will be required prior installing the coming

helix-sdp OS installation packages (not yet available).

The SDP OS Package Structure uses the /opt/perforce/helix-sdp directory tree to store all SDP. If
you do not see this directory on your machine, then the Classic structure is in place.

Table 1. SDP Package Structure Highlights

Directory Owner/Perms
/opt/perforce/helix-sdp root:perforce/775
/opt/perforce/helix- perforce:perforce/755
sdp/downloads

/opt/perforce/helix-sdp/sdp root:root/755

/opt/perforce/helix-sdp/p4 perforce:perforce/700

Comments
SDP Package Base

Supercedes
/hxdepots/downloads.

Immutable SDP directory.
Contains only the extracted SDP
tarball. Updated only during
SDP upgrades.

Writable SDP directory.
Contains subset of files
extracted from SDP tarball, but
also includes other files such as:

* Everthing under /p4/sdp
(superceding /hxdepots/sdp)

* Everthing under /p4/common
(superceding
/hxdepots/p4/common,
including:

o Helix binaries, e.g. as

p4d_2024.1.2661979.

o Various SDP symlinks
such as p4_1_bin,
p4_2024.1_bin.

o Various locally
generated shell
environment and

configuration files.

o The site folder.

While a helix-sdp OS Package is not yet available, the new structure introduced in SDP 2024.1 was

156 © 2007-2024 Perforce Software, Inc.

Appendix A: SDP Package Contents and Planning - 157 of 213

defined to support future package installation. Traditional tarball installation will still be possible
for UNIX and Linux distros for which OS packages are not available.

In SDP Legacy and Package structures, the SDP root directory on an installed system /p4, is a
directory on the local OS root volume.

A.2. SDP Runtime Structure

The application administrator’s view of the system is illustrated here. This shows how to navigate
the directory structure to find databases, log files, and versioned files in the depots. The following
example is illustrated with 1 as the SDP instance name.

Figure 2 - SDP Runtime Structure

/p4

/sdp
Version

/common

/1
/bin
/checkpoints
/checkpoints.<ShortServerID> (on edges and some replicas)
/depots
/1ogs
/offline_db
/root
/tmp

The following table explains some of what is found in the folders in this structure, and where files
live in the underling mounted storagev olumes.

Directory Remarks
/p4 Must be under root (/) on the OS root volume
/p4/1/bin Host local folder on the OS root volume. This is

the SDP Instance Bin directory. The list of
p4*_init scripts in the Instance Bin directory
indicates which server types (p4d, p4broker,
p4p, p4dtg) are expected to run on this machine.

/p4/1/depots Versioned files are stored here.

/pA/1/tmp This is used by p4d and various scripts as temp
storage. The $P4ATMP variable points here.

/p4/common/config Contains p4_<instance>.vars file, e.g. p4_1.vars

/p4/common/bin Contains server binary files, symlinks, various

SDP scripts, etc.

/p4/common/etc Contains init.d and cron.d.

© 2007-2024 Perforce Software, Inc. 157

158 of 213 - Appendix A: SDP Package Contents and Planning
Directory Remarks

/p4/common/site Contains site-spefic and custom files, such as
custom triggers in /p4/common/site/bin/triggers.
See Section A.2.1, “The Site Directory”.

/p4/1/10gs Contains PAJOURNAL and various application
and script logs. The $LOGS variable points here.

/p4/1/root Contains live server databases. The $P4ROOT
variable points here.

/p4/1/offline_db Contains offline copy of main server databases.

/p4/1/root/save Used only during running of
refresh_P4RO0T_from_offline_db.sh for extra
redundancy.

/pA4/sdp Contains SDP files as extracted from a tarball.

/p4/sdp/Version The SDP Verion file. Cat this file to see the

current SDP Verison.

A.2.1. The Site Directory

The Site Directory, /p4/common/site, has a special purpose and usage. See The Site Directory for mor
information.

A.3. P4D versions and links

The versioned binary links in /p4/common/bin are as below.

For the example of <instance> 1 we have:

1s -1 /p4/1/bin
p4d_1 -> /p4/common/bin/p4d_1_bin

The structure is shown in this example, illustrating values for two instances, with instance #1 using
p4d release 2018.1 and instance #2 using release 2018.2.

In /p4/1/bin:

p4d_1 -> /p4/common/bin/p4_1_bin
p4dd_1 -> /p4/common/bin/p4d_1_bin

In /p4/2/bin:

p4_2 -> /p4/common/bin/p4_2
p4d_2 -> /p4/common/bin/p4d_2

158 © 2007-2024 Perforce Software, Inc.

TheSiteConfigDirectory.html

Appendix A: SDP Package Contents and Planning - 159 of 213

In /p4/common/bin:

p4_1_bin -> p4_2018.1_bin
p4_2018.1_bin -> p4_2018.1.685046
p4_2018.1.685046

p4d_2_bin -> p4_2018.2_bin
p4_2018.2_bin -> p4_2018.2.700949
p4_2018.2.700949

p4d_1_bin -> p4d_2018.1_bin
p4d_2018.1_bin -> p4d_2018.1.685046
p4d_2018.1.685046

p4d_2_bin -> p4d_2018.2_bin
p4d_2018.2_bin -> p4d_2018.2.700949
p4d_2018.2.700949

The naming of the last comes from:

./p4d_2018.2.700949 -V

Rev. P4D/LINUX26X86_64/2018.2/700949 (2019/07/31).

So we see the build number p4d_2018.2.700949 being included in the name of the p4d executable.

Although this link structure may appear quite complex, it is easy to understand,
O and it allows different instances on the same server host to be running with
- different patch levels, or indeed different releases. And you can upgrade those
instances independently of each other which can be very useful.

A.4. Storage Volumes Layout

This section describes storage volume layout for Helix Core Server (P4D), Helix Proxy, and a Helix

Broker.

A.4.1. Storage Volumes for a Helix Core Server

The following table describes storage volume layout for a Helix Core Server (P4D):

Table 2. Storage Volumes

© 2007-2024 Perforce Software, Inc. 159

160 of 213 - Appendix A: SDP Package Contents and Planning

Name Mount Point Contents Backup? Comments

HxDepots /hxdepots Depots, the storage Yes NFS can be
directories for employed here
archive files (also (and only here). In
called archives or AWS, consider
versioned files), archiving to S3. It
Small SDP folders, is possible to have
backups of small additional
SDP folders /hxdepots-N

volumes.

HxCheckpoints /hxcheckpoints Checkpoints Yes (if used) This volume is
(point-in-time optional and not
snapshots of recommended for
metadata) and typical
numbered/comple deployments. If
ted metadata not used, its
journal files. contents are

stored on the
HxDepots volume.

HxMetadata /hxmetadata or P4ROOT, No Never allow OS-
/hxmetadata{1,2} offline db, server level backup
license files. utilities such as tar

or rsync to touch
this volume

directly. Backups
via VM snapshots

are OK.

HxLogs /hxlogs P4JOURNAL, Optional
P4LOG, structured
logs, application
and SDP script
logs.

Root / 0S, backups of Yes This is the OS root
small SDP folders, volume rather
and /opt/. than a mount

point. This

contains scripts

More About HxDepots

Use a large volume with high capacity. If using RAID, use RAID 6 on its own controller with a
standard amount of cache. Alternaltely use a SAN or NAS volume (NFS access is fine). SSD is fine if
available as well.

This volume must be backed up, as it contains critical data needed for recovery.

This volume is normally called /hxdepots. If needed, additional storage volumes can be added, and
160 © 2007-2024 Perforce Software, Inc.

Appendix A: SDP Package Contents and Planning - 161 of 213

would be named /hxdepots-2, /hxdepots-3, etc. The first volume should be called /hxdepots, not
/hxdepots-1, even if multiple volumes are used.

More About HxCheckpoints

This volume is not used in the default installation. If not used, checkpoints are stored on HxDepots.
If this optional volume is used, it must be backed up as it will contain critical data.

More About HxMetadata

Use a fast and low latency storage option, ideally SSD or RAID 1+0 on a dedicated controller with the
maximum cache available on it. Typically a single volume is used, /hxmetadata. In some sites with
exceptionally large metadata, 2 volumes are used for metadata, /hxmetadata and /hxmetadata2.
Exceptionally large in this case means the metadata size on disk is such that (2x(size of db.*
files)+room for growth) approaches or exceeds the storage capacity of the storage device used for
metadata. So if you have a 16T storage volume and your total size of db.* files is some ~7T or less
(so ~14T total), that’s probably a reasonable cutoff for the definition of "exceptionally large" in this
context.

Do not run anti-virus tools or back up tools against the hxmetadata volume(s) or
A hxlogs volume(s), because they can interfere with the operation of the Perforce
server executable.

More about HxLogs

Use a fast volume, ideally SSD or RAID 1+0 on its own controller with the standard amount of cache
on it.

This volume is normally mounted as /hxlogs and can optionally be backed up. It contains
application logs and the critical P4JOURNAL file that is continuously writeen during normal
operation.

If a separate logs volume is not available, logs on the /hxmetadata or /hxmetadatal volume, as
metadata and logs have similar performance needs that differ from /hxdepots. This is not ideal or
recommended, but a reasonable compromise when working with physical hardware limitations.

Storing metadata and logs on the same volume is discouraged, since the
A redundancy benefit of the PAJOURNAL (stored on /hxlogs) is greatly reduced if
P4JOURNAL is on the same volume as the metadata in the PAROOT directory.

o If multiple controllers are not available, put the /hx1logs and /hxdepots volumes on
the same controller.

On SDP installations, the /opt/perforce/helix-sdp folder, with /opt typically on the OS root volume,
contains SDP scripts, Helix Core binaries, and various configuration files and symlinks.

On all SDP machines, a /p4 directory will exist containing a subdirectory for each instance named
/p4/<instance>. The volume layout (which maps logical names via links to the physical directory
structure) is shown in Appendix A, SDP Package Contents and Planning. This /p4 directory enables
easy access to the different parts of the file system for each instance.

© 2007-2024 Perforce Software, Inc. 161

162 of 213 - Appendix A: SDP Package Contents and Planning
For example:

e /p4/1/root contains the database files for instance 1
* /p4/1/10gs contains the log files for instance 1
» /p4/1/bin contains the binaries and scripts for instance 1

» /p4/common/bin contains the binaries and scripts common to all instances
On a production Helix Core Server, typically all the /hx* directories are mounted volumes.

For an illustration of how to create format and mount storage volumes on an AWS server, see:
Perforce Helix Core Sample Storage Setup - AWS.

A.4.2. Storage Volumes for a Helix Proxy
The following table describes storage volume layout for a Helix Proxy (P4P):

Table 3. Storage Configuration for a Helix Proxy

Directory Used For

Comments /

OS root volume. The /hxlogs may be stored here.
/hxdepots

Versioned file cache, application software.

Cache managed with p4pcm.pl to avoid filling up. /hx1ogs

Application logs. Rotated regularly. Low utilization (10%) is
typical and healthy to avoid service interruption
on the busiest days.

On a production Helix Proxy, typically only the /hxdepots directory is a mounted volume; /hxlogs
can be a directory on the OS root volume.

A.4.3. Storage Volumes for a Helix Broker

A Helix Broker (p4broker) has no data, only software, configuration files and logs. Thus a
production Helix Broker typically uses only the OS root volume, or a small /hxdepots volume.

Table 4. Storage Configuration for a Helix Broker

Directory Used For
Comments /
OS root volume. The /hxlogs and /hxdepots may be stored on the

0OS root volume for a broker.

/hxdepots Broker config file, application software.

/hxlogs

162 © 2007-2024 Perforce Software, Inc.

SampleStorageSetup-AWS.html

Appendix A: SDP Package Contents and Planning - 163 of 213
Directory Used For

Application logs. Rotated regularly. Low utilization (10%) is
typical and healthy to avoid service interruption
on the busiest days.

A.5. Memory and CPU

Make sure the server has enough memory (RAM) to cache the db.rev database file and to prevent
the server from paging during user queries. Maximum performance is obtained if the server has
enough memory to keep all actively used database files in memory.

The p4d process itself is frugal with system resources such as RAM. Howeer, p4d benefits from an
excess of RAM due to modern operating systems using excess RAM as file I/O cache. This is to the
great benefit of p4d, even though the p4d process itself may not be seen as consuming much RAM
directly.

Below are some approximate guidelines for allocating memory.

1.5 kilobyte of RAM per file revision stored in the server.

* 32 MB of RAM per user.

INFO: When doing detailed history imports from legacy SCM systems into Perforce, there may be
many revisions of files. You want to account for (total files) x (average number of revisions per
file) rather than simply the total number of files.

Use the fastest processors available with the fastest available bus speed. Faster processors are
typically more desirable than a greater number of cores and provide better performance since
quick bursts of computational speed are more important to Perforce’s performance than the
number of processors. Have a minimum of two processors so that the offline checkpoint and back
up processes do not interfere with your Perforce server. There are log analysis options to diagnose
underperforming servers and improve things. Contact Perforce Support/Perforce Consulting for
details.

A.6. Case Insensitive P4D on UNIX/Linux

By default p4d is case sensitive on UNIX/Linux for filenames and directory names etc.

It is possible and quite common to run your server in case insensitive mode. This is often done
when Windows is the main operating system in use on the client host machines.

o In "case insensitive" mode, that means that you should ALWAYS execute p4d with
the flag -C1 (or you risk possible table corruption in some circumstances).

The SDP achieves this by executing a simple Bash script which (for instance 1) is /p4/1/bin/p4d_1
with contents:

#!/bin/bash
© 2007-2024 Perforce Software, Inc. 163

164 of 213 - Appendix A: SDP Package Contents and Planning

P4D="/p4/common/bin/p4d_1_bin"
exec $P4D -C1 "$@"

So the above will ensure that /p4/common/bin/p4d_1_bin (for instance 1) is executed with the -C1 flag.

As noted above, for case sensitive servers, p4d_1 is normally just a link:

/p4/1/bin/p4d_1 -> /p4/common/bin/p4d_1_bin

Note for an instance alpha (not 1), the file would be /p4/alpha/bin/p4d_alpha with contents:

#!/bin/bash
PAD="/p4/common/bin/p4d_alpha_bin"
exec $P4D -C1 "$@"

164 © 2007-2024 Perforce Software, Inc.

Appendix B: The journalPrefix Standard - 165 of 213
Appendix B: The journalPrefix Standard

The Perforce Helix configurable journalPrefix determines where the active journal is rotated to
when it becomes a numbered journal file during the journal rotation process. It also defines where
checkpoints are created.

In the SDP structure, the journalPrefix is set so that numbered journals and checkpoints land on
the /hxdepots volume. This volume contains critical digital assets that should be reliably backed up
and should have sufficient storage for large digital assets such as checkpoints.

B.1. SDP Scripts that set journalPrefix

The SDP configure_new_server.sh, which applies SDP standards to fresh new p4d servers, sets the
journalPrefix for the master server according to this standard.

The SDP mkrep.sh script, which creates new replicas, sets “journalPrefix for replicas according to
this standard.

The SDP mkdirs.sh script, which initializes the SDP structure, creates a directory structure for
checkpoints based on the journalPrefix.

B.2. First Form of journalPrefix Value

The first form of the journalPrefix value applies to the master server’s metadata set. This value is of
this form, where N is replaced with the SDP instance name:

/p4/N/checkpoints/p4_N

If the SDP instance name is the default 1, then files with a p4_1 prefix would be stored in the
/p4/1/checkpoints directory on the filesystem. Journal files in that directory would have names like
p4_1.jnl.320 and checkpoints would have names like p4_1.ckp.320.gz.

This journalPrefix value and the corresponding /p4/1/checkpoints directory should be used for the
master server. It should also be used for any replica that is a valid failover target for the master
server. This includes all completely unfiltered replicas of the master, such as standby and forwarding-
standby replicas with a PATARGET value referencing the master server.

A standby replica, also referred to as a journalcopy replica due to the underlying
replication mechanisms, cannot be filtered. Standby replicas are commonly
deployed for High Availability (HA) and Disaster Recovery (DR) purposes.

B.2.1. Detail on "Completely Unfiltered"
A "completely unfiltered" replica is one in which:

* None of the *DataFilter fields in the replica’s server spec are used

© 2007-2024 Perforce Software, Inc. 165

https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#journalPrefix

166 of 213 - Appendix B: The journalPrefix Standard

* The p4 pull command configured to pull metadata from the the replica’s PATARGET server, as
defined in the replica’s startup.N configurable, does not use filtering options such as -T.

* The replica is not an Edge server (i.e. one with a Services value in the server spec of edge-
server.) Edge servers are filtered by their vary nature, as they exclude various database tables
from being replicated.

* The replica’s seed checkpoint was created without the -P ServerID flag to p4d. The -P flag is used
when creating seed checkpoints for filtered replicas and edge servers.

» The replicas PATARGET server references something other than the master server, such as an edge
server.

B.3. Second Form of journalPrefix Value

A second form of the journalPrefix is used when the replica is filtered, including edge servers. The
second form of the journalPrefix value incorporates a shortened form of the ServerID to indicate
that the data set is specific to that ServerID. Because the metadata differs from the master,
checkpoints for edge servers and filtered replicas are stored in a different directory, and use a
prefix that identifies them as separate and divergent from the master’s data set. This second form
allows checkpoints from multiple edge servers or filtered replicas to be stored on an shared (e.g.
NFS-mounted) /hxdepots volume.

The second form of journalPrefix is also used if the /hxdepots volume, on which checkpoints are
stored, is shared (as indicated when the replicas lbr.replication value is set to a value of shared).

Filtered replicas are a strict subset of the master server’s metadata. Edge servers

o filter some database tables from the master, but also have their own independent
metadata (mainly workspace metadata) that varies from the master server and is
potentially larger than the master’s data set for some tables.

The "shortened form" of the ServerID removes the p4d_ prefix (per Appendix C, Server Spec Naming
Standard). So, for example an edge server with a ServerID" of p4d_edge_uk would use just the
edge_uk portion of the ServerID in the journalPrefix, which would look like:

/p4/N/checkpoints.edge_uk/p4_N.edge_uk

If the SDP instance name is the default 1, then files with a p4_1.edge_uk prefix would be stored in
the /p4/1/checkpoints.edge_uk directory on the filesystem. Journal files in that directory would have
names like p4_1.edge_uk.320.jnl and checkpoints would have names like p4_1.edge_uk.320.ckp.qgz.

B.4. Scripts for Maintaining the offline_db

The following SDP scripts help maintain the of fline_db:

* daily_checkpoint.sh: The daily_checkpoint.sh is used on the master server. When run on the
master server, this script rotates the active journal to a numbered journal file, and then
maintains the master’s offline_db using the numbered journal file immediately after it is

166 © 2007-2024 Perforce Software, Inc.

Appendix B: The journalPrefix Standard - 167 of 213

rotated.

The daily_checkpoint.sh is also used on edge servers and filtered replicas. When run on edge
servers and filtered replicas, this script maintains the replica’s offline_db in a manner similar to
the master, except that the journal rotation is skipped (as that can be done only on the master).

* sync_replica.sh: The SDP sync_replica.sh script is intended to be deployed on unfiltered
replicas of the master. It maintains the offline_db by copying (via rsync) the checkpoints from
the master, and then replays those checkpoints to the local offline_db. This keeps the offline_db
of the replica current, which is good to have should the replica ever need to take over for the
master.

INFO: For HA/DR and any purpose where replicas are not filtered, replicas of type standby and
forwarding-standby should displace replicas of type replica and forwarding-replica.

B.5. SDP Structure and journalPrefix

On every server machine with the SDP structure where a p4d service runs (excluding broker-only
and proxy-only hosts), a structure like the following should exist for each instance:

* A /hxdepots/p4/N/checkpoints directory
* In /p4/N, and symlink checkpoints that links to /hxdepots/p4/N/checkpoints, such that it can be

referred to as /p4/N/checkpoints.

In addition, edge servers and filtered replicas will also have a structure like the following for each
instance that runs an edge server or filtered replica:

» A /hxdepots/p4/N/checkpoints.ShortServerID directory

* In /p4/N, and symlink checkpoints.ShortServerID that links to
/hxdepots/p4/N/checkpoints.ShortServerID, such that it can be referred to as
/p4/N/checkpoints.ShortServerID.

The SDP mkdirs.sh script, which sets up the initial SDP structure, initializes this structure on initial
install.

B.6. Replicas of Edge Servers

As edge servers have unique data, they are commonly deployed with their own standby replica with
a PATARGET value referencing a given edge server rather than the master. This enables faster
recovery option for the edge server.

As a special case, a standby replica of an edge server should have the same journalPrefix value as
the edge server it targets. Thus, the ServerID baked into the journalPrefix of a replica of an edge is
the ServerID of the target edge server, not the replica.

So for example, an edge server with a ServerID of p4d_edge_uk has a standby replica with a ServerID
of p4d_ha_edge_uk. The journalPrefix of that edge should be the same as the edge server it targets,

e.g.

© 2007-2024 Perforce Software, Inc. 167

168

of 213 - Appendix B: The journalPrefix Standard

/p4/1/checkpoints.edge_uk/p4_1.edge_uk

B.

7. Goals of the journalPrefix Standard

Some design of goals this standard:

168

Make it so the /p4/N/checkpoints folder is reserved to mean checkpoints created from the
master server’s full metadata set.

Make the /p4/N/checkpoints folder be safe to rsync from the master to any machine in the
topology (as may be needed in certain recovery situations for replicas and edge servers).

Make it so the SDP /hxdepots volume can be NFS-mounted across multiple SDP machines safely,
such that two or more edge servers (or filtered replicas) could share versioned files, while
writing to separate checkpoints directories on a per-ServerID basis.

Support all replication uses cases, including support for 'Workspace Servers', a name referring
to a set of edge servers deployed in in the same location, typically sharing /hxdepots via NFS. Use
of Workspace Servers can be used to scale Helix Core horizontally for massive user bases
(typically several thousand users).

© 2007-2024 Perforce Software, Inc.

Appendix C: Server Spec Naming Standard - 169 of 213

Appendix C: Server Spec Naming Standard

Perforce Helix server specs identify various Helix servers in a topology. Servers can be p4d servers
(master, replicas, edges), p4broker, p4p, etc. This standard defines the standard for the server spec
names.

C.1. General Form

The general form of a server spec name is:
<HelixServerTag>_<ReplicaTypeTag>[<N>]_<SiteTag>
or, for the singular commit server in a data set:

{commit|master}[.<0rgName>[.<SDPInstance>]]

C.1.1. Commit Server Spec

The server spec name for a commit server starts with the literal token commit or master, followed by
an optional organization tag name (separated by a dot), followed by an optional SDP instance name
(separated by a dot).

The server spec name for a commit server is intended to be unique to enable certain cross-instance
sharing workflows, e.g. using remote depots and Helix native DVCS features (e.g. p4 fetch, p4 push,
etc.). The combination of <SDPInstance>.<OrgName> give a reasonable assurance of uniqueness
(without resorting to GUIDs which aren’t suitable as a name, as they are typed often by humans to

type).

The <SDPInstance> and <OrgName> both have these characteristics:

The <SDPInstance> and <OrgName> tags can be any alphanumeric name. Underscores (_) and
dashes (-) are also allowed. Dots, spaces, and other special characters are not.

The <SDPInstance> name is typed often in various admin operational tasks, so:

* Instance names are best kept short. A length of 1-5 characters is recommended, with a
maximum of 32 characters.

* Lowercase letters are preferred and required at some sites, but not required by the SDP.

The <OrgName> is not typed often and can be longer. A length of 2-10 characters is recommended,
with a maximum of 32 characters.

See Section 2.1.2, “Instance” for more information on an SDP Instance.

(,) The default auth.id configurable value is p4_<SDPInstance>[.<OrgName>]. The
> auth.id must also be wunique across servers that do any cross-server

© 2007-2024 Perforce Software, Inc. 169

170 of 213 - Appendix C: Server Spec Naming Standard

communication using remote depots and/or Helix native DVCS features.

Sample values for the commit server:

* master - Simple, but does not guarantee uniqueness.

* commit - Simple, but does not guarantee uniqueness.

» master.1- Commit server for SDP instance 1.

e commit.1 - Commit server for SDP instance 1.

» commit.fgs.ExampleCo - Commit server for SDP instance fgs for the organization ExampleCo.
Note that changing the server spec of a commit server can entail some work, as the
ReplicatingFrom: field of any server specs that target the commit server would need to be updated if

it is ever changed. Also, changing the auth.id involves user impact and thus is best done with
communication to users.

C.1.2. Helix Server Tags
The HelixServerTag_ is one of:

* pAd: for a Helix Core server (including all distributed architecture usages such as
master/replica/edge).

pdbroker: A Helix Broker

pdp: A Helix Proxy

e swarm: Helix Swarm

As a special case, the HelixServerTag is omitted for the ServerID of the master server spec.

C.1.3. Replica Type Tags
The ReplicaType is one of:

» commit or master: The single master-commit. server for a given SDP instance. SDP instance
names are included in the ServerID for the master, as they intended to be unique within an
enterprise. They must be unique to enable certain cross-instance sharing workflows, e.g. using
remote depots and Helix native DVCS features.

* ha: High Availability. This indicates a replica that was specifically intended for HA purposes and
for use with the p4 failover command. It further implies the following:

o The Services field value is standby.
o The rpl.journalcopy.location=1 configurable is set, optimized for SDP deployment.

o The replica is not filtered in any way: No usage of the -T flag to p4 pull in the replicas
startup.N configurables, and no usage of *DataFilter fields in the server spec.

o Versioned files are replicated (with an 1br.replication value of readonly).

o

An HA replica is assumed to be geographically near its PATARGET server, which can be a
master server or an edge server.

170 © 2007-2024 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.proxy.html

Appendix C: Server Spec Naming Standard - 171 of 213

o It may or may not use the mandatory option in the server spec. The ha tag does not indicate
whether the mandatory option is used (as this is more transient thing not suitable for baking
into a server spec naming standard).

ham: A ham replica is the same as an ha replica except it does not replicate versioned files. Thus is
a metadata-only replica that shares versioned files with its PATARGET server (master or edge)
with an 1br.replication value of shared.

fr: Forwarding Replica (unfiltered) that replicates versioned files.

frm: Forwarding replica (unfiltered) that shares versioned files with its target server rather than
replicating them.

fs: Forwarding Standby (unfiltered) that replicates versioned files. This is the same as an ha
server, except that it is not necessarily expected to be physically near its PATARGET server. This
could be suited for Disaster Recovery (DR) purposes.

fsm: Forwarding standby (unfiltered) that shares versioned files with its target server rather
than replicating them. This is the same as a ham, except that it is not necessarily expected to be
physically near its PATARGET server.

ffr: Filtered Forwarding Replica. This replica uses some of filtering, such as usage of
*DataFilter fields of the server spec or -T flag to p4 pull in the replicas startup.<N>
configurables. Filtered replicas are not viable failover targets, as the filtered data would be lost.

ro - Read Only replica (unfiltered), replicating versioned files).
rom - Read Only metadata-only replica (unfiltered, sharing versioned files).

edge - Edge servers. (As edge servers are filtered by their nature, they are not valid failover
targets).

C.1.3.1. Replication Notes

If a replica does not need to be filtered, we recommend using journalcopy replication, i.e. using a
replica with a Services: field value of standby or forwarding-standby. Only use non-journalcopy
replication when using filtered replicas (and edge servers where there is no choice).

Some general tips:

The ha, ham replicas are preferred for High Availability (HA) usage.
The fs and ro replicas are preferred for Disaster Recovery (DR) usage.

Since DR implies the replica is far from its master, replication of archives (rather than sharing
e.g. via NFS) may not be practical, and so rom replicas don’t have common use cases.

The fr type replica is obsolete, and should be replaced with fs (using journalcopy replication).

C.1.4. Site Tags

The site tag needs to distinguish the data centers used by a single enterprise, and so generally short
tag names are appropriate. See Section 5.3.4.1, “SiteTags.cfg”

Each site tag may be understood to be a true data center (Tier 1, Tier 2, etc.), a computer room,
computer closet, or reserved space under a developer’s desk. In some cases organizations will

© 2007-2024 Perforce Software, Inc. 171

172 of 213 - Appendix C: Server Spec Naming Standard

already have their own familiar site tags to refer to different sites or data centers; these can be
used.

In public cloud deployments, the public cloud provider’s region names can be used (e.g. us-east-1),
or an internal short form (e.g. awsnval for the AWS us-east-1 data center in Northern Virginia, USA.

As a special case, the <SiteTag> is omitted for the master server spec.

C.2. Example Server Specs

Here are some sample server spec names based on this convention:

e master.1: A master server for SDP instance 1.

* p4d_ha_chi: A High Availability (HA) server, suitable for use with p4 failover, located in Chicago,
IL.

* p4d_ha2_chi: A second High Availability server, suitable for use with p4 failover, located in
Chicago, IL.

» p4Ad_ffr_pune: A filtered forwarding replica in Pune, India.
* p4d_edge_blr: An edge server located in Bangalore, India.
* p4d_ha_edge_blr: An HA server with PATARGET pointing to the edge server in Bangalore, India.

* p4d_edge3_awsnva: A 3rd edge server in AWS data center in the us-east-1 (Northern Virginia)
region.

C.3. Implications of Replication Filtering

Replicas that are filtered in any way are not viable candidate servers to failover to, because any
filtered data would be lost.

C.4. Other Replica Types

The naming convention intentionally does not account for all possible server specs available with
p4d. The standard accounts only for the distilled list of server spec types supported by the SDP
mkrep.sh script, which are the most useful and commonly used ones.

C.5. The SDP mkrep.sh script

The SDP script mkrep.sh adheres to this standard. For more information on creating replicas with
this script. See: Section 5.3.4, “Using mkrep.sh”.

172 © 2007-2024 Perforce Software, Inc.

Appendix D: Frequently Asked Questions - 173 of 213

Appendix D: Frequently Asked Questions

This FAQ lists common questions about the SDP with answers.

D.1. How do I tell what version of the SDP I have?

First, try the standard check. See: Section 1.3, “Checking the SDP Version”.

If that does not display the SDP version, as may happen with older SDP installations, run the SDP
Health Check, which will report the correct version reliably. See: Appendix H, SDP Health Checks.

D.2. How do I change super user password?
There are two critical accounts to be aware of:

* The UNIX/Linux operating system user account with a password managed by the operating
system of the machine, referred to as the OSUSER.

* The Perforce application super user with a password in the Perforce database. The SDP
standard shell environment sets PAUSER to refer to the super user.

The user account name perforce is the default for both OSUSER and P4USER, but they can have
different values. The OSUSER applies to the server machine, while the PAUSER can vary on a per-
instance basis.

Some admins choose to use the same password for the perforce OSUSER and
O P4USER (for convenience and to reduce confusion), and then do routine rotations
of both passwords (for enhanced security).

The Perforce application super user should always use Perforce password
(o . .
O management, even if other accounts are configured to use LDAP, SSO, or some
et other authentication method.

To change the OSUSER, use your standard operating system commands. This may be the passwd
command, but may be different depending on your operating system and other factors.

The following describes how to change the Perforce application super user password.
Step 1. Get a maintenance Window

Plan to do this work in a maintenance window. The procedure can cause disruption if any triggers
or extensions rely on a valid ticket for your application super user. Also, much automation such as
the SDP daily_checkpoint.sh script rely on having a valid ticket.

If you are fully aware of all the ways the password is used and thus the potential
O impacts, you can do the work outside of a maintenance window. Changing the
- password can disrupt triggers, extensions, and various automation, but will mot
have any impact on Helix Core service itself.

© 2007-2024 Perforce Software, Inc. 173

174 of 213 - Appendix D: Frequently Asked Questions
Step 2. Pick a Password

Select your new password. Depending on your local policy, you may manually create a password,
generate one, and possibly store it in a vault of some kind.

Step 3. Login as the OSUSER

Login as the OSUSER (e.g. perforce), and ensure the standard SDP shell environment is set.

@ If the OSUSER shell environment files ~/.bash_profile and ~/.bashrc are set
- correctly, this step is done just by logging into the perforce OSUSER account.

Step 4. Get the current password from the admin password file. The shell variable

$SDP_ADMIN_PASSWORD_FILE contains the path to the password file for the current instance,
something like /p4/common/config/.p4passwd.p4_N.admin. Do

cat $SDP_ADMIN_PASSWORD_FILE

Take note of the current/old password.
Step 5. Put the new password in the admin password file.

Step 7. Do:
p4 passwd

Provide the old and new password as prompted.

Step 6. Call the p4login script to exercise the new password file:
pdlogin -v

Confirm you have a valid ticket afterward with:
p4 login -s

Step 7. Copy the password file to any and all replica and edge server machines.

Step 8. On each replica and edge, login as perforce and also do p4login -v and p4 login -s.

D.3. Can I remove the perforce user?

No. This account is required for critical operations like checkpoints for backup.

(f) This account need not occupy a licensed seat. Once a Helix Core server becomes

174 © 2007-2024 Perforce Software, Inc.

Appendix D: Frequently Asked Questions - 175 of 213

licensed, you can fill out the Helix Core Request for Background User form to
request up to 3 "background users" to support background automation tasks. This
accounts for the perforce super user, a swarm user, and typically one named
something like builder for automated builds.

D.4. Can I clone a VM to create a standby replica?

Yes, cloning a virtual machine (VM) of a Helix Core commit server is a great way to simplify the
process of creating a standby replica of the commit server. Similarly, cloning an edge server is
useful in creating a standby replica of the edge.

Cloning can be done with various technologies and in cloud and on-prem environments. For
example, in AWS, creating an AMI of an EC2 instance (i.e. a virtual machine) is just different
terminology for creating a clone of the virtual machine. Azure, GCP, and other clouds have similar
concepts and capabilities, as do on-prem virtual infrastructure such as VMware ESX servers. Even
non-virtual infrastructure tools exist for cloning bare metal server machines.

Nothing needs to change other than the server.id file whether the machine you’re cloning is a
commit server (to make a standby of the commit) or an edge (to make a standby of the edge). There
is a slight SDP structure difference between an commit an an edge—an edge will have a
/hxdepots/p4/N/checkpoints.edge_SITE directory and /p4/N/checkpoints.edge_SITE symlink to it. As
long as you clone the machine that you’re making a standby of, be it commit or edge, you’ll have the
correct structure on the standby.

While nothing should need to change, there are a few things to double check before initiating the
cloning process:

* Check that the SDP Instance Vars file, /p4/common/config/p4_N.vars has correct values for
PAMASTERHOST and PAMASTER_ID.

* The PAMASTER_ID must be the server.id of the commit server, always, and that will be the
same regardless of what machine you’re on.The PAMASTERHOST should be a DNS name for the
commit server that works —1i.e. that valid to reference from the standby server after cloning.
Using the same DNS name used by regular users is preferred —it can be an FQDN or a short
name depending on how DNS is setup locally. If DNS isn’t available in the server environment
(as is sometimes the case), Plan B for setting PAMASTERHOST is to still use the same DNS that
users know, but to add an /etc/hosts entry ("hack?") on the standby server machine after
cloning so that the DNS name works on the standby to reference the commit server. Plan C,
which we strong advise against but do support, is to use an IP address for the PAMASTERHOST
value. Plan A is preferred because Plans B and C require the admin who executes failover to be
aware of the "hacks"—/etc/hosts entry or using an IP address—to be accounted for in the
failover procedure.

The general idea is that /p4/common structure in the SDP should be common across all Helix Core
server machines in your fleet. Even on the standby replica, the P4MASTER_ID and
P4AMASTERHOST values be exactly the same as on the commit. Cloning the machine is the best way
to do it. It’s also nice to have a reasonably current set of archives, and nice to ensure all those little
SDP config bits are correct.

© 2007-2024 Perforce Software, Inc. 175

https://www.perforce.com/support/vcs/helix-core-request-background-user

176 of 213 - Appendix D: Frequently Asked Questions

Here is a sample procedure of cloning a machine to create a standby replica.
Step 1. Verify PAMASTER_ID and PAMASTERHOST settings are correct.
Step 2. Use mkrep.sh to create your standby server. See: Section 5.3.4, “Using mkrep.sh”.

Step 3. Run p4 admin journal. (Digression: Use p4 admin journal command if you’re creating a
standby or unfiltered edge or replica, but use the rotate_journal.sh script instead if you're creating
a filtered edge or filtered forwarding replica, where filtered here means using the *DataFilter fields
in the server spec and/or using -T option to the configured startup.N thread that does the metadata
pull for the ServerID of the new server.)

Step 4. Clone the VM.

Step 5. Start the new VM after the cloning operation. For example, if in AWS, launch an EC2
instance from the AMI.

Step 6. Stop the p4d_N (and p4broker_N) services if running.

Step 7. Use hostname -I to get the local/private IP, and request a new license file for that IP— but
don’t wait for it.

Step 8. Remove the $P4R00T/1icense file.
Step 9. Remove the $P4R00T/server.id file.

Step 10. Load the latest checkpoint and numbered journal, and then pull recent archives, e.g. with a
command like this sample:

nohup load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.50.9z
/p4/1/checkpoints/p4_1.jnl.50 -s p4d_ha_bos -1 -r -b -y -verify default < /dev/null >
/p4/1/10gs/1oad.log 2>&1 &

That load_checkpoint.sh does the rest. It stops p4d and p4broker services (just in case you forgot),
clears PAROOT, moves PALOG and P4JOURNAL aside if they exist (which they would after a cloning
situation), puts the new correct server.id file in place, reloads from the latest checkpoint and
numbered journal (that are sure to have the very latest data due to the p4 admin journal done
above just before the cloning), does a p4d -xu (just in case it’s needed, but shouldn’t be in this
situation), starts the service, and then kicks off a p4 verify -t command on all depots to pull over
any missing files from the commit.

7 The above procedure is merely a sample. Certain details, such as the handling of
- license files, may vary from one site to another.

176 © 2007-2024 Perforce Software, Inc.

Appendix E: Troubleshooting Guide - 177 of 213
Appendix E: Troubleshooting Guide

This appendix lists problems sometimes encountered by SDP users, with guidance on how to
analyze and resolve each issue.

Do not hesitate to contact consulting-helix-core@perforce.com if additional assistance is required.

E.1. Daily_checkpoint.sh fails

1. Check the output of the log file and look for errors:
less /p4/1/1logs/checkpoint.log

Possibilities include:

* Errors from verify_sdp.sh - should be self explanatory.

- Note that it is possible to edit /p4/common/config/p4_1.vars and set the value of
VERIFY_SDP_SKIP_TEST_LIST to include any tests you consider should be skipped - don’t overdo
this!

e See next section

E.1.1. Last checkpoint not complete. Check the backup process or contact
support.

If this error occurs it means the script has found a "semaphore" file which is used to prevent
multiple checkpoints running at the same time. This file is (for instance 1)
/p4/1/10gs/ckp_running. txt.

Check if there is a current process running:

ps aux | grep daily_checkpoint

If you are CERTAIN that there is no checkpoint process running, then you can
o delete this file and re-run daily_checkpoint.sh (or allow it to be run via nightly
crontab). If in doubt, contact support!

E.2. Replication appears to be stalled

This can happen for a variety of reasons, most commonly:

 Service user is not logged in to the parent
o Or there is a problem with ticket or ticket location

* Configurables are incorrect (p4 configure show allservers)

© 2007-2024 Perforce Software, Inc. 177

mailto:consulting-helix-core@perforce.com

178 of 213 - Appendix E: Troubleshooting Guide

* Network connectivity to upstream parent
* A problem with state file

1. Check the output of p4 pull -1j, e.g. this shows all is working well:

$ p4 pull -1j

Current replica journal state is: Journal 1237, Sequence 2680510310.
Current master journal state is: Journal 1237, Sequence 2680510310.
The statefile was last modified at: 2022/03/29 14:15:16.

The replica server time is currently: 2022/03/29 14:15:18 +0000 GMT

E.2.1. Resolution
1. This example shows a password error for the service user:
$ p4 pull -1j

Perforce password (P4PASSWD) invalid or unset.
Perforce password (P4PASSWD) invalid or unset.

Current replica journal state is: Journal 1237, Sequence 2568249374.
Current master journal state is: Journal 1237, Sequence -1.

Current master journal state is: Journal @, Sequence -1.

The statefile was last modified at: 2022/03/29 13:05:46.

The replica server time is currently: 2022/03/29 14:13:21 +0000 GMT

a. In case of a password error, try logging in again:

p4login -v 1 -service
p4 pull -1j

b. If the above reports an error, then copy and paste the command it shows as executing and
try it manually, for example (adjust the server/user ids):

/p4/1/bin/p4_1 -p pdmaster:1664 -u pdadmin -s login svc_p4d_edge_ldn

If the above is not successful:

3. Review output of verify_sdp.sh:

/p4/common/bin/verify_sdp.sh 1
grep Error /p4/1/1ogs/verify_sdp.log

a. Check for errors in the resulting log file:

178 © 2007-2024 Perforce Software, Inc.

Appendix E: Troubleshooting Guide - 179 of 213

grep Error /p4/1/1ogs/verify_sdp.log
4. Check for errors in the p4d log file:
grep -A4 error: /p4/1/1logs/log | less
5. Check permissions on the tickets file (env var §P4TICKETS):

ls -al $PATICKETS

e.g.

1s -al /p4/1/.p4tickets

E.2.2. Make Replication Errors Visible

If the above doesn’t help, then make errors visible/easy to find, assuming instance 1 - run this on
the replica (not commit!):

sudo systemctl stop p4d_1
cd /p4/1/1ogs

mv log log.old

sudo systemctl start p4d_1
grep -A4 error: log | less

Due to shortened log file, any errors should be easily found. Ask for help (email support-helix-
core@perforce.com) if not obvious.

E.2.3. Remove state file

Files state and statejcopy can usually be removed - let the server work out its current state. If you
want to know current journal counter for replica:

p4d -r /p4/1/root -k db.counters -jd - 2>/dev/null | grep @journal@ | cut -d '@' -f 8

If there is a problem with being able to pull over an old journal which no longer exists on the
master you may need to reseed the replica!

sudo systemctl stop p4d_1
cd /p4/1/root

mv state* save/

cd /p4/1/1ogs

© 2007-2024 Perforce Software, Inc. 179

180 of 213 - Appendix E: Troubleshooting Guide

[[-d save]] || mkdir save # Create if doesn't exist
mv journal* save/
sudo systemctl start p4d_1

E.3. Archive pull queue appears to be stalled

This manifests as the output of p4 pull -1s showing an unchanging number of files in the queue -
no progress is being made.

$ p4 pull -1s
File transfers: 3 active/29 total, bytes: 2338 active/25579 total.
Oldest change with at least one pending file transfer: 1234.

This can happen for a variety of reasons, most commonly:

* Non-existent (purged) files (where filetype includes +Sn - where n is number of revisions to
keep contents for)

* Non-existent (shelved) files
* Non-existent files with verify problem on master server

» Temporary file transfer problems which exceeded thresholds for auto-retry

E.3.1. Resolutions

1. Retry pull errors

p4 pull -R
<wait a short time>

p4 pull -1s
2. If the above doesn’t fix things then we can check for errors:
p4 pull -1 | grep -c failed

3. If the above is > 0 then we need to investigate in more detail.
E.3.1.1. Remove and re-queue

Save the list of files with errors to a file - like this to allow for spaces in filenames:

pd -F "%rev%s %file%" pull -1 > pull.errs
cat pull.errs | while read -e r f; do p4 pull -d -r $r -f "$f"; done

180 © 2007-2024 Perforce Software, Inc.

Appendix E: Troubleshooting Guide - 181 of 213

Finally we can “re-queue” any for re-transfer (note this can take a while for files with many revs):

cut -d' ' -f 2,999 pull.errs | sort | uniq | while read -e f; do echo "$f" && p4
verify -qt --only MISSING "$f"; done

(r) the --only MISSING option requires p4d version >= 2021.1 and is much faster - just
- remove that option with older versions of p4d

Then have another look:
p4 pull -1

E.3.1.2. Check for verify errors on the parent server

On the parent server, check the most recent p4verify.log file (typically runs Saturday morning via
crontab).

Cross-check any entries in pull.errs above - if they are also verify errors on the parent server then
you need to resolve that. Consider contacting helix-core-support@perforce.com if you need help.
Resolutions may include obliterating lost revisions, or attempting to restore from backup.

E.4. Can’t login to edge server

This can happen if the edge server replication has stalled as above.

E.4.1. Resolution

* Try the resolution steps for Section E.2, “Replication appears to be stalled”
* Restart edge server

* Monitor replication and check for any errors

E.S5. Updating offline_db for an edge server

If your daily_checkpoint.sh jobs on the edge server are failing due to a problem with the offline_db
or missing edge journals, AND the edge server is otherwise running fine, then consider this option.

o Checkpointing the edge will take some time during which the edge will be locked!
Schedule this for a convenient time!

E.5.1. Resolution
Assuming instance 1:

* ON EDGE SERVER:

© 2007-2024 Perforce Software, Inc. 181

mailto:helix-core-support@perforce.com

182 of 213 - Appendix E: Troubleshooting Guide

source /p4/common/bin/p4_vars 1
p4 admin checkpoint -Z

* ON COMMIT SERVER (and at a convenient time to lock edge):

source /p4/common/bin/p4_vars 1
p4 admin journal

* Monitor edge server checkpoint being created (on EDGE SERVER):
p4 configure show journalPrefix
Using the output shown by the above command:
1s -1htr /p4/1/checkpoints.<suffix>/*.ckp.*
Also you can check for edge being locked (the following may hang):
p4 monitor show -al
* Then replay the newly created edge checkpoint on the edge server to the offline_db:

cd /p4/1/0ffline_db

mv db.* save/

nohup /p4/1/bin/p4d_1 -r . -jr /p4/1/checkpoints.<suffix>/p4_1.ckp.NNNN.gz >
rec.out &

When the above has completed, mark as usable by creating semaphore file:

touch /p4/1/offline_db/offline_db_usable.txt

E.6. Journal out of sequence in checkpoint.log file

This error is encountered when the offline and live databases are no longer in sync, and will cause
the offline checkpoint process to fail. Because the scripts will replay all outstanding journals, this
error is much less likely to occur. This error can be fixed by:

» recreating the offline_db: Section 8.4.11, “recreate_offline_db.sh”

« alternatively if that doesn’t work - run the Section 8.4.6, “live_checkpoint.sh” script (note the
warnings about locking live database)

182 © 2007-2024 Perforce Software, Inc.

Appendix E: Troubleshooting Guide - 183 of 213
E.7. Unexpected end of file in replica daily sync

Check the start time and duration of the Section 8.4.4, “daily_checkpoint.sh” cron job on the master.
If this overlaps with the start time of the Section 8.6.32, “sync_replica.sh” cron job on a replica, a
truncated checkpoint may be rsync’d to the replica and replaying this will result in an error.

Adjust the replica’s cronjob to start later to resolve this.

Default cron job times, as installed by the SDP are initial estimates, and should be adjusted to suit
your production environment.

© 2007-2024 Perforce Software, Inc. 183

184 of 213 - Appendix F: Starting and Stopping Services
Appendix F: Starting and Stopping Services

There are a variety of init mechanisms on various Linux flavors. The following describes how to
start and stop services using different init mechanisms.

F.1. SDP Service Management with the systemd init
mechanism

On modern OS’s, like RHEL7 & 8, Rocky Linux 8, and Ubuntu >=18.04, and SuSE >=12, the systemd
init mechanism is used. The underlying SDP init scripts are used, but they are wrapped with "unit"
files in /etc/systemd/system directory, and called using the systemctl interface as root (typically
using sudo while running as the perforce user).

On systems where systemd is used, the service can only be started using the sudo systemctl

command, as in this example:

sudo systemctl status p4d_N
sudo systemctl start p4d_N
sudo systemctl status p4d_N

Note that there is no immediate indication from running the start command that it was actually
successful, hence the status command is run after. For best results, wait a few seconds after
running the start command before running the status command. (If the start was unsuccessful, a
good start to diagnostics would include running tail /p4/N/logs/log and cat
/p4/N/1ogs/p4d_init.1loqg).

The service should also be stopped in the same manner:

sudo systemctl stop p4d_N

Checking for status can be done using both the systemctl command, or calling the underlying SDP
init script directly. However, there are cases where the status indication may be different. Calling
the underlying SDP init script for status will always report status accurately, as in this example:

/p4/N/bin/p4d_N_init status

That works reliably even if the service was started with systemctl start p4d_N.

Checking status using the systemctl mechanism is done like so:

sudo systemctl start p4d_N

is
indication may fn]cn] ndicate har the service is down when it is

184 © 2007-2024 Perforce Software, Inc.

Appendix F: Starting and Stopping Services - 185 of 213
occur with older init scripts if the underlying init script was used to start the server rather than
using sudo systemctl start p4d_N as prescribed. The status indication would only indicate that the
service is running if it was started using the systemctl mechanism. As of SDP 2020.1, a safety feature
now assures that system is always used if configured.

F.1.1. Brokers and Proxies

In the above examples for starting, stopping, and status-checking of services using either the SysV
or systemd init mechanisms, p4d is the sample service managed. This can be replaced with p4p or
p4dbroker to manage proxy and broker services, respectively. For example, on a systemd system, the
broker service, if configured, can be started like so:

sudo systemctl status p4broker_1
sudo systemctl start p4dbroker_1
sudo systemctl status p4broker_1

F.1.2. Root or sudo required with systemd

For SysV, having sudo is optional, as the underlying SDP init scripts can be called safely as root or
perforce; the service runs as perforce.

If systemd is used, by default root access (often granted via sudo) is needed to start and stop the p4d
service, effectively making sudo access required for the perforce user. The systemd "unit" files
provided with the SDP handle making sure the underlying SDP init scripts start running under the
correct operating system account user (typically perforce).

F.2. SDP Service Management with SysV init
mechanism

On older OS’s, like RHEL/CentOS 6, the SysV init mechanism is used. For those, you can the
following example commands, replacing N with the actual SDP instance name

sudo service p4d_N_init status

The service can be checked for status, started and stopped by calling the underlying SDP init scripts
as either root or perforce directly:

/p4/N/bin/p4d_N_init status

Replace status with start or stop as needed. It is common to do a status check immediately before
and after a start or stop.

During installation, a symlink is setup such that /etc/init.d/p4d_N_init is a symlink to
/p4/N/bin/p4_N_init, and the proper chkconfig commands are run to register the application as a
service that will be started on boot and gracefully shutdown on reboot.

© 2007-2024 Perforce Software, Inc. 185

186 of 213 - Appendix F: Starting and Stopping Services

On systems using SysV, calling the underlying SDP init scripts is safe and completely
interchangeable with using the service command being run as root. That is, you can start a service
with the underlying SDP init script, and the SysV init mechanism will still safely detect whether the
service is running during a system shutdown, and thus will perform a graceful stop if p4d is up and
running when you go to reboot. The status indication of the underlying SDP init script is absolutely
100% reliable, regardless of how the service was started (i.e. calling the init script directly as root or
perforce, or using the service call as root.

186 © 2007-2024 Perforce Software, Inc.

Appendix G: Brokers in Stack Topology - 187 of 213
Appendix G: Brokers in Stack Topology

A preferred methodology is to deploy p4broker processes to control access to p4d servers. In a
typical configuration, 100% of user activity gets to p4d thru a p4broker deployed in "stack
topology", i.e. a p4broker exists on every machine where p4d is, and access to p4d on any given
machine is only via the broker, with a typical setup using firewalls to enforce that concept. There
are typically only 3 exceptions:

1. p4d-to-p4d communication (p4 pull, p4 journalcopy) bypasses the broker
2. Triggers called from p4d run 'p4' commands against the p4d port directly.
3. Admins running 'p4' commands while on the server machine can bypass the broker if they

want.

Everything else (to include Proxies, Swarm, Jenkins, any systems integrations, etc.) must go thru the
broker.

Using brokers like this makes it straightforward to implement the "Down for Maintenance" concept
across an entire global topology. For example, when upgrade p4d services in a global topology,
doing the outer-to-inner upgrade procedure, it is best to prevent users from loading the system
during the upgrade process.

Using brokers in "stack topology" avoids the significant performance impact of brokers deployed on
a different machine than the targeted p4d. While running on the same host, the impact of brokers is
relatively small.

Brokers are preferred over p4d command triggers for certain use cases. They’re independent of p4d
and can keep p4d safe from rogue usage patterns.

© 2007-2024 Perforce Software, Inc. 187

Appendix H: SDP Health Checks

If you need to contact Perforce Support to analyze an issue with the SDP on UNIX/Linux, you can
use the /p4/common/bin/sdp_health_check.sh script. This script is included with the SDP (starting
with SDP 2023.1 Patch 3). If your installation does not have this script, it can be downloaded
separately. Every version of the sdp_health_check.sh script can be used any and all versions of the
UNIX/Linux SDP dating back to 2007, so you don’t need to be concerned with version compatibility.

If your Perforce Helix server machine has outbound internet access, execute the following while
logged in as the operating system user that owns the /p4/common/bin directory (typically perforce or
pdadmin):

cd /p4/common/bin

[[-e sdp_health_check.sh]] && mv -f sdp_health_check.sh
sdp_health_check.sh.moved.$(date +'%Y-%m-%d-%H%M%S")

curl -L -0
https://swarm.workshop.perforce.com/download/qguest/perforce_software/sdp/tools/sdp_hea
1th_check.sh

chmod +x sdp_health_check.sh

./sdp_health_check.sh

If your Perforce Helix server machine does not have have outbound internet access, acquire the
sdp_health_check.sh file from a machine that does have outbound internet access, and then
somehow get that file to your Perforce Helix server machine.

If you have multiple server machines with SDP, possibly including machines running P4D replicas
or edge servers, PAProxy or P4Broker servers, run the health on al machines of interest.

The sdp_health_check.sh script will produce a log file that can be provided to Perforce Support to
help diagnose configuration issues and other problems. The script has these characteristics:

* It is always safe to run. It does only analysis and reporting.

It does only fast checks, and has no interactive prompts. Some log files are captured such as
checkpoint.log, but not potentially large ones such as the p4d server log.

¢ It requires no command line arguments.
It does not transfer sensitive information.

* It works for any and all UNIX/Linux SDP version since 2007.

188 © 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 189 of 213

Appendix I: More Detail on install_sdp.sh

I.1. Sample configuration file sdp_install.cfg

For use with install_sdp.sh:

This file is in bash shell script syntax.

Note: Avoid spaces before and after the '=' sign.

For demo and training installations, usually all defaults in this file
are fine.

For Proof of Concept (PoC) installation, Section 1 (Localization) settings
should all be changed to local values. Some settings in Section 2 (Data
Specific) might also be changed.

Changing settings in Section 3 (Deep Customization) is generally
discouraged unless necessary when bootstrapping a production installation or
a high-realism PoC.

Changing all these is typical and expected, even for PoC installations.

Specify email server for the p4review script. Ignore if Helix Swarm is used.
SMTPServer=smtp.p4demo.com

Specify an email address to receive updates from admin scripts. This may be
a distribution list or comma-separated list of addresses (with no spaces).
P4AdminList=P4AdminList@p4demo.com

Specify an email address from which emails from admin scripts are sent.
This must be a single email address.
Mai1lFrom=P4Admin@p4demo.com

Specify the DNS alias to refer to the commit server, e.g. by end
users. This might be something like 'perforce.example.com' or

simply 'perforce', but probably not an actual host name like
‘perforce-01", which would be known only to admins. The default value,
localhost, is valid only for a single server topology.
DNS_name_of_master_server=localhost

== o o = =

Specify a geographic site tag for the master server location,
e.g. 'bos' for Boston, MA, USA.
SiteTag=bos

© 2007-2024 Perforce Software, Inc. 189

190 of 213 - Appendix I: More Detail on install_sdp.sh

Specify the hostname. This can be left blank. If set on a system that supports

the "hostnamectl' utility, that utility will be used to set the hostname. If the
command line parameter '-H <hostname>' is used, that will override this setting.
Hostname=

Specify the timezone. This can be left blank. If set on a system that supports

the 'timedatectl' utility, that utility will be used to set the timezone. If the
command line parameter '-T <timezone>' is used, that will override this setting.
Timezone=

These settings can be changed to desired values, though default values are
preferred for demo installations.

Specify the TCP port for p4d to listen on. Typically this is 1999 if
pdbroker is used, or 1666 if only p4d is used.
P4_PORT=1999

Specify the TCP port for pdbroker to listen on. Must be different
from the P4_PORT.
P4BROKER_PORT=1666

Specify SDP instance name, e.g. '1' for /p4/1.
Instance=1

Helix Core case sensitivity, '1' (sensitive) or '@' (insensitive). If

data from a checkpoint is to be migrated into this instance, set this

CaseSensitive value to match the case handling of the incoming data set
(as shown with 'p4 info').

CaseSensitive=1

If SSL (Secure Sockets Layer) encryption is to be used, specify the prefix,
typically 'ssl:'. Leave blank if not using SSL.
SSLPrefix=ssl:

Set the P4USER value for the Perforce super user.
P4USER=perforce

Set the password for the super user (see P4USER). If using this Helix Installer to
bootstrap a production installation, replace this default password with your own.
Password=F@stSCM!

Specify '1' to avoid sending email from admin scripts, or @ to send
email from admin scripts.
SimulateEmail=1

Specify a ServerID value. If left blank for a master/commit server, a sensible
default value will be assigned. See the Server Spec Naming Standard:

190 © 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 191 of 213

#
https://swarm.workshop.perforce.com/view/quest/perforce_software/sdp/main/doc/SDP_Guid
e.Unix.html#_server_spec_naming_standard

ServerID=

Spec1fy the type of server. Valid values are:

* p4d_commit - A master/commit p4d server.
* p4d_master - A synonym for p4d_commit.
* p4d_replica - A p4d replica with all metadata from the master, not filtered in
any way. May or may not be forwarding.
pdd_filtered_replica - A filtered replica or filtered forwarding replica.
p4d_edge - An edge server.
p4d_edge_replica - Replica of an edge server. Also set TargetServerID.
pdbroker - An SDP host running only a p4broker, e.g. as standalone broker
possibly deployed in a DMZ.
* p4p - An SDP host running only a p4p.
* pdproxy - A synonym for p4p.

L T S

The ServerID must also be set if the ServerType is any p4d_* type other than
"p4d_commit' or 'p4d_master'.
ServerType=p4d_commit

e s i e e

Set only if ServerType is p4d_edge_replica. The value is the ServerID of
edge server that this server is a replica of, and must match the

'ReplicatingFrom:"' field of the server spec.

TargetServerID=

Specify the target port for a p4p or p4dbroker.
TargetPort=

Specify the listening port for a p4p or pdbroker.
ListenPort=

= R
wn
D
g)
—
—
o
=
w
o
D
D
=)
=)
c
w0
—+
o
3
—
N
[a})
—~+
—
o
=)

Changing these settings is gently discouraged, but may be necessary for
bootstrapping some production environments with hard-to-change default values
for settings such as OSUSER, OSGROUP, Hx*, etc.

Changing these settings is gently discouraged because changing these values
will cause the configuration to be out of alignment with documentation and
sample instructions for settings that are typically left as defaults.
However, there are no functional limitations to changing these settings.

= o o o = O =

Specify the Linux Operating System account under which p4d and other Helix
services will run as. This user will be created if it does not exist. If

created, the password will match that of the P4USER.

OSUSER=perforce

Specify the primary group for the Linux Operating System account specified
© 2007-2024 Perforce Software, Inc. 191

192 of 213 - Appendix I: More Detail on install_sdp.sh

as OSUSER.
0SGROUP=perforce

#Specify a comma-delimited list of any additional groups the OSUSER to be
created should be in. This is passed to the 'useradd' command the '-G'
flag. These groups must already exist.

OSUSER_ADDITIONAL_GROUPS=

Specify home directory of the Linux account under which p4d and other Helix
services will run as, and the group, in the form <user>:<group>. This user
and group will be created if they do not exist.

OSUSER_HOME=/home/perforce

The version of Perforce Helix binaries to be downloaded: p4, p4d, p4dbroker, and p4p.
P4BinRel=r24.2

The following Hx* settings reference directories that store Perforce

Helix data. If configuring for optimal performance and scalability,

these folders can be mount points for storage volumes. If so, they must

be mounted prior to running the install_sdp.sh script (other than to generate
this configuration file).

See the Server Deployment Package (SDP) for information and guidance on
provisioning these volumes.

B e

Define the directory that stores critical digital assets that must be
backed up, including contents of submitted and shelved versioned files.
HxDepots=/hxdepots

Define the directory that stores critical digital assets that must be

backed up, including metadata checkpoints and numbered journal files. If set to the
same value as HxDepots, all critical assets to be backed will be on a single volume.
HxCheckpoints=/hxdepots

Define the directory used to store the active journal (P4JOURNAL) and
various logs.
HxLogs=/hx1ogs

The /HxMetadatal and /HxMetadatal settings define two interchangeable
directories that store either active/live metadata databases (P4RO0T) or
offline copies of the same (offline_db). These typically point to the same
directory. Pointing them to the same directory simplifies infrastructure
and enables the fastest recovery options. Using multiple metadata volumes
is typically done when forced to due to capacity limitations for metadata
on a single volume, or to provide operational survivability of the host in
event of loss of a single metadata volume.

HxMetadatal=/hxmetadata

HxMetadata2=/hxmetadata

= R T o R H o =

192 © 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 193 of 213

I.2. install_sdp.sh

USAGE for install_sdp.sh v5.9.1:
To Install a Helix Core P4D Server (with optional broker):

install_sdp.sh {-init|-empty|-sampledepot} [-demo] [-c <cfg>] [-no_cron] [-no_ppr] [-
no_systemd|-no_enable] [-no_firewall] [-no_sudo|{-limited_sudo|-full_sudo}] [-v] [-
no_pkgs|-extra_pkgs] [-s <ServerID>] [-si <SDPInstance>] [-ts <TargetServerID>] [-se]
[-H <hostname>] [-T <timezone>] [-local] [-sdp_dir <sdp_dir>] [-d|-D]

To Install a standalone Helix Proxy:

install_sdp.sh -t p4p [-c <cfg>] [{-empty|-sampledepot}] [-no_cron] [-no_ppr] [-
no_systemd|-no_enable] [-no_firewall] [-no_sudo|-limited_sudo|-full_sudo] [-v] [-
no_pkgs|-extra_pkgs] [-s <ServerID>] [-si <SDPInstance>] [-ts <TargetServerID>] [-tp
<TargetPort>] [-1p <ListenPort>] [-se] [-H <hostname>] [-T <timezone>] [-local] [-
sdp_dir <sdp_dir>] [-d|-D]

To Install a standalone Helix Broker:

install_sdp.sh -t p4broker [-c <cfg>] [{-empty|-sampledepot}] [-no_cron] [-no_ppr] [-
no_systemd|-no_enable] [-no_firewall] [-no_sudo|-limited_sudo|-full_sudo] [-v] [-
no_pkgs|-extra_pkgs] [-s <ServerID>] [-si <SDPInstance>] [-ts <TargetServerID>] [-tp
<TargetPort>] [-1p <ListenPort>] [-se] [-H <hostname>] [-T <timezone>] [-local] [-
sdp_dir <sdp_dir>] [-d|-D]

or
install_sdp.sh -C > sdp_install.cfg
or
install_sdp.sh [-h|-man]
DESCRIPTION:
This script simplifies the process of installing Perforce Helix with the

Server Deployment Package (SDP) on a fresh, new server machine.

If you are adding a new SDP instance to a machine that already has SDP
installed, use the mkdirs.sh script for that purpose. See: mkdirs.sh -man

If you are unsure if SDP is installed, see if there is a /p4 directory
on the machine. If that directory exists, then SDP is already installed,
and this install_sdp.sh script will refuse to operate on the machine.

This script is intended only for initial installation on a new server
machine. For safety, it will refuse to operate if it detects any existing
SDP directory structures. If installed on a machine where Helix Core

© 2007-2024 Perforce Software, Inc. 193

194 of 213 - Appendix I: More Detail on install_sdp.sh

data exists in non-SDP structures, it will not interact with the existing
data. SDP structures include anything in or under the following
directories:

* /p4
* /opt/perforce/helix-sdp/p4/sdp
* /hx{checkpoints,depots, logs,metadata*}

This script can be used to install any of the following:

* A Helix Core Server (p4d commit, standby, edge, etc.) with an optional p4broker.
* A standalone Helix Broker (p4broker).

* A standalone Helix Proxy (p4p).

If installing a Helix Core Server, there are three options, one of which
must be specified:
* Use "-init' to initialize a new data set using the configure_new_server.sh

script to get

started with various best practices, and create an initial checkpoint.
* Use '-empty' to
* Use '-sampledepot' to install the Sample Depot training data set. This is

helpful when

194

bootstrapping a training or demo server.

The following SDP structure is initialized:

/opt/perforce/helix-sdp/sdp (root owned, immutable except by SDP upgrades).
/opt/perforce/helix-sdp/p4/sdp (owned and writable by OSUSER).
/opt/perforce/helix-sdp/downloads (owned and writable by OSUSER).
/opt/perforce/helix-sdp/p4/sdp/helix_binaries (owned and writable by OSUSER).

This script handles many aspects of installation. It does the

following:

* Creates the operating system user (OSUSER) that Helix Core
processes (p4d, p4broker, and/p4 p4p) will run as. The
default OSUSER is 'perforce'. The 'useradd' command is
used to create the user as a local account on the machine,
and a password. OSUSER creation and password setting is
skipped if that account already exists. If a non-local
network account is to be used, that must be created
first before running this script.

* Creates the home directory for the OSUSER user, if needed.

Following installation, it also does the following to be more
convenient for demos, and also give a more production-like feel:
* Grants the perforce user sudo access (full or limited).

* Creates default ~perforce/.bash_profile and .bashrc files.

* Connects to the Perforce Package Repository (APT and YUM only).
* Installs SDP crontab for the perforce OSUSER.

This script calls mkdirs.sh for additional confiquration:
* Systemd service files are enabled (or SysV on older systems).
* Firewall ports are opened for installed services.

© 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 195 of 213

PLATFORM SUPPORT:
This script is intended to work on a variety of Linux distributions
and Linux server machines. The following are prioritized for support:

* Ubuntu 24.04, 22.04, and 20.04. For Ubuntu, only even-numbered *.04
releases are supported).

* Rocky Linux 9, 8

* Red Hat Enterprise Linux (RHEL) 9, 8

* SuSE 15.

This script recognizes SysV, Systemd.

This script requires bash 4.x+ and works with bash 5.x.

This script is not supported on Mac 0SX. It recognizes the Launchd init
mechanism on Mac but does not support it.

0S PACKAGES:
The following OS packages are installed (unless '-no_pkgs' is used):

* Yum: bc cronie curl mailx make openssl openssl-devel policycoreutils-python-
utils rsync sos sysstat tar tuned wget which z1lib zlib-devel

* AptGet: bc cron curl libbz2-dev libncurses5-dev libreadline-dev libsqlite3-dev
libss1l-dev 1lvm make rsync sysstat tuned wget zliblg-dev

* Zypper: bc cronie curl make openssl openssl-devel rsync sos sysstat tuned wget
which z1lib zlib-devel

If "-extra_pkgs' is used, the following packages are installed in
addition to those listed above:

* Yum: gcc gee-cH+
* AptGet: build-essential
* Jypper: gcc gcc-c++

Development utilities such as 'make', the 'gcc' compiler,
and 'curl' will be available '-extra_pkgs' is used.

In addition, if the Perforce Package Repository is added,
these additional packages are installed:

* Yum: perforce-p4python3
* AptGet: perforce-p4python3

* Zypper: None, as the Perforce Package Repository does
not support the Zypper package management system (e.g.

© 2007-2024 Perforce Software, Inc. 195

196 of 213 - Appendix I: More Detail on install_sdp.sh
as used on SuSE Linux).

OPTIONS:
-c¢ <cfg>
Specify a config file. By default, values for various settings
such as the email to send script logs to are configure with
demo values, e.g. P4AdminList@p4demo.com. Optionally, you can
specify a config file to define your own values.

For details on what settings you can define in this way, run:
install_sdp.sh -C > sdp_install.cfg

Then modify the generated config file sdp_install.cfg as desired.

The generated config file contains documentation on settings and
values. If no changes are made to the generated file, running with

'-c sdp_install.cfg' is the equivalent of running without using '-c' at
all.

-C See '-c <cfg>' above.

-init
Specify "-init' to initialize a new Helix Core data set with the
configure_new_server.sh script, which applies best practices for a
production server installation.

One of '-empty', '-init', or '-sampledepot' must be specified.

-empty
Specify '-empty' to avoid initialization of a Helix Core data set. No
db.* files will be created.

This option should be used if you intend to load a checkpoint
created elsewhere on this new server machine, as would be done
if you are installing a replica or edge server.

One of '-empty', '-init', or '-sampledepot' must be specified.

-sampledepot
Specify '-sampledepot' to load the Perforce Sample Depot training/demo
data set.

One of '-empty', '-init', or '-sampledepot' must be specified.

-demo
By default, key SDP storage volumes are verified to not appear on
on the 0S root volume. If this is not the case, errors are given in
pre-flight checks, and processing aborts. Specify '-demo' to bypass
these safety checks.

This option should NOT be used for production installations.

196 © 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 197 of 213

-no_cron
Skip initialization of the crontab. A crontab file is generated
in the /p4 directory, but is not loaded as the active
crontab.

-no_ppr
Skip addition of the Perforce Package Repository for YUM/APT
repos. By default, the Package Repository is added.

Specifying '-local' implies '-no_ppr'.
-no_sudo
Specify that no updates to sudoers are to be made.

WARNING: If systemd/systemctl is used to manage Perforce
Helix services, the OSUSER that operates these services
("perforce' by default) requires sufficient sudo access to
start and stop services using systemctl. Using '-no_sudo'
may result in a unusable service being created if used

on a system where the systemctl command is available.

If this option is used, consider also using '-no_systemd’
to avoid the requiring systemd. Using systemd is
recommended where available.

It is appropriate to use this option if the machine it
operates on was based on a machine image that already
grants the OSUSER sufficient sudo access.

This option is mutually exclusive with '-limited_sudo' and '-full_sudo'.
-limited_sudo

Specify that limited sudo access for the OSUSER created

is to be granted. See 'gen_sudoers.sh -man' for details.

This option is mutually exclusive with '-no_sudo' and '-full_sudo'.

This option is recommended for optimal security.
-full_sudo

Specify that full sudo access for the OSUSER created

is to be granted. See 'gen_sudoers.sh -man' for details.

This option is mutually exclusive with '-no_sudo' and '-limited_sudo'.
-V

Specify "-v' to run the verify_sdp.sh script after the SDP

installation is complete. If '-v' is specified and the

verify_sdp.sh script is available in the SDP, it is executed.

If the Sample Depot is loaded with '-sampledepot' or a new server was
© 2007-2024 Perforce Software, Inc. 197

198 of 213 - Appendix I: More Detail on install_sdp.sh
initialized with '-init', the "-online' flag to the verify_sdp.sh
script is added. If '-no_cron' is specified, the corresponding
"-skip cron' option is added verify_sdp.sh. If '-empty' is
specified, the '-skip' tests also exclude the offline_db and
p4t_files checks in verify_sdp.sh.

-no_pkgs
Specify '-no_pkgs' to skip 0S package installation using
the package manager (yum, apt-get, or zypper).

WARNING: Using this option may cause the initial install
and/or subsequent operation to fail, and this using
this is not advised.

-extra_pkgs
Specify '-extra_pkgs' to install additional OS packages
as may be needed for development of systems integrations,
custom triggers, etc. See package lists above for
more detail.

-local
By default, various files and binaries are downloaded from
the Perforce Workshop and the Perforce FTP server as needed.

If the server machine on which this install_sdp.sh is to be
run cannot reach the public internet or if using files from
external sites is not desired, the '-local' flag can be used.

With '-local', needed files must be acquired and put in place
on the server machine on which this script is to be run. Any
missing files result in error messages and an aborted install.

Specifying '-local' implies '-no_ppr'.

For "-local' to work, the following must exist:

1. Helix Binaries

Helix binaries must exist in /opt/perforce/helix-sdp/helix_binaries:
* /opt/perforce/helix-sdp/helix_binaries/p4

* /opt/perforce/helix-sdp/helix_binaries/p4d

* /opt/perforce/helix-sdp/helix_binaries/p4broker
* /opt/perforce/helix-sdp/helix_binaries/p4p

N

. Server Deployment Package (SDP)
The SDP tarball must be acquired an put in place here:

* /opt/perforce/helix-sdp/downloads/sdp.Unix.tgz

198 © 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 199 of 213
It can be acquired on a machine that can reach the internet with this command:

curl -L -0
https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

3. Sample Depot Tarball

The Sample Depot appropriate to your platform must exist if the
'-sampledepot' option is used:

* /opt/perforce/helix-sdp/downloads/sampledepot.tar.gz (on UNIX/Linux or case-
sensitive Mac)

See EXAMPLES below for a sample of acquiring files for use with
"-Tlocal' mode.

-no_firewall
Specify '-no_firewall' to skip updates to firewall.

By default, if on a system for which the host-local firewall
service (firewalld or ufw) is available and running when this
script is called, then the firewall service is updated to open
appropriate ports for the Perforce Helix services installed.

-no_systemd
Specify '-no_systemd' to avoid using systemd, even if it
appears to be available. By default, systemd is used if it
appears to be available.

This is helpful in operating in containerized test environments
where systemd is not available.

This option is implied if the systemctl command is not available
in the PATH of the root user.

This option is mutually exclusive with '-no_enable’.
-no_enable
Specify '-no_enable' to avoid enabling systemd services that
are installed and enabled by default. Specifically, this means
that the call to 'systemctl enable' for installed services is
skipped.
This option is mutually exclusive with "-no_systemd'.
-t <ServerType>

Specify the type of server. Valid values are:

* p4d_master - A p4d master/commit server.
© 2007-2024 Perforce Software, Inc. 199

200 of 213 - Appendix I: More Detail on install_sdp.sh

* p4d_replica - A p4d replica with all metadata from the master (not
filtered in any way).

* p4d_filtered_replica - A p4d filtered replica or filtered forwarding
replica.

* p4d_edge - An p4d edge server.

* p4d_edge_replica - A p4d replica of a p4d edge server. The TargetServerID
must also be set if ServerType is p4d_edge_replica.

* pdbroker - An SDP host running only a Helix Broker.

* p4p - An SDP host running only a Helix Proxy.

-s <ServerID>
Specify the ServerID. A ServerID is required if the ServerType is
any p4d_* type other than p4d_master.

-s1 <SDPInstance>
Specify the SDP Instance name. The SDP Instance name is incorporated
into the folder structure of the installed service, with many files
appearing under '/p4/<SDPInstance>', e.g. /p4/1.

The default is '1'.

-ts <TargetServerID>
Specify the Target ServerID. Set this only if ServerType is
p4d_edge_replica. The value is the ServerID of edge server that
this server is a replica of, and must match the ReplicatingFrom:
field of the server spec.

-tp <TargetPort>
Specify the target port. For p4broker and p4p only.

-1p <ListenPort>
Specify the port to listen on. For p4dbroker and p4p only.

-se
Specify -se to simulate email. This generates a mail simulator
script: /p4/common/site/bin/mail

-H <hostname>
Set the hostname. This is only supported on systems that
support the 'hostnamectl' command. The hostname is set by
doing: hostnamectl set-hostname <hostname>

If the corresponding 'Hostname' setting is defined in the
configuration file and this '-H <hostname>' flag is used,
the command line option will override the config file.

-T <timezone>
Set the timezone. This is only supported on systems that
support the 'timedatectl' command. The timezone is set by
doing: timedatectl set-timezone <timezone>

200 © 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 201 of 213

If the corresponding 'Timezone' setting is defined in the
configuration file and this '-T <timezone>' flag is used,
the command 1line option will override the config file.

DEVELOPMENT OPTIONS:
-sdp_dir <sdp_dir>
Specify a directory on the local host containing the SDP to deploy.
This should not be used for production installs.

The directory specified by '-sdp_dir' is expected to contain either:
* an SDP tarball (sdp.Unix.tgz) file, or

* an already-extracted SDP directory, which must include the SDP
Version file.

Use the special value '-sdp_dir default' to use the /sdp directory
(as per the Docker-based SDP Test Suite environment).

DEBUGGING OPTIONS:
-d Enable debug message.
-D Enable extreme debugging with bash 'set -x'. Implies '-d'.

HELP OPTIONS:
-h Display short help message.
-man Display this full manual page.

--help
Alias for -man.

EXAMPLES:
=== Demo Installation - Helix Core Server ===

sudo su -

mkdir -p /root/sdp_install
cd /root/sdp_install
curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/main/Server/U

nix/setup/install_sdp.sh
chmod +x install_sdp.sh
./install_sdp.sh -sampledepot -demo

=== Typical Production Helix Core Server Installation - New Commit Server

Following is a sample set of instructions for a typical new server setup.

STEP 1: Configure storage.

For a production install, storage must first be confiqured before this script

can be run.

See SDP documentation for guidance on storage configuration. There are a variety

of
© 2007-2024 Perforce Software, Inc.

201

202 of 213 - Appendix I: More Detail on install_sdp.sh

options and methods for installing storage. However accomplished, when storage is
complete the following, the directories must exist and must have storage mounted
that is NOT on the 0S root volume:

* /hxdepots
* /hxmetadata
* /hxlogs

These paths are typical, but are configurable. More information is available in
the install configuration file generated below.

STEP 2: Install this script.

Install this script in a directory under the root user's home directory with
these commands:

$ sudo su -

$ mkdir /root/sdp_install
$ cd /root/sdp_install
$ curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/main/Server/U
nix/setup/install_sdp.sh

$ chmod +x install_sdp.sh

STEP 3: Generate install configuration file.
$./install_sdp.sh -C > sdp_install.cfg
STEP 4: Modify install configuration file.

Edit the generated sdp_install.cfg using your preferred text editor, changing the

values

as desired. This file contains various settings with documentation for each

setting.

202

$ vi sdp_install.cfg

Once settings are decided, save the file.

STEP 5: Install SDP (Dry Run).

Call this script and reference the confiquration file, as a dry run/preview:
$./install_sdp.sh -c sdp_install.cfg -init

Review the generated log of the preview, and address any reported issues.
STEP 6: Install SDP Live Run

$./install_sdp.sh -c sdp_install.cfg -init -y

© 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 203 of 213

This will install SDP per the per the command line and settings in the install
configuration file.

=== Typical Production Helix Core Server Installation - Edge/Replica ===

When installing SDP on a machine intended to be a standby, replica, or edge
server, the steps are exactly the same as for setting up a new commit server.

The content of the generated and then edited sdp_install.cfg file will have
different

values for ServerType and ServerID settings. Ensure the CaseSensitity value
matches

the case of the commit server. (If the commit server is a Windows server and this

current server machine is to be a Linux replica of a Windows commit server, the

Linux server must be setup as case-insensitive.)

=== Standalone Proxy Installation ===
STEP 1: Install this script.

Install this script in a directory under the root user's home directory with
these commands:

$ sudo su -
$ mkdir /root/sdp_install
$ cd /root/sdp_install
$ curl -L -0
https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/main/Server/U
nix/setup/install_sdp.sh
$ chmod +x install_sdp.sh

STEP 2: Install the proxy.

Install the proxy, specifying the listen port (ssl:1666 in this example)
and the target port (ssl:p4d.myco.com:1666).

$./install_sdp.sh -t p4p -1p ss1:1666 -tp ssl:p4d.myco.com:1666
=== Standalone Broker Installation ===

The instructions for installing the broker are identical to the instructions
for installing the proxy, except that '-t p4broker' is used instead of
"-t pdp'.

=== Local Helix Core Server Install for Air Gap Networks ===

The following sample commands illustrate how to acquire the dependencies for
running with '-local' on a machine that can reach the public internet. The
resulting file structure, with paths as shown, must somehow be copied to the
machine where this install_sdp.sh script is to be run. This can be used to
facilitate installation on a machine over an "air gap" network.

© 2007-2024 Perforce Software, Inc. 203

204 of 213 - Appendix I: More Detail on install_sdp.sh

$ sudo su -

$ mkdir -p /opt/perforce/helix-sdp/helix_binaries
$ cd /opt/perforce/helix-sdp/helix_binaries

$ curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/main/helix_bi
naries/get_helix_binaries.sh

$ chmod +x get_helix_binaries.sh

If the latest major version available of Helix Core binaries are desired, do this:
$./get_helix_binaries.sh -shd .

Or, if older Helix Core binaries are desired, append the version identifier with
rYY.N",

as in this example to get Helix Core 2023.2 binaries:

$./get_helix_binaries.sh -sbd . -r r23.2

Next, get the SDP tarball and Sample Depot; the Sample Depot tarball:

$ mkdir /opt/perforce/helix-sdp/downloads

$ cd /opt/perforce/helix-sdp/downloads

$ curl -0 https://ftp.perforce.com/perforce/tools/sampledepot.tar.gz
$ curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/downloads/sdp
.Unix.tgz

Lastly, acquire this script:

$ mkdir /root/install_sdp
$ cd /root/install_sdp
$ curl -L -0

https://swarm.workshop.perforce.com/download/quest/perforce_software/sdp/main/Server/U
nix/setup/install_sdp.sh

$ chmod +x install_sdp.sh

These acquired files must then be transferred to the machine where the install
is to occur, and must appear in the same directory structure. To recap, for

a '-local' install, the following files in this structure must exist on the
machine on which the install is to occur:

/root/install_sdp/install_sdp.sh
/opt/perforce/helix-sdp/downloads/sdp.Unix.tgz
/opt/perforce/helix-sdp/downloads/sampledepot.tar.gz (if the '-sampledepot' option

is to be used).

204

/opt/perforce/helix-sdp/helix_binaries/p4
/opt/perforce/helix-sdp/helix_binaries/p4d
/opt/perforce/helix-sdp/helix_binaries/p4broker
/opt/perforce/helix-sdp/helix_binaries/p4p

An install session would then look something like this:

© 2007-2024 Perforce Software, Inc.

Appendix I: More Detail on install_sdp.sh - 205 of 213
cd /root/install_sdp

./install_sdp.sh -C > sdp_install.cfg # Generate a config file

vi sdp_install.cfg # Edit desired settings.

./install_sdp.sh -c sdp_install.cfg -init # Dry run. Review log to ensure
success.

./install_sdp.sh -c sdp_install.cfg -init -y # Live run. Review log to ensure
success.

If the dry run is not successful, fix reported issues and try again.

© 2007-2024 Perforce Software, Inc. 205

206 of 213 - Appendix J: More Detail on mkdirs.sh

Appendix J: More Detail on mkdirs.sh

mkdirs.sh:
USAGE for mkdirs.sh v7.2.5:
mkdirs.sh <instance> [-r <P4BinRel>] [-s <ServerID>] [-t <ServerType>] [-tp
<TargetPort>] [-1p <ListenPort>] [-I <sve>[,<sve2>]] [-MDD /bigdisk] [-MCD /ckps] [-
MLG /jn1] [-MDB1 /db1] [-MDB2 /db2] [-f] [-p] [-no_init|-no_systemd|-no_enable] [-fs|-
1s] [-no_cron] [-no_firewall] [-test [-clean]] [-n] [-L <log>] [-d|-D]
OR

mkdirs.sh <instance> [-c <CfgFile>] [-f] [-p] [-no_init|-no_systemd|-no_enable] [-fs|-
1s] [-no_cron] [-no_firewall] [-test [-clean]] [-n] [-L <log>] [-d|-D]

or

mkdirs.sh [-h|-man]

DESCRIPTION:

== Qverview ==

This script initializes an SDP instance on a single machine.
This script is intended to support two scenarios:

* First time SDP installation on a given machine. In this case, the
user calls the install_sdp.sh script, which in turn calls this script.
See 'install_sdp.sh -man' for more information.

* Adding new SDP instances (separate Helix Core data sets) to an existing
SDP installation on a given machine. For this scenario, this mkdirs.sh
script is called directly.

An SDP instance is a single Helix Core data set, with its own unique
set of one set of users, changelist numbers, jobs, labels, versioned
files, etc. An organization may run a single instance or multiple
instances.

This is intended to be run either as root or as the operating system
user account (OSUSER) that p4d is confiqured to run as, typically
"perforce’. It should be run as root for the initial install.
Subsequent additions of new instances do not require root.

== Directory Structure ==

If an initial install as done by a user other than root, various

206 © 2007-2024 Perforce Software, Inc.

Appendix J: More Detail on mkdirs.sh - 207 of 213
directories must exist and be writable and owned by 'perforce' before starting:

/p4

/hxcheckpoints

/hxdepots

/hxlogs

/hxmetadata

/hxmetadata?

/opt/perforce/helix-sdp (optional; used for package installations)

¥ 0% X %k X X %

The directories starting with '/hx' are configurable, and can be changed by
settings in the mkdirs.cfqg file (or mkdirs.N.cfg), or with command line
options as illustrated here:

-MDD /bigdisk

-MCD /ckps

-MLG /jnl

-MDB1 /db1

-MDB2 /db2
This script creates an init script in the /p4/N/bin directory.
== Crontab ==
Crontabs are generated for all server types.
After running this script, set up the crontab based on templates
generated as /p4/common/etc/cron.d. For convenience, a sample crontab
is generated for the current machine as /p4/p4.crontab.<SDPInstance>

(or /p4/p4.crontab.<SDPInstance>.new if the former name exists).

These files should be copied or merged into any existing files named
with this convention:

/p4/common/etc/cron.d/crontab.<osuser>.<host>

where <osuser> is the user that services run as (typically 'perforce'),
and <host> is the short hostname (as returned by a "hostname -s' command).

== Init Mechanism ==

If this script is run as root, the init mechanism (Systemd or SysV) is
configured for installed services.

The Systemd mechanim is used if the the /etc/systemd/system folder exists and
systemctl is in the PATH of the root user. Otherwise, the SysV init mechanism
is used.

== Firewall Configuration ==

This script checks to see if a known firewall type is available. The
© 2007-2024 Perforce Software, Inc. 207

208 of 213 - Appendix J: More Detail on mkdirs.sh

firewalld is checked using the command 'firewall-cmd --state' command,

and the ufw firewall is checked using the 'ufw status'. If either firewall

is detected, the ports required for Helix Core applications installed are

opened in the firewall. For more information, see the templates in these folders:

/p4/common/etc/firewalld
/p4/common/etc/ufw

If the firewall service is not online, no firewall coniguration is performed.
== SELinux Configuration ==

If Systemd is used and the semanage and restorecon utilities are available in
the PATH of the root user, then SELinux configuration for the installed
services is done.

REQUIRED PARAMETERS:

<instance>
Specify the SDP instance name to add. This is a reference to the Perforce
Helix Core data set.

OPTIONS:
-s <ServerID>
Specify the ServerID, overriding the REPLICA_ID setting in the confiquration
file.

-S <TargetServerID>
Specify the ServerID of the PATARGET of the server being installed.
Use this only when setting up an HA replica of an edge server.

-t <ServerType>
Specify the server type, overriding the SERVER_TYPE setting in the config
file. Valid values are:
* p4d_commit - A master/commit server.
* p4d_master - A synonym for p4d_commit.
* p4d_replica - A replica with all metadata from the master (not
filtered in any way).
* p4d_filtered_replica - A filtered replica or filtered forwarding
replica.
* p4d_edge - An edge server.
* p4d_edge_replica - Replica of an edge server. If used,
'-S <TargetServerID>" is required.
* pdbroker - An SDP host running only a standalone p4broker, with no p4d.
* pdp - An SDP host running only a standalone p4p, with no p4d.
* pdproxy - A synonym for p4p.

-tp <TargetPort>
Specify the target port. Use only if ServerType is p4p and pdbroker.

-1p <ListenPort>
Specify the listen port. Use only if ServerType is p4p and p4dbroker.

208 © 2007-2024 Perforce Software, Inc.

=1

Appendix J: More Detail on mkdirs.sh - 209 of 213

[<sve>[,<sve2>]]
Specify additional init scripts to be added to /p4/<instance>/bin
for the instance.

By default, the p4p service is installed only if '-t pdproxy' is
specified. p4dtg is never installed by default. Valid values
to specify are 'p4p' and 'dtg' (for the P4DTG init script).

If services are not installed by default, they can be added later
using templates in /p4/common/etc/init.d. Also, templates for
systemd service files that call the init scripts are supplied in
/p4/common/etc/systemd/system.

-MDD /bigdisk
-MCD /ckps
-MLG /jnl
-MDB1 /db1
-MDB2 /db2

Specify the '-M*' optons to specify mount points, overriding
DD/CD/LG/DB1/DB2 settings in the config file. Sample:

-MDD /bigdisk -MLG /jnl -MDB1 /fast

If -MDB2 is not specified, it is set the the same value as -MDB1 if
that is set, or else it defaults to the same default value as DB1.

<CfgFile>
Specify the path to the configuration file to use, overriding the
default logic of finding the file based on naming convention.

Specify -f 'fast mode' to skip chown/chmod commands on depot files.
This should only be used when you are certain the ownership and
permissions are correct, and if you have large amounts of existing
data for which the chown/chmod of the directory tree would be
time-consuming and unnecessary.

Specify '-p' to halt processing after preflight checks are complete,
and before actual processing starts. By default, processing starts
immediately upon successful completion of preflight checks.

-no_init

Specify '-no_init' to avoid any service configuration, which

is done by default if running as root (using systemd if available,
otherwise SysV). If '-po_init' is used, then neither systemd nor
SysV init mechanism is configured for installed services.

This option is implied if not running as root.

This option is implied if '-test' is used.

© 2007-2024 Perforce Software, Inc.

209

210 of 213 - Appendix J: More Detail on mkdirs.sh

-no_systemd
Specify '-no_systemd' to avoid using systemd, even if it
appears to be available. By default, systemd is used if it
appears to be available.

This is helpful in operating in containerized test environments
where systemd does not work even if it appears to be available.

This option is implied if the systemctl command is not available
in the PATH of the root user.

This option is implied if '-no_init' is used.

-no_enable
Specify '-no_enable' to avoid enabling systemd services to start
automatically after a reboot. If this option is used, systemd
services will still be created, allowing services to be manually
started and stopped.

Specifically, this options means the 'systemctl enable' command
is not run for generated services.

-no_cron
Specify '-no_cron' to avoid loading the crontab.

A crontab file is generated in the /p4 directory, but
but with '-no_cron, this file is not loaded as the active crontab.

-no_firewall
Specify "-no_firewall' to avoid attempting firewall configuration.

By default, if the firewalld service is found to be running,
it is confiqured so that the ports for p4d and p4broker are
open.

-fs Specify '-full' when calling gen_sudoers.sh to install a new, full
sudoers file. This option is only available if running as root.

This option is mutually exclusive with '-1s'.
See 'gen_sudoers.sh -man' for more info.

-1s Specify '-limited"' when calling gen_sudoers.sh to install a new,
limited sudoers file. This option is only available if running as
root.

This option is mutually exclusive with '-fs'.
See 'gen_sudoers.sh -man' for more info.

-L <log>
210 © 2007-2024 Perforce Software, Inc.

Appendix J: More Detail on mkdirs.sh - 211 of 213

Specify the path to a log file, or the special value 'off' to disable
logging. By default, all output (stdout and stderr) goes to this file
in the current directory:

mkdirs.<instance>.<datestamp>.log

NOTE: This script is self-logging. That is, output displayed on the
screen is simultaneously captured in the log file. Do not run this
script with redirection operators like '> log' or '2>&1', and do not
use 'tee'.

DEBUGGING OPTIONS:
-test

Specify '-test' to execute a simulated install to /tmp/p4 as the install
root (rather than /p4), and with the mount point directories specified in
the configuration file prefixed with /tmp/hxmounts, defaulting to:

* /tmp/hxmounts/hxdepots

* /tmp/hxmounts/hxlogs

* /tmp/hxmounts/hxmetadata

This option implies '-no_init'.

-clean

-d

-D

Specify '-clean' with '-test' to clean up from prior test installs,
which will result in removal of files/folders installed under /tmp/hxmounts
and /tmp/p4.

Do not specify '-clean' if you want to test a series of installs.

No-Op. In No-Op mode, no actions that affect data or structures are
taken. Instead, commands that would be run are displayed. This is
an alternative to -test. Unlike '-p' which stops after the preflight
checks, with '-n' more processing logic can be exercised, with greater

detail about what commands that would be executed without '-n'.
Increase verbosity for debugging.

Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:

-h

Display short help message

-man Display man-style help message

FILES:

The mkdirs.sh script uses a configuration file for many settings. A
sample file, mkdirs.cfg, is included with the SDP. After determining
your SDP instance name (e.g. '1' or 'abc'), create a configuration
file for it named mkdirs.<N>.cfg, replacing 'N' with your instance.

Running 'mkdirs.sh N' will load configuration settings from mkdirs.N.cfg.

© 2007-2024 Perforce Software, Inc.

211

212 of 213 - Appendix J: More Detail on mkdirs.sh

UPGRADING SDP:
This script can be useful in testing and upgrading to new versions of
the SDP, when the '-test' flag is used.

EXAMPLES:
Example 1: Setup of first instance

Setup of the first instance on a machine using the default instance name,
'1", executed after using sudo to become root:

$ sudo su -
$ cd /hxdepots/sdp/Server/Unix/setup
$ vi mkdirs.cfg

Adjust settings as desired, e.g P4PORT, P4BROKERPORT, etc.
$./mkdirs.sh 1

A Tlog will be generated, mkdirs.1.<timestamp>.log

Example 2: Setup of additional instance named 'abc'.
Setup a second instance on the machine, which will be a separate Helix
Core instance with its own P4RO0T, its own set of users and

changelists, and its own license file (copied from the master instance).

Note that while the first run of mkdirs.sh on a given machine should be
done as root, but subsequent instance additions can be done as the
"perforce’ user (or whatever operating system user accounts Perforce
Helix services run as).

$ sudo su - perforce

$ cd /hxdepots/sdp/Server/Unix/setup
$ cp mkdirs.cfg mkdirs.abc.cfg

$ chmod +w mkdirs.abc.cfg

$ vi mkdirs.abc.cfg

Adjust settings in mkdirs.abc.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.
$./mkdirs.sh abc
A log will be generated, mkdirs.abc.<timestamp>.log

Example 3: Setup of additional instance named 'alpha' to run a standalone p4p
targeting commit.example.com:1666 and listening locally on port 1666.

$ sudo su -
$ cd /hxdepots/sdp/Server/Unix/setup
$./mkdirs.sh alpha -t p4p -tp commit.example.com:1666 -1p 1666

Example 4: Setup of instance named '1' to run a standalone p4broker
212 © 2007-2024 Perforce Software, Inc.

SEE

Appendix J: More Detail on mkdirs.sh - 213 of 213
targeting commit.example.com:1666 and listening locally on port 1666.

$ sudo su -
$ cd /hxdepots/sdp/Server/Unix/setup
$./mkdirs.sh 1 -t p4dbroker -tp commit.example.com:1666 -1p 1666

Example 5: Setup 2 instances A and B with limited sudoers on a fresh new machine:
$ sudo su -

$ cd /hxdepots/sdp/Server/Unix/setup

$ cp mkdirs.cfg mkdirs.A.cfg

Adjust settings in mkdirs.A.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.

$ cp mkdirs.A.cfg mkdirs.B.cfg

Adjust settings in mkdirs.B.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.
Ensure port numbers do not conflict. Then generate Instance A:

$./mkdirs.sh A -1s
A log will be generated, mkdirs.A.<timestamp>.log

Next generate instnace B, updating the limited sudoers to reference both
instances.

$./mkdirs.sh B -1s

ALSO:
See 'install_sdp.sh -man' for more info on installing on a new machine.

See 'gen_sudoers.sh -man' for more info on generating/replacing sudoers.

See template:

* systemd service file templates: /p4/common/etc/systemd/system
firewalld templates: /p4/common/etc/firewalld

ufw firewall templates: /p4/common/etc/ufw

Init script templates: /p4/common/etc/init.d

* X%k

© 2007-2024 Perforce Software, Inc. 213

	Perforce Helix Core Server Deployment Package (for UNIX/Linux)
	Table of Contents
	Preface
	Chapter 1. Overview
	1.1. Using this Guide
	1.2. Getting the SDP
	1.3. Checking the SDP Version

	Chapter 2. Setting up the SDP
	2.1. Terminology Definitions
	2.1.1. Process
	2.1.2. Instance
	2.1.3. Server machine
	2.1.4. Server spec
	2.1.5. Server

	2.2. Pre-Requisites
	2.3. Volume Layout and Hardware

	Chapter 3. Maintaining the SDP
	3.1. Backup procedures
	3.1.1. Metadata checkpoints
	3.1.2. Backup of the partition containing depots, checkpoints, and the SDP configuration

	3.2. Notifications
	3.2.1. Configuration
	3.2.2. Notifications to monitor
	3.2.2.1. Daily Checkpoint
	3.2.2.2. Verify
	3.2.2.3. Sync Replica

	3.3. Disk usage

	Chapter 4. Installing the SDP
	4.1. Using install_sdp.sh
	4.1.1. Planning
	4.1.2. STEP 1: Configure storage.
	4.1.3. STEP 2: Download the install_sdp.sh script.
	4.1.4. STEP 3: Generate install configuration file.
	4.1.5. STEP 4: Modify install configuration file.
	4.1.6. STEP 5: Install SDP (Dry Run).
	4.1.7. STEP 6: Install SDP (Live Run).
	4.1.8. STEP 7: Install a license file.
	4.1.9. Start Your Helix Core Server

	4.2. Using mkdirs.sh
	4.2.1. Use of SSL
	4.2.1.1. Changing SSL Certificates
	4.2.1.2. Configuration script mkdirs.cfg

	4.2.2. SDP Init Scripts
	4.2.2.1. Configuring systemd
	Configuring systemd for p4d
	Configuring systemd for p4p
	Configuring systemd for p4dtg
	Configuring systemd p4broker - multiple configs

	4.2.2.2. Enabling systemd under SELinux
	4.2.2.3. Configuring SysV Init Scripts

	4.2.3. Configuring Automatic Service Start on Boot
	4.2.3.1. Automatic Start for Systems using systemd
	4.2.3.2. For systems using the SysV init mechanism

	4.2.4. SDP Crontab Templates
	4.2.5. Completing Your Server Configuration
	4.2.6. Validating your SDP installation

	4.3. Local SDP Configuration
	4.3.1. Load Order

	4.4. Setting your login environment for convenience
	4.5. Configuring protections, file types, monitoring and security
	4.6. Operating system configuration
	4.6.1. Configuring email for notifications
	4.6.2. Swarm Email Configuration
	4.6.3. Configuring PagerDuty for notifications
	4.6.3.1. Prerequisites
	4.6.3.2. SDP Configuration
	4.6.3.3. Optional variables
	Example Additional Context Configuration

	4.6.4. Configuring AWS Simple Notification Service (SNS) for notifications
	4.6.4.1. Prerequisites
	4.6.4.2. SDP Configuration
	4.6.4.3. Example IAM Policy

	4.7. Other server configurables
	4.8. Archiving configuration files
	4.9. Installing Swarm Triggers

	Chapter 5. Backup, Replication, and Recovery
	5.1. Typical Backup Procedure
	5.2. Planning for HA and DR
	5.2.1. Further Resources
	5.2.2. Creating a Failover Replica for Commit or Edge Server
	5.2.3. What is a Failover Replica?
	5.2.4. Mandatory vs Non-mandatory Standbys
	5.2.5. Server host naming conventions

	5.3. Full One-Way Replication
	5.3.1. Replication Setup
	5.3.2. Replication Setup for Failover
	5.3.3. Pre-requisites for Failover
	5.3.4. Using mkrep.sh
	5.3.4.1. SiteTags.cfg
	5.3.4.2. Output of mkrep.sh

	5.3.5. Addition Replication Setup
	5.3.6. SDP Installation
	5.3.6.1. SSH Key Setup

	5.4. Recovery Procedures
	5.4.1. Recovering a master server from a checkpoint and journal(s)
	5.4.2. Recovering a replica from a checkpoint
	5.4.3. Recovering from a tape backup
	5.4.4. Failover to a replicated standby machine

	Chapter 6. Upgrades
	6.1. Upgrade Order: SDP first, then Helix P4D
	6.2. SDP and P4D Version Compatibility
	6.3. Upgrading the SDP
	6.3.1. Sample SDP Upgrade Procedure
	6.3.1.1. Sample SDP Upgrade in Classic Structure
	6.3.1.2. Sample SDP Upgrade in OS Package Structure

	6.3.2. SDP Legacy Upgrade Procedure

	6.4. Upgrading Helix Software with the SDP
	6.4.1. Get Latest Helix Binaries
	6.4.2. Upgrade Each Instance
	6.4.3. Global Topology Upgrades - Outer to Inner

	6.5. Database Modifications

	Chapter 7. Maximizing Server Performance
	7.1. Ensure Transparent Huge Pages (THP) is turned off
	7.2. Putting server.locks directory into RAM
	7.3. Installing monitoring packages
	7.4. Optimizing the database files
	7.5. P4V Performance Settings
	7.6. Proactive Performance Maintenance
	7.6.1. Limiting large requests
	7.6.2. Offloading remote syncs

	Chapter 8. Tools and Scripts
	8.1. General SDP Usage
	8.1.1. Linux
	8.1.2. Monitoring SDP activities

	8.2. Upgrade Scripts
	8.2.1. get_helix_binaries.sh
	8.2.2. upgrade.sh
	8.2.3. sdp_upgrade.sh

	8.3. Legacy Upgrade Scripts
	8.3.1. clear_depot_Map_fields.sh

	8.4. Core Scripts
	8.4.1. p4_vars
	8.4.2. p4_<instance>.vars
	8.4.3. p4master_run
	8.4.4. daily_checkpoint.sh
	8.4.5. keep_offline_db_current.sh
	8.4.6. live_checkpoint.sh
	8.4.7. mkrep.sh
	8.4.8. p4verify.sh
	8.4.9. p4login
	8.4.10. p4d_<instance>_init
	8.4.11. recreate_offline_db.sh
	8.4.12. refresh_P4ROOT_from_offline_db.sh
	8.4.13. run_if_master.sh
	8.4.14. run_if_edge.sh
	8.4.15. run_if_replica.sh
	8.4.16. run_if_master/edge/replica.sh
	8.4.17. sdp_health_check.sh

	8.5. More Server Scripts
	8.5.1. p4.crontab
	8.5.2. verify_sdp.sh

	8.6. Other Scripts and Files
	8.6.1. backup_functions.sh
	8.6.2. broker_rotate.sh
	8.6.3. ccheck.sh
	8.6.4. edge_dump.sh
	8.6.5. edge_vars
	8.6.6. edge_shelf_replicate.sh
	8.6.7. load_checkpoint.sh
	8.6.8. gen_default_broker_cfg.sh
	8.6.9. journal_watch.sh
	8.6.10. kill_idle.sh
	8.6.11. mkdirs.sh
	8.6.12. p4d_base
	8.6.13. p4broker_base
	8.6.14. p4ftpd_base
	8.6.15. p4p_base
	8.6.16. p4pcm.pl
	8.6.17. p4review2.py
	8.6.18. proxy_rotate.sh
	8.6.19. p4sanity_check.sh
	8.6.20. p4dstate.sh
	8.6.21. ps_functions.sh
	8.6.22. pull.sh
	8.6.23. pull_test.sh
	8.6.24. purge_revisions.sh
	8.6.25. recover_edge.sh
	8.6.26. replica_cleanup.sh
	8.6.27. replica_status.sh
	8.6.28. request_replica_checkpoint.sh
	8.6.29. rotate_journal.sh
	8.6.30. submit.sh
	8.6.31. submit_test.sh
	8.6.32. sync_replica.sh
	8.6.33. templates directory
	8.6.34. update_limits.py

	Chapter 9. Sample Procedures
	9.1. Installing Python3 and P4Python
	9.2. Installing CheckCaseTrigger.py
	9.3. Swarm JIRA Link
	9.4. Reseeding an Edge Server
	9.5. Edge Reseed Scenario
	9.5.1. Step 0: Preflight Checks
	9.5.2. Step 1: Create New Edge Seed Checkpoint
	9.5.3. Step 2: Transfer Edge Seed
	9.5.4. Step 3: Reseed the Edge

	Appendix A: SDP Package Contents and Planning
	A.1. SDP Classic and OS Package Structures
	A.2. SDP Runtime Structure
	A.2.1. The Site Directory

	A.3. P4D versions and links
	A.4. Storage Volumes Layout
	A.4.1. Storage Volumes for a Helix Core Server
	A.4.2. Storage Volumes for a Helix Proxy
	A.4.3. Storage Volumes for a Helix Broker

	A.5. Memory and CPU
	A.6. Case Insensitive P4D on UNIX/Linux

	Appendix B: The journalPrefix Standard
	B.1. SDP Scripts that set journalPrefix
	B.2. First Form of journalPrefix Value
	B.2.1. Detail on "Completely Unfiltered"

	B.3. Second Form of journalPrefix Value
	B.4. Scripts for Maintaining the offline_db
	B.5. SDP Structure and journalPrefix
	B.6. Replicas of Edge Servers
	B.7. Goals of the journalPrefix Standard

	Appendix C: Server Spec Naming Standard
	C.1. General Form
	C.1.1. Commit Server Spec
	C.1.2. Helix Server Tags
	C.1.3. Replica Type Tags
	C.1.3.1. Replication Notes

	C.1.4. Site Tags

	C.2. Example Server Specs
	C.3. Implications of Replication Filtering
	C.4. Other Replica Types
	C.5. The SDP mkrep.sh script

	Appendix D: Frequently Asked Questions
	D.1. How do I tell what version of the SDP I have?
	D.2. How do I change super user password?
	D.3. Can I remove the perforce user?
	D.4. Can I clone a VM to create a standby replica?

	Appendix E: Troubleshooting Guide
	E.1. Daily_checkpoint.sh fails
	E.1.1. Last checkpoint not complete. Check the backup process or contact support.

	E.2. Replication appears to be stalled
	E.2.1. Resolution
	E.2.2. Make Replication Errors Visible
	E.2.3. Remove state file

	E.3. Archive pull queue appears to be stalled
	E.3.1. Resolutions
	E.3.1.1. Remove and re-queue
	E.3.1.2. Check for verify errors on the parent server

	E.4. Can’t login to edge server
	E.4.1. Resolution

	E.5. Updating offline_db for an edge server
	E.5.1. Resolution

	E.6. Journal out of sequence in checkpoint.log file
	E.7. Unexpected end of file in replica daily sync

	Appendix F: Starting and Stopping Services
	F.1. SDP Service Management with the systemd init mechanism
	F.1.1. Brokers and Proxies
	F.1.2. Root or sudo required with systemd

	F.2. SDP Service Management with SysV init mechanism

	Appendix G: Brokers in Stack Topology
	Appendix H: SDP Health Checks
	Appendix I: More Detail on install_sdp.sh
	I.1. Sample configuration file sdp_install.cfg
	I.2. install_sdp.sh

	Appendix J: More Detail on mkdirs.sh

