
Base Picking
Sam Stafford

Perforce Software, Inc

A deep dive into the integration engine

Table of Contents

The function of the base in a three-way merge...2
Modeling a file's revision graph as a growing set of elements..4
Finding the best merge base within a revision graph..5
Modeling the effect of different resolve and submit actions...5
Tracking ignored edits...6
Determining the result of an integration..8
Picking the base...10
Picking a non-ideal base..11
Propagating a negative debit...13
Remapping renamed files..14
Incrementing the move base..16
Appendix: Esoteric configurables...18

The function of the base in a three-way merge

A three-way merge operation combines the changes from two files (the "legs") relative to a common
origin (the "base").

Figure 1 illustrates a simple example of a textual three way merge. The delta (difference) between the
first leg and the base is the text "bar", inserted at the beginning of the file, and the delta between the
second leg and the base is the text "ola", inserted at the end of the file. The merged result contains the
union of both deltas.

Although in figure 1 the merged result also contains the union of the content from both legs, this is not
necessarily always the case; the role of the base in a three-way merge is to determine the delta, which
in turn determines the result. An example of a "negative" delta (removing content, rather than adding
it, relative to the base) is given in figure 2.

Figure 1: a three way merge where both legs add content

In a textual merge, it is possible for the deltas to overlap with one another; when this happens, it may
not be possible for a fully automated merge process to determine the correct result, and a "conflict" is
generated requiring human intervention. To the extent it is possible to do so while still producing the
desired result, it is desirable to perform a merge using a base that minimizes the deltas, since
minimizing the deltas minimizes the probability of their overlapping, and therefore the probability of a
conflict.

Although in practice the subject of a merge operation is typically a set of text files, the concept of
combining differences can be extended to other types of data, such as binary sets, which make it
possible to model merge interactions as a truth table. Note that in each column, the difference(s)
between the base and the two legs determine the final result.

Base 0 0 0 0 1 1 1 1

Leg 1 0 0 1 1 0 0 1 1

Leg 2 0 1 0 1 0 1 0 1

Result 0 1 1 1 0 0 0 1

Figure 2: a three way merge where one leg removes content

By imagining that each column of this table corresponds to a particular section of a text file, with "1"
corresponding to a particular piece of text being present and "0" corresponding to its absence, we could
map this model back to a non-conflicting textual merge. Modeling a merge as a more abstract set of
elements rather than as actual text files provides a number of advantages when dealing with large
numbers of changes, though, so this paper will predominantly discuss merges in this more abstract
form rather than providing textual examples.

Modeling a file's revision graph as a growing set of elements

Each revision of a file represents some change to that file's content. By representing each change as a
new element being added to a set that represents a file's contents, commonalities between revisions can
be modeled independently of the actual content.

Figure 3 represents different revisions of a file as different sets of up to 4 unique elements, with each
element corresponding to one of four positions in a grid; each element is either absent or present within
a given revision. The initial "add" revision contains only the first element, and subsequent "edit"
revisions each add a new element, while also including any elements present in the previous revision.
When a "branch" is created, it is identical to the revision that it is branched from, and when the two
branched variants are "merged", the resulting revision contains all the elements of both.

Note that the base of this merge would be the revision that was initially branched; hence the edit in
each of the legs is a delta that becomes part of the result. It is intuitive that in this simple case the
branch point is the "best" possible base, but to handle more complex cases, we require a rigorous
definition of the best base that can be found in any given situation.

Figure 3: Branched file history as a set of elements

Finding the best merge base within a revision graph

The purpose of a merge operation is to propagate changes from one file to another. One leg of the
merge is the target file, and the other is the source file, which contains the set of changes to be
propagated. The desired result of the merge is the target file with the source changes applied to it.

For the merge base to produce the desired result, each element that is different between the two
legs must be absent from the base if it is to be present in the result, and present in the base if it is
to be absent from the result.

For the merge base to minimize the chances of conflict during a real-world merge, each element
that is identical between the two legs should also be identical with the base.

Given a graph of each existing revision of a file, and a known result that we are trying to produce by
merging two of those revisions, the set of acceptable bases is defined as those that will in theory
produce the desired result, and the best possible base is the base that within the set of acceptable bases
will minimize the odds of a merge conflict.

Modeling the effect of different resolve and submit actions

Creating an abstract model of the contents of each revision according to the revision and integration
metadata allows us to simulate past merges and determine the optimal base for a pending merge
without needing to access the actual content -- given that a merge operation may easily include millions
of files, this scalability is vital. For debugging purposes a textual representation of this model is
included in the server log when the dmc=5 trace flag is enabled. Revision and integration metadata for
individual files can be accessed via the client p4 filelog command, or viewed visually via the Revision
Graph graphical tool.

Each "edited" revision adds one new element of content (hereafter an "edit") to the set that represents
the file's history. A file that is simply added and edited, with no branching or merging, will simply
accrue one edit per revision. A revision created as a result of an integration operation is considered
"edited" if the operation is one that permits edits to be made, such as a "move" command or an "edit
from" resolve action or a "branch" action that is converted into an "add" action. An integration
operation in which the target may contain no changes other than those propagated from the source is
considered a "pure" integration and does not add a new edit.

If an integration record indicates that the source and target revisions are identical (a "branch" or
"copy"), then the abstract model reflects this and sets the target revision to be identical to the source.
Although in most cases a given revision will include all of the edits of the previous revision, a "copy"
operation can cause edits to be effectively removed from a file.

If an integration record indicates a merge (either a pure "merge into" or an edited "edit into"), then the
range of edits corresponding to the source revision range of the integration record is combined with the
previous revision of the target to produce a simulated merge result, which is then taken to be the
contents of that revision. If multiple merges were performed into a single revision, they are added
together, and if an "edit into" is involved, one additional unique edit is introduced as well.

The scenario illustrated in figure 4 is represented in the content model as follows:

1.... //depot/foo#1
1.... //depot/ola#1
11... //depot/foo#2
11... //depot/bar#1
1.1.. //depot/ola#2
11.1. //depot/bar#2
1.1.. //depot/foo#3
1.111 //depot/bar#3

Each column represents the presence or absence of a particular edit, with "1" indicating presence and
the placeholder "." indicating absence. The two revisions that are particularly of note in this graph are
foo#3 and bar#3.

The copy from ola#2 to foo#3 results in two differences between foo#2 and foo#3. One edit is
removed (the edit originating in foo#2) and one edit is added (the edit originating in ola#2):

11... //depot/foo#2
1.1.. //depot/foo#3

The edited (or "dirty") merge from foo#3 to bar#3 propagates these differences while also adding a new
edit:

11.1. //depot/bar#2
1.111 //depot/bar#3

Note to the reader: if this section doesn't make sense yet, it's just going to get more confusing from
here.

Tracking ignored edits

An "ignored" integration record creates persistent divergence between two files -- in other words, it
specifies that there are some changes that belong in one branch of a file but not another, and it requests
that future merge operations preserve that relationship for those changes while continuing to propagate
newer changes.

Figure 4: copy and merge actions

1.. //depot/foo#1
1.. //depot/bar#1
11. //depot/foo#2
1i. //depot/bar#2
111 //depot/foo#3
1i1 //depot/bar#3

The "i" in the content model represents an ignored edit. This edit is not actually present in the file, but
the "i" acts as a placeholder that prevents future merge operations from attempting to add this particular
edit to this particular file.

Since merges can propagate the removal of an edit just as easily as the addition of an edit, the model
includes for the possibility of a removal being ignored.

1.. //depot/foo#1
11. //depot/foo#2
11. //depot/bar#1
1.. //depot/foo#3
1I. //depot/bar#2
1.1 //depot/foo#4
1I1 //depot/bar#3

The "I" represents an edit that is present but with an ignored removal -- that is, future merge operations
should not attempt to remove this edit.

Figure 5: an ignore followed by a merge

Figure 6: an ignored removal

Determining the result of an integration

The integration engine receives as input a range of revisions for a particular depot file (the source) and
the path of a file that can be opened on the client (the target), and returns as its output a scheduled
resolve that will propagate the changes from the source revisions into the open target file (or no
resolve, in which case the file is not opened at all). The source revision(s) and target path for each
input file are determined by the branch view and revision range supplied to the p4 integrate (or p4
merge) command.

The dmc=5 server configuration setting produces detailed trace logging when we run an integration
from X to Y as illustrated in figure 7. The integration operation starts with the source revision range
and the target:

==integ //depot/X#1,#4 -> //depot/Y==

Integration credits are loaded in order to build the graph:

credit //depot/X#1,1 -> //depot/Y#1,1 (branch from)
credit //depot/X#3,3 <- //depot/Y#2,2 (edit into)
credit //depot/Z#2,2 -> //depot/Y#3,3 (merge from)
credit //depot/Y#1,1 <- //depot/X#1,1 (branch into)
credit //depot/Y#2,2 -> //depot/X#3,3 (edit from)
credit //depot/Z#1,1 <- //depot/X#1,1 (branch into)
credit //depot/Z#2,2 -> //depot/X#4,4 (merge from)
credit //depot/X#1,1 -> //depot/Z#1,1 (branch from)
credit //depot/X#4,4 <- //depot/Z#2,2 (merge into)
credit //depot/Y#3,3 <- //depot/Z#2,2 (merge into)

Figure 7: setting up an integration from X to Y

The content of all the files in the graph is modeled as follows, with "pure" (unedited) revisions marked
with a "p" and revisions that were created by "copying" another revision marked with a "c":

1............................... ----- //depot/X#1
1............................... pc--- //depot/Y#1
11.............................. ----- //depot/Y#2
1............................... pc--- //depot/Z#1
1.1............................. ----- //depot/Z#2
111............................. p---- //depot/Y#3
1..1............................ ----- //depot/X#2
11.11........................... ----- //depot/X#3
11111........................... p---- //depot/X#4

The result of the X->Y integration is determined by walking through the history of X and Y and
accumulating a list of edits from X that may need to be applied to Y (the "debit"):

===debit calculation for //depot/X#1,#4===
===trimming debit to //depot/X#2,#4 via copy===
//depot/Y#1 copied from //depot/X#1
1............................... ----- //depot/X#1
1............................... pc--- //depot/Y#1
11.............................. ----- //depot/Y#2
111............................. p---- //depot/Y#3
1..1............................ ----- //depot/X#2
 + ----- accumulated debits
11.11........................... ----- //depot/X#3
 + ++ ----- accumulated debits
11111........................... p---- //depot/X#4
 ++++ ----- accumulated debits
11111........................... ----- source
 ++++ ----- debit
 ----- ignored (source+target)
111............................. ----- target
11111........................... ----- result

Certain heuristics may be used to trim the debit prior to this calculation, and this will be noted in the
trace log; in this case the fact that X#1 was copied (branched) into Y#1 means that X#1 does not need
to be included in the debit.

The debits are accumulated by comparing each revision in the source range to the revision before it and
tracking the set of edits that were added or removed. This set is then applied to the target to produce
the result -- that is, the content of the revision that would be created in an ideal pure merge from the
source to the target. If at this point the result already looks like the head revision of the target file, no
merge needs to happen at all.

Picking the base

Continuing with the same example, the integration engine now uses the merge result (calculated in the
previous step) and the two legs of the merge (the source and target revisions, which are also known at
this point) to determine what contents the base should have.

===begin base search===
11111........................... ----- theirs
111............................. ----- yours
11111........................... ----- result
 ++ ----- to insert/remove
111............................. ----- ideal base
1............................... ----B //depot/X#1
1............................... pc--b //depot/Y#1
11.............................. ----B //depot/Y#2
1............................... pc--b //depot/Z#1
1.1............................. ----b //depot/Z#2
111............................. p---B //depot/Y#3
1..1............................ ----- //depot/X#2
11.11........................... ----- //depot/X#3
11111........................... p---- //depot/X#4
best base: //depot/Y#3

The two legs of the merge are "theirs" and "yours" (corresponding to the p4 resolve command that the
integration engine is setting up). For each edit that differs between "theirs" and "yours", we need the
base to also differ from the desired result, since a merge always applies the difference relative to the
base. For each edit that is identical between "theirs" and "yours" (and which should also be identical
with the result), an ideal merge will produce the correct result regardless of the state of the base, but
having that edit be identical in the base as well will reduce the chance of a conflict, so this is preferred
if possible.

Using these rules it is easy to determine what the ideal base should look like, and also to establish a
function for what an "acceptable" base must contain (or exclude) and how much a given acceptable
base differs from the ideal. The graph is traversed and each revision is scored according to this
function. A "B" in this section indicates that the revision is the best base seen so far; a "b" indicates
that the revision is an acceptable base but is not the best so far.

In this example, it happens that there is an actual revision matching the ideal base (Y#3) and so this is
the chosen base for the merge.

Picking a non-ideal base

In the previous example, a revision was found that exactly matched the calculated ideal base. In this
example, the ideal base does not exist, so it is necessary to find the best acceptable base from among
the existing revisions.

===debit calculation for //depot/main#1,#4===
===trimming debit to //depot/main#2,#4 via copy===
...applied reverse credit to //depot/main#4
...applied forward credit to //depot/main#2
//depot/rel#1 copied from //depot/main#1
===trimming debit to //depot/main#3,#4 via direct credit===
1............................... pc--- //depot/rel#1
11.............................. ----- //depot/rel#2
1.1............................. ----- //depot/main#2
11i............................. p---- //depot/rel#3
 i ----- accumulated ignores
1.11............................ ----- //depot/main#3
 + ----- accumulated debits
1111............................ p---- //depot/main#4
 + + ----- accumulated debits
1111............................ ----- source
 + + ----- debit
 i ----- ignored (source+target)
11i............................. ----- target
11.1............................ ----- result

The edits that are ignored in the target are tracked along with the debits that have been added to the
source, and factor into the final result. In this example main#2 is automatically trimmed out of the
debit due to having been directly integrated into the target, but if it had not, the ignore would be used to
"mask out" that edit and the calculated result would be the same.

Figure 8: integrating around an ignored edit

===begin base search===
1111............................ ----- theirs
11i............................. ----- yours
11.1............................ ----- result
 + ----- to insert/remove
111............................. ----- ideal base
1............................... ----B //depot/main#1
1............................... pc--b //depot/rel#1
11.............................. ----B //depot/rel#2
1.1............................. ----B //depot/main#2
11i............................. p---b //depot/rel#3
1.11............................ ----- //depot/main#3
1111............................ p---- //depot/main#4
best base: //depot/main#2

The ideal base in this case is a revision that does not exist. In scoring the potential bases, main#2 is
favored as the best available option because it contains the edit that was ignored -- although the base
selection process attempts to include as many of the ideal base's edits as possible, we prioritize the
ignored edits, because including these will actually change the merge result even in an ideal situation,
whereas including a common edit may increase the chances of a conflict but will not change the
outcome of an ideal merge.

When resolving with this base, the user will be re-resolving the edit from rel#3 (which was previously
merged into main#4), but will not be bringing the previously ignored main#2 edit into rel.

Propagating a negative debit

In figure 9 we have a source file that has had edits removed via a copy from an older revision. The
trace logging is hopefully mostly self-explanatory by this point:

===debit calculation for //depot/bar#1,#2===
===trimming debit to //depot/bar#2 via copy===
//depot/baz#1 copied from //depot/bar#1
11.............................. pc--- //depot/bar#1
11.............................. pc--- //depot/baz#1
1............................... pc--- //depot/bar#2
 - ----- accumulated debits
1............................... ----- source
 - ----- debit
11.............................. ----- target
1............................... ----- result
===begin base search===
1............................... ----- theirs
11.............................. ----- yours
1............................... ----- result
 - ----- to insert/remove
11.............................. ----- ideal base
1............................... ----- //depot/foo#1
11.............................. ----B //depot/foo#2
11.............................. pc--B //depot/bar#1
11.............................. pc--b //depot/baz#1
1............................... pc--- //depot/bar#2
best base: //depot/bar#1

The only new thing in this example is the negative debit, which is generated by virtue of bar#2 having
one fewer edit than bar#1. The negative debit is applied to the target to generate the result, and from
that point the base calculation happens exactly as with the previous examples.

In a more complex example we could easily have a mix of positive and negative debits and ignores,
since each edit is tracked individually across the entire graph.

Figure 9: a source with removed edits

Remapping renamed files

The examples so far have been cases where the source and target file both exist and are both related. If
one or other of the files have been renamed, the target file generated by mapping the source through the
branch view will probably not be the file that actually has common ancestry with the source.

In figure 10, //depot/B* is being integrated to //depot/A*. The desired outcome in this situation is for
resolve to be able to merge the edits from B2 and A1, and to move A1 (including the merge result) to
A2. The integration engine skips B1 because its head revision is a "move/delete", depending on the
fact that every "move/delete" will have a matching "move/add", which in this case is B2.

The initially mapped target when integrating B2 is A2, which does not exist. If the target file does not
exist, or if the base search process determines that the existing target file has nothing in common with
the source file, the graph is searched for a better match.

==integ //depot/B2#1,#2 -> //depot/A2==
===searching for credit into //depot/A2===
Checking for match between //depot/B2#2 and //depot/A2#none:
 checking //depot/B2#2 for move...
 ... moved //depot/B[1->2]
 testing branch ancestry of //depot/B1#1 and //depot/A1#1
 branch history B1#1 <- B1#1 <- A1#1
 branch history A1#1 <- A1#1
 common ancestor: //depot/A1#1 (move diff 0)

The move from //depot/B1 to //depot/B2 is used to translate //depot/A2 backward to the path
//depot/A1. The histories of B1 and A1 are then both explored backwards to see if they converge at a
common ancestor -- since we are only trying to determine at this point if they are the "same" file rather
than to identify precise points of commonality and divergence, this is a much simpler process than the
base calculation.

Figure 10: integrating a renamed file

Since the two do converge, the base selection process is restarted with the new target path:

===searching for credit into //depot/A1===
===begin base search===
111............................. ----- theirs
1............................... ----- yours
111............................. ----- result
 ++ ----- to insert/remove
1............................... ----- ideal base
1............................... ----B //depot/A1#1
1............................... pc--b //depot/B1#1
11.............................. -c-m- //depot/B2#1
111............................. ----- //depot/B2#2
best base: //depot/A1#1
move base is //depot/A1

The "move base" is determined based on the common ancestor found during the matching process and
is used for the filename resolve, which will determine how the open target file (A1) is to be moved as
part of the resolve operation. This is very similar to a content merge, except that the filenames
themselves are merged to produce the result. The "theirs" filename is the originally mapped path, and
"yours" is (as always) the open file. Hence:

Base: //depot/A1
Theirs: //depot/A2
Yours: //depot/A1
Result: //depot/A2

Incrementing the move base

In cases involving more than one rename, there are multiple potential move bases, just as there are
multiple revisions that might serve as a potential base when merging the content. In the following
example, the move base is incremented in order to simultaneously ignore one move action while
propagating another.

The file in A has been moved twice, once from "foo" to "bar" and once from "bar" to "1/bar". The file
in B has been moved from "foo" to "ola". When we integrate from A to B, the source file is A/1/bar
and the initial target is B/1/bar. Since there is no target file, we look for a better match and discover
B/ola:

==integ //depot/A/1/bar#1 -> //depot/B/1/bar==
===searching for credit into //depot/B/1/bar===
Checking for match between //depot/A/1/bar#1 and
//depot/B/1/bar#none:
 checking //depot/A/1/bar#1 for move...
 ... moved //depot/A/[bar->1/bar]
 checking //depot/A/bar#1 for move...
 ... moved //depot/A/[foo->bar]
 testing branch ancestry of //depot/A/foo#1 and //depot/B/foo#2
 branch history A/foo#1 <- A/foo#1
 branch history B/foo#2 <- B/foo#1 <- A/foo#1
 common ancestor: //depot/A/foo#1 (move diff 0)
CCA: //depot/A/foo#1
 checking //depot/B/foo#2 for move...
 ... moved //depot/B/[ola->foo]
 checking //depot/B/ola#1 for move...
===searching for credit into //depot/B/ola===

The dmc=5 trace log shows the path of the search from the initial source file (A/1/bar) backward to the
point where the source file has a corresponding target file (foo) and then forward to the current version
of the target file (B/ola).

Figure 11: an ignored move

Once the new target file has been found, the debit and base calculation can happen. The results of the
base calculation for the content are used to improve the move base:

===begin base search===
1.11............................ ----- theirs
11i............................. ----- yours
11.1............................ ----- result
 + ----- to insert/remove
1.1............................. ----- ideal base
1............................... ----B //depot/A/foo#1
1............................... pc--b //depot/B/foo#1
11.............................. -c-m- //depot/B/ola#1
1.1............................. -c-mB //depot/A/bar#1
11i............................. p---- //depot/B/ola#2
1.11............................ -c-m- //depot/A/1/bar#1
best base: //depot/A/bar#1
move base is //depot/B/foo
looking for latest credited move/add...
move/add //depot/A/bar#1 already credited
incrementing base to //depot/B/bar

The move base starts at the common filename foo, and additional move bases are examined by
following the move actions that have happened in the source (searching forward from the common
point) and mapping them to the target.

The first source move was from foo to bar, so we check to see if the result of that move
(//depot/A/bar#1) has "credit" into the target; in this context that is determined by whether it was
flagged as "best base so far" during the base calculation. It was (indicated by the capital B in the base
search log), so the move base is incremented from foo to bar, making the base for the filename merge
//depot/B/bar. The resulting filename merge produces a new path that merges [bar->1/bar] into the
existing ola path.

Base: //depot/B/bar
Theirs: //depot/B/1/bar
Yours: //depot/B/ola
Result: //depot/B/1/ola

Appendix: Esoteric configurables

The following configurable settings are undocumented and are described in this paper for educational
purposes. They are not recommended for use on production servers, but may be useful when
experimenting with different integration scenarios in a test environment. Configurables may be
enabled via the "p4 configure" command, e.g.:

p4 configure set dmc=5
p4 configure unset dmc

The dmc configurable corresponds to passing the flag -vdmc=N on the p4d command line, or setting
P4DEBUG=dmc=N. Setting dmc to higher thresholds enables trace logging for different server
commands; at a level of 5 or higher, the log will include the integration engine logging seen in this
paper. Due to the high volume of data written to the log, this is not recommended for use on
production servers.

The dm.integ.tweaks configurable may be set to enable specific modications to the integration engine
behavior. Different tweaks can be combined by adding them. The following tweaks are available as of
the 2016.1 release (this text is taken from p4 help undoc):

 dm.integ.tweaks 0 Modify integrate behavior (engine=3 only):
 1: Treat all 'copy' records as 'merge'
 2: Treat all 'ignore' records as 'edit'
 4: Retain credit for copied-over edits
 8: Force convergent merge of all edits
 16: Legacy (pre-2011.1) resolve behavior

The 1 and 2 tweaks both enable simple transformations of integration records; tweaks=1 causes all
"copy" records to be read as if they were "merge", and tweaks=2 causes all "ignore" records to be read
as if they were "edit". These very simple changes have wide-ranging effects. For example, if there are
no copy records, edits will never appear to have been rolled back, and if there are no ignore records, it
will not be possible to preserve divergence when merging back and forth between branches.

The tweaks=4 setting modifies the way that the content model is built, by causing "copy" records to
always be considered additive. This can produce behavior similar to tweaks=1 except by a different
mechanism; it is also more similar to previous versions of the integration engine in the sense that once
a revision has "credit" it retains it in spite of subsequent operations that roll back that revision's content.

The tweaks=8 setting modifies the debit calculation, simply setting the result to be the union of the
source and target, rather building the result through accumulation of positive and negative debits and
masking ignored edits. This setting is automatically disabled when setting a source revision range
(cherry-picking).

The tweaks=16 setting disables any type of resolve that did not exist prior to 2011, including (but not
limited to) filetype resolves, filename resolves, and true baseless merges.

	Base Picking
	The function of the base in a three-way merge
	Modeling a file's revision graph as a growing set of elements
	Finding the best merge base within a revision graph
	Modeling the effect of different resolve and submit actions
	Tracking ignored edits
	Determining the result of an integration
	Picking the base
	Picking a non-ideal base
	Propagating a negative debit
	Remapping renamed files
	Incrementing the move base
	Appendix: Esoteric configurables

