 Branching and Merging in Perforce
David Weintraub

Introduction

Unlike CVS, Perforce not only does an excellent job with branching and merging, it expects you to use the branching and merging mechanisms, so it can track the relationships between various files.

If you haven’t already seen the Perforce Revision Graph, you may want to take a quick look at it. The Revision Graph is available when using P4V (and P4V is available for Windows, Unix, and Linux systems). To see a revision graph, simply right-click on the name of a file in either the Depot Tree or the Workspace Tree located on the left side of the P4V main screen (see Figure 1: Opening a Revision Graph below).
[image: image1.png]Fie Edi View Connectin Tools Window Help

:\pdclients\defaulE p\FasMAINYFASL ClertApplication\FASLapplcationtAssembo.cs

2 Workspace Tree B % || FiesinFolder
5 bk main et v Name Fe Date Mo
Eresi_ReC A8 scwiFrercs Wi an4/200
SRStz B Awieo W ana/200
Qresiitars =4 Assemblylnfo.cs #34/34 9/29/200
DrasLman 1818 B’ Faslpplcationcs #8/8 9/29/200
B?g%m ot B FASLApplation cspioi /8 8237200
avvaini B rasLeppicatoncspivipsec #5/5 a2a200 |
& 22 PeSLepplcatin B Fasoploaionres w3 v
B Adtgercs $17 dexd> 3 eniiion ‘ W sz ¥
B Appico #1/1 binary>
g f Checked DulBy | Preiew
Faskpplaion| OpenWih ,
) L celosion: HANNFASLClenppictonFA5LAplcaor st
‘pplicatior Get Revision.
B FaSLappicatior Remove fom Workspace Scaon: MAIN/FASLlertApplcalon/FASLAgplcalonAssembiiniocs
B Fasiapplication.t ¢ 0 . n #340f34
B fasClentinilO o for Delete fed: 9/29/2005 104400 AM
B fasllent ity
2 FasLOlenBase ety i
2 FasiContls (T C Source e
atadcoess melapse View Sfleype: tert
FERmsLOA i CulSHieD s
Dif Against Have Revision CtD
28 Dept | B2 Workspace Rename/Move %) Lobels | A Pending | @ Users x
EIr Integte.
J1deRe LD/ SsUMAIN s LLesppicaany Label DA\ GRIAUIE DA SEMAIN AL LIETADPIGIGn HSLAPRIGIONF 2
ync complte. 3 les afected ; : |
it ol Reltesh ssembbinio o H

<

Figure 1: Opening a Revision Graph
In the image below, you see the Revision Tree of the //depot/Efp/Fasl/MAIN/FASLClientApplication/FASLApplication/AssemblyInfo.cs file. We see the branch MAIN on top, and other branches below. Solid arrows show where a branch was created. Other arrows show merging operations, merging operations with further edits, etc. Perforce tracks these relationships between the branches, so we know where a particular change in the file came from and in what version. It helps answer the question “Did we merge the changes in a side branch back to MAIN?” in a clear and easy to understand manner.
[image: image2.png]B QA Q[2] vep

e A g ol gtz

-:-‘

Detals [Integuations | Labels | Previen

Noviatn | Lesed |

Reviion
Date submited
Submited by
Acon

Descipton

7depot/Efp/Fas\/MAINJFASL ClentAppiication/FAS Lapplcation/Assemblyio.cs#34

9/28/2006 10:15:41 M Changelisc 18723
rbkEn2 Feforcs fletype: text
edt il size: 248

Updating Assembly Ifo to match buid #

Chr—

Add Edi Delete Meige
Branch Merge w/ Edt
Cony lgnore

Figure 2: Revision Graph for FASL’s AssemblyInfo.cs File
Once we understand how Perforce does its merge operation, we can use Perforce to automatically control the problems of branching and merging for us.
Creating a branch in Perforce

Perforce uses a single command to handle branching, merging, copying, and moving files, the integration command. It is important to understand that this command operates on individual files and not on directories.

To create a branch, you can create an optional branch specification, but since the branch specification is not necessarily, it will be ignored for now. However, since sometimes a branch spec can be helpful, it is covered in the paragraph Branch Specifications below.

To create a branch in Perforce, use the integration command. From the command line, it is simply:

$ p4 integrate //depot/Efp/Celox/MAIN/... //depot/Efp/Celox/CELOX-4.0.1/...

This command will branch the MAIN branch on Celox to a branch called CELOX-4.0.1.

In P4V, you can do the same by right-clicking on the name of the branch in the Depot or Workspace tree (See Figure 3: Running the Integration command from P4V below).

[image: image3.png]perforce:1666, nbkén2b o = B
Fie Edt View Cornection Todls Window Help
cHpiclents\defaul Efp\Celo MAINY v
& Workspace Tree B, || & FiesinFolder B &2
5 nbkEnzb main defat 3 Name Rev. Datet A
=atn ~lB 2005.cmd # 8/28/2
=0 gﬂx B Baskelablssd W 82872
Qeanas B e W o
B3 CeLox a5 14) buid release}cmd #/1 8/2872
) CELOX351 2) build CeloxStar refease].emd 0 8/2872
Bceloxas? B Celorbuid W a2
Bceloxasa B ceoxsh w55 a2
DceLoxass a CelaxStartsh # 812812
B ceLoxass =8 Celosersions. sl # 8/28/2
DceLoxass B checkouCelonemd W w2872
g CELOX3561 B ceanbuldend W ez
Qeanass: Bl W o
I v e me— | a Marketindicator ssd #/1 812812y,
el < ‘ »
IS Remove fmWorkspace Detsls | Checked DulBy | Preview
Dras
[arag CheskOu Cule ‘Waorkspace lacation:
Dirag Makforadd
Dirag MakforDelete Depol ocatior:
SEAMA Revert Unchanged Files Revior:
S8 RevertFies CHish Date modfiect
Resalve Fies. -
Fies inFolder =
Folder Hisory
oit CubshitiD Perfrce fetype:
Fid Fie. civF
Lack ciL
Urlock cul)
Bookmark Folder oo @
| B

Rename/Mave.

Log

Sync complets. o2 e
P4 fsat P -DI {6 tems}
P4 fstat P DI {1 items}
<

New Falder.
Refresh MAIN'

T oem B v W‘m
Label

Q Fies | & Labes | A Fordng | @ Uses

Figure 3: Running the Integration command from P4V

Perforce will bring up the Integrate Dialog Box (see Figure 4: Creating a New Branch CELOX-4.0.1.) To create a new branch, just make sure that the File Specification tab is selected, and then just change the name of the branch in the Destination field to a path that include your BRANCH name, and press the Integrate button. Note that this dialog is creating a branch called CELOX-4.0.1 just as we did in the command line version of the p4 command above.

[image: image4.png]Integrate

File Speciication | Branch Specifiation

Souce: [cpiclerts\defaul Efp\ColoA A
Destiation: [c\pdclents\defsul Elp el CELOR A0 1,

Source Revisian Range:

Souce Stat: [[Revison | @ Number O Latestrevisin

Souce Enc: [[Revison | O Number @ Latestrevisin

] Do ot copy targetfes o warkspace () | Feverse mappings i barch vien 1)

[] Enabl baseless merges (i) [] Enabl integratons around delted revisions ()

[] Disegard al integyaton histoy (4] Do notsyne targetfls to head revision (k)
[Distegard indiect inegration history (1) [] Propagate source fetypes totarge fles (4]

Pending Changeliss: | default. rbk6n2b@nbkbrizb mir default

Figure 4: Creating a New Branch CELOX-4.0.1

Once you create the branch, remember to submit the changes to the depot. No changes will be made until you submit your changes. Until this point, you can revert the integration command and remove the branch creation

Merging Changes from the Parent Branch to the Sibling Branch

To merge a changes that occurred on the parent branch to the child branch, simply rerun the same Integrate command as shown above. Perforce will automatically choose the right versions of the files on the parent branch and merge these changes onto the child branch.

Once the new integration is done, you need to resolve these changes before they are permitted on the Integration branch. In the command line, run the sync command to schedule the resolve, and then run the p4 resolve command.

$ p4 sync #Causes Perforce to schedule the resolve

$ p4 resolve <options> [<files>] #Resolves the files

If you do not include any file names, all files are resolved via the resolve command. The command line parameters to the p4 resolve command include the following:

	Command Line Parameter
	Description

	-am
	Accept Merges: Perforce performs merges if there are no conflicts and will use the merged results as the accepted version of the file. Otherwise, Perforce will simply skip this file, and it must be manually resolved. Binary files will automatically be skipped.

	-as
	Accept Safe: Perforce does no merges. Instead, if one version of the file has changed on one branch, but not the other, it will accept the changed version of the file. Otherwise, if both files have been changed, Perforce will skip the file. Binaries are always skipped.

	-at
	Accept Theirs: Perforce does no merges. Instead all changes on the source branch are simply copied over to the destination branch. This includes binaries. Yes, the terms theirs and yours are confusing. Live with it.

	-ay
	Accept Yours: Perforce does no merges. Instead all changes on the target branch are used and no copying is done. Yes, the terms theirs and yours are confusing. Now, get over it.

	-af
	Accept Force: Perforce performs the merge, and even if the merge results in a conflict, will use the merged file. You must remember to go through the merged files and fix these conflicts.

	-db
	Disregard Blanks: Ignore differences in whitespaces on the same line, but won’t ignore line endings.

	-dw
	Disregard Whitespace: Ignore line endings and whitespaces. Note that the resolve command will use the client’s text whitespacing when resolving whitespace conflicts.

	-f
	Force: Force files to be re-resolved. This is useful when you ran “p4 resolve” once, and then want to dispose of the changes.

	-n
	Nothing: Don’t do anything, just show the actions Perforce would take if this flag was not given

	-t
	Text merge binaries: Do a textual merge even if the file is officially a binary type.

	-v
	Verbose Markings: Put conflict markers in all files even if the files have no conflicts. You must manually edit out the conflict markers.

If you do not select any of the -a* options, the resolve command will go through the files one at a time and prompt you for each file. You may enter the following selections at each prompt:

	Command
	Description

	at
	Keep only changes to their file.

	ay
	Keep only changes to your file.

	am
	Keep merged file.

	ae
	Keep merged and edited file.

	a
	Keep autoselected file.

	dt
	See their changes alone.

	dy
	See your changes alone.

	dm
	See merged changes.

	d
	Diff your file against merged file.

	et
	Edit their file (read only).

	ey
	Edit your file (read/write).

	e
	Edit merged file (read/write).

	m
	Run '$P4MERGE base theirs yours merged'.

	s
	Skip this file.

	h
	Print this help message.

Note that you can rerun the resolve command multiple times. For example, you might want to run the resolve command the first time with the -am or the -as option, then manually rerun the command to prompt for the remaining files.

In P4V, all you need to do is select Resolve from the drop down menu by right clicking on the name of the changeset in the Pending Changelist window/panel as shown in Figure 5: Resolving all files in the default changelist below. You can also resolve files one at a time by clicking on the individual file names below the changelist name.

[image: image5.png]dcs02:1666, nbkén2b - Perforce = =]
Fie Edi View Connectin Tools Window Help

alvsR Bod BB A0ANDEA&HA O

J/depel Efp/CeloMAN ~a
73 DepotTree . Z [A Pendng Changelits
33 rbkéinZb-celox || Workspace Changelists: [nbkéin2b-celox) v

CceLoaso | Changelst_~ Uoer Descipton

Qiceuxast S
ceLoxasta —
-yayabeiy) Reven Unchanged Fes
Birioesr Roven Fies
Qieeuxass
Qieeuxass et Pending Changest, N Howemd
Qieeuxass i Percing hangel et v
Ciceuxass P Perding hargelt ettt
CceLoxass e Pt o i
Qiceuxass?
Qicetxant
e
=i

St
5 Cormen
Clows
I Derleyment
Gious
Clres
Gt
ClFuntine
Csecuiy

|

3 Depot | B2 Warkspace 3 Fies | A Pending

P4 depots
pé dis D //depol” //depol/Elp/”
pé fstat P DI {1 items}

<

Riftesh Pending Changsls List
Refresh ‘defaul’

3

Detail

Figure 5: Resolving all files in the default changelist

Once you select to resolve your files, you’ll see the Resolve dialog box. You have two ways of resolving the changes. The first way is using one of the Auto options shown right below the Resolve Options section of the Resolve dialog box. The second way is to select the Interactive button located on the bottom of the Resolve dialog box.

If you select the Auto way of resolving files, you will likely select one of the first two radio buttons shown below in Figure 5 below. The first option, “Accept changed file (only one file differs from the base)” is the safest option and corresponds to the command line’s p4 integrate -as option. This option will only resolve files where only one of the versions differ from the base of the merge. If the target was the version that was changed, the file isn’t changed and the merge is considered resolved. If the source was changed, but not the target, the differences in the source are copied over to the target, and the merge is considered resolved. If both the target and source versions have changed, the file is skipped and must be resolved later.

The second Auto option is the “Merge yours and theirs if no conflict exist” and will attempt to automatically any changes when it finds no conflicts. Remember that if you select the automatic merge option, you can examine and modify the results before submitting the changes.

After you run the automatic Resolve, you can rerun the Resolve command to pick up any files that were not merged. When you run it the second time, you will probably run it clicking the Interactive button instead of the Auto button.
[image: image6.png]Resolve (scsmerldcs02:1666, nbkén2b)
Fies o esclve:

@ Fesolve ous/arge)

C:\paclientshcelos\ CELOX-4.0.11Celosibu
Cpdelints\celon CELOX-401Celobus
C\pdelints\celon\ CELOX-4.0.11Celo Ce.
Cpdelints\celon CELOX-401Celobus
Copdelints\celon CELOX-401Celoch
Cilpdslints\celon CELOX-401 Celoru,

Recommended acton:

Click the "Auto” button below.

@ Resolve Wit (teis/source)

(9] /depot/Efp/Celos/MAIN Celon/buid else] .
(9] //depot/Efp/Delos/MAIN oo [ebuglc

() /3epot/Efp/Celow MAIN/Celox/Ceox buid 1

() /3epol/Efp/Celow MAIN/Ceox/buid CelorStat
() /epol/Efp/CelowMAIN/Cels/checkouCelo.
19 depot/E ip/Celon/MAIN Celon/updaterets omd |

There ate mulipl fs 1o resolve, we recommend that you st ty and resolve sl he fles automaticaly

Reesolve oplions:

Sppicaton il atcmtoaly s lls

@ Accept changed fie orly e fledifersfrom the base)

© Metge yous ad theis no corfict it

© Acceptyours
© Accepttheis

© Merge yours and heis ncluing corfict makers

il selvels et e

Figure 6: Automatically resolving the safest way
Accept changed file (only one file differs from the base).
When you select the Interactive button on the first Resolve dialog box, you will get a second Resolved dialog box (see Figure 7: Running the Merge Tool) which allows you to select whether to accept the default Merged changes, Accept the Target (called Yours in the previous dialog box, or Accept the Source (called Theirs in the previous dialog box).

On the bottom are an array of five buttons that allow you to open a particular file, diff the various files, examine the history of the various files, or examine the files via a time lapse view. The first button is Run Merge Tool, click on this button to actually run the merge.

[image: image7.png]Resolve (scsmerldcs02:1666, nbkén2b)

Fies o esclve:

@ Resolve fous/arge] @ Resolve Wit (teis/source)

CApdclients\celo CELOX40 ACelonbu.. (9 /depot/Efp/Celow MAIN/Celow/buld elease] .
C\pdclints\celon\CELOX40.1ACekostbu.. (9] /depot/Efp/Celos/MAIN o buid [debuglc
CApdelints\celo\CELOX-4.0.1\Cekot Ce.. () /depot/Efp/Celow/MAIN/Celon/Celon bd #6
C\pdelints\celon\CELOX-4.0.1ACelortbu.. (9 //depot/Efp/CelowMAIN Celon/buid CeosStan
Ci\pdclints\celo\ CELOX-4.01\Celortch.. (9 /depol/Efp/Celow MAIN/Celn/cheskouCelo
Ciipaclientshoslon CELOX-4.01\Celowtup...] //depol/Efp/CalowMAIN/Calon/updaterets.omd .|

Recommended acton:
Click the "Accept Source” button below.
Orly soce il diersfrom the comon base e

Commonbase (9] //depol/Efp/CelowMAIN/Celow pdaterfs cmd H5
Soucefle Diferences fiom base: 2
Tagetfle Diferences fiom base:

Corfcts: 0

Merged resuit

Reesolve oplions:

(ot] sk i o i e skttt s
P et
s

Addiional aptions:

[runtieyton | [Dpenfie.~] [0] [Firitay +] [Tmclmviene

Figure 7: Running the Merge Tool

When you select the Run Merge Tool button, the P4Merge dialog box will open up (as shown below in Figure 8: The Merge Tool). This allows you to see the differences between the source, destination, and base versions of the file on the top half of the pane, and the merged results on the bottom half of the pane. You can then select how the merged result of the file will look. You are also allowed to put your cursor inside the merged result and manually edit the changes too. Please select the Help menu item to see how to use the P4Merge tool (highlighted below).
[image: image8.png]% P4Merge - MERGE(updaterefs).cmd
Fie Edt View Search Hel
CIECIEE PRE
2.dffs (gnore lne ending and ol whis space diferences) | Tab spacing: 4 | Fil Frma (Encodings System Line endings: Windows)
Base: updalerefs cmelt
Left: updaterefs. cmdtiG Diferences fiom base: 2
Fight: _ updalerefs cmd Diferences fiom base: 0
Merge: Merge fie used for resolve: Confics: 0

@ /Delon/MAIN/Celow/updaleres e (] 2fo/Delow/MAIN Celox/upcatrets.cmds @ =CELOX 401\ Celnupdterefscmd

Becho off Becho off Becho off
echo *#e% Updating Project | echo *#e% Updating Project |

echo *#e% Updating Project | set temppath=ipaths set temppath=ipaths

set temppath=:paths set pathe\\crprandfsoiids_d set pathe\\crprandfsoiids_d

set pathe\\crprandfsoiids_d nant -buildfile:Celox.build nant -buildfile:Celox.build

nant -buildfile:Celox.build set pathestemppaths set pathestemppaths

set pathestemppaths set temppath="r set temppath="r

set temppath="" pause pause

pause

< Merg e used o resclve

fecho off

echo *#%% Updating Project Refs ##%%
set temppath=ipaths

set pathe\\crprandfsolids_dfs\Equities)Global Equities Technology\ED_PPS\Ney
nant -buildfile:Celox.build updaterefpath

set pathestemppaths

set temppath=""

pause

Figure 8: The Merge Tool

Branch Specifications

The above shows you how to create branches and do merging without first creating a Branch Specification. Most of the time, this works fine. However, there are times when a branch specification can be useful.

If you rename a file, move a file to another directory, add a file, or delete a file, and these changes occur only on one branch, Perforce attempts to fix this by making the files both branches agree. There are times you don’t want Perforce recreating, deleting, or moving the changed file back, and you can use a branch specifications to prevent this from happening.
A branchspec is useful whenever you have a situation where the directory structure on one branch no longer agree with the directory structure on the other branch. The branchspec keeps track of these directory structure changes and informs the Perforce resolve operation of these changes. You don’t necessarily need a branch spec since you can fix any problems manually before you submit the merge results, but a branch spec handles these circumstances for you and simplifies integrations.
In the example below, a branch spec has been created for CELOX-4.0.1/MAIN branch integrations. Notice that this branchspec will handle CELOX-4.0.1/MAIN branch integrations no matter which direction you are doing the integration in.

The the first line under the View field tells Perforce to branch the MAIN branch to the CELOX-4.0.1 branch. This is pretty much the same as doing the following command line:

p4 integrate //depot/Efp/Celox/MAIN/... //depot/Efp/Celox/CELOX-4.0.1/...

It is entirely possible that that the original integration was done without a branchspec, and the branchspec was only created when the integrations started to become more complex.

The second line in the branch specification below takes care of a file that was renamed. In this case, main.cp on MAIN was renamed Main.cpp on CELOX-4.0.1. The second line remaps //depot/Efp/Celox/MAIN/main.cp to //depot/Efp/Celox/CELOX-4.0.1/Main.cpp. Every time a new integration is done between these two branches, changes in Main.cpp will be merged into main.cp and visa-versa. Without this mapping, whenever an integration from MAIN to CELOX-4.0.1 is done, Perforce will attempt to delete Main.cpp and create a file called main.cp.
The third line in the Branchspec tells Peforce that the file obsolete.cs on the MAIN branch has been deleted on the CELOX-4.0.1 branch. Otherwise, Perforce will attempt to recreate this file each time an integration from MAIN to CELOX-4.0.1 is done.

The last line tells Perforce that the directory dir1 in MAIN has been merged into dir2 on the CELOX-4.0.1 branch. This tells Perforce when an integration is done from MAIN to CELOX-4.0.1, to merge all changes in the files in dir1 to the files in dir2. Otherwise, Perforce will attempt to move the files that were merged into dir2 back into the no longer around dir1 directory.
[image: image9.png]H Branch: new (scsmerldcs02:1666, nbk6n2b)

Branch: [CELOX40.1

Update:

Access:

et [nbkénzo

Descipton: | Branching CELOX-4.0.1 iom MAIN

Opios: [looked

View [/depat/Eip/Celon/MAIN/..//depot/Elp/Cekn/CELDA 01/

depot/Efp/CelxMAIN imain o/ cepol Efp/Celos/CELOX-40 1 Main con
idepot/Efp/Celx MAIN bsoltecs /depol/Efp/Celow/CELX 410 1/cbsokete s
11 depot/Efp/CeloxMAIN/Gi .. /depol Efp/Celon/CELOX 4.01/de2. |

Figure 9: Branch Spec for CELOX-4.0.1 branch

You can create a branchspec by going to the File(New(Branchspec menu item in P4V, or by using the p4 branch command from the command line. Again, you can start doing integrations without a branchspec, and then create the branchspec once you start to rename or move files around between the two branches.
Branching with Filespecs

Creating a branch with a Branchspec is similar to branching without one – except you merely specify the branchspec instead of specifying the branch directories themselves. From the command line, the commands look like this:

$ p4 integrate –b CELOX-4.0.1

Instead of this

$ p4 integrate //depot/Efp/Celox/MAIN/... //depot/Efp/Celox/CELOX-4.0.1/...
If you are merging from the parent to the child branch, you simply rerun the same p4 integrate command again.

$ p4 integrate –b CELOX-4.0.1

Although the above branchspec was created to handle the integrations from MAIN to CELOX-4.0.1. There is no need to create a second branchspec to handle the integrations in the reverse direction from CELOX-4.0.1 back to MAIN. Instead, you simply add the reverse switch to the integrate command:

$ p4 integrate –b CELOX-4.0.1 –r

To create a branch from P4V, bring up the Integrate dialog box as shown in Figure 3: Running the Integration command from P4V above, but make sure you select the Branch Specification tab instead of the File Specification tab as you did in Figure 4: Creating a New Branch CELOX-4.0.1 above. (See Figure 10: Integrating with a Branch Specification below).

If you are merging from the parent branch to the child branch, rerun the Integrate command with the Branch Specification tab selected as you did when you created the branch. If you want to merge changes from a child branch to the parent branch, select the Reverse mappings in the branch view (-r) as show below in Figure 10: Integrating with a Branch Specification below.Figure 9: Branch Spec for CELOX-4.0.1 branch
[image: image10.png]Integrate

File Spesifcation | Branch Specifation

Branch: [CELOX4.0.1
Speciy target o1 soce (optona)
Source:

Terget:

Souce Revision Flange:
Souce Stat: [[Revison | @ Number O Latestrevisin

Souce Enc: [[Revison | O Number @ Latestrevisin

] Do ot copy targetfes o warkspace (+) [Reverse mappings i banch view (1)

[Enable integrations aound deete revisons ()

[] Enabl baseless merges (i)
[] Disegard al integyaton histoy (4] Do notsyne targetfls to head revision (k)
[Distegard indiect inegration history (1) [] Propagate source fetypes totarge fles (4]

Pending Changslists: | default nbkBrizb@nbkEnzb celor

Figure 10: Integrating with a Branch Specification
(Note that “Branch Specification” tab is selected. Also note the location of the “Reverse mappings in branch view” checkbox)
Branches that Diverge vs. Branches that Converge

So far, we have covered how Perforce does branching and merging. However, to really understand how Perforce handles merging, you have to understand the concept between two different types of branches: Divergent Branches and Convergent Branches.
Most version control systems have some mechanism to handle branching. After all, this feature was available in SCCS, the first version control system ever created more than 30 years ago. Unfortunately, although most are good at creating branches, very few attempt to tackle the complexities of merging changes once these branches were created. For example, CVS, the version control system used in EFP before we switched to Perforce did not handle merging of entire branches.

Out of the dozens of version control systems in use, two are well known for handling merging: ClearCase and Perforce. However, these two version control systems tackle the merge problem in two completely different ways. ClearCase prefers to handle convergent branches while Perforce prefers to handle divergent branches.
Release Branches Diverge

Branches that diverge means that code on two branches will become more and more different as time goes on, and this includes Release Branches. It isn’t that the code on the release branch itself diverges from your parent branch as much as the parent branch code diverges from the release branch.

For example, I branch REL1.0 off of MAIN to prepare for a release. This allows developers to continue development on MAIN while a general code freeze is on the REL1.0 branch. Over time, the code on MAIN keeps changing while the code on REL1.0 barely changes (just a bug fix here or there). If I check the compare the code on MAIN and REL1.0 in six months, I’ll find quite a few differences. If I compare the code on MAIN and REL1.0 two years from now, I’ll see even more differences. The two branches are diverging.
Perforce’s merging algorithm is built to easily handle these issues. Perforce attempts to choose as its merge base the version of the file with the most complete history between the two branches. ClearCase, however, automatically chooses the most recent common ancestor which does not necessarily a complete understanding of the history between the two branches.

Because Perforce examines the total history before selecting a base, it can understand partial merges where certain changes may have been excluded from one branch or another. Perforce can also tell the difference between a merge where you edited the results, where you simply accepted the automated merge, or where you simply copied the version of that file from one branch to the other. ClearCase, on the other hand, simply traces the branching tree to find the most recent common ancestor. In most ClearCase shops, users manually handle these merge situations.

In other words, when you have divergent branches, Perforce can be trusted to automatically handle the merging while ClearCase cannot.
Development Branches Converge

Not all branching is done for releases. In many shops, development is not done on the Trunk or MAIN branch, but on a separate development branch. When developers have finished working on a set of changes, they will merge those changes onto the MAIN branch. The next time the development cycle starts, the MAIN branch is merged back onto the development branch, and the development cycle continues.

In this case, the development branch and the MAIN branch converge. That is, if I examine the code on the two branches two years from now, the code on these two branches will still pretty much the same.
Convergent branches can also be used in other types of situations. For example, a developer is working on a feature for a future release. Incorporating this feature into the current code base could cause problems, so development of this feature is handled on a side branch. The developer will do multiple merges from the MAIN branch to their development branch to keep up with the code changes. Then once the feature is ready to be implemented, the development branch is merged into the MAIN branch.

ClearCase’s selection of the most recent common ancestor makes sense in this situation because I can easily assume that all changes on one branch were already considered since the last time I did a merge – even if I didn’t really merge all the chages. In fact, ClearCase handles this situation so well, that many ClearCase shops give each developer one of more of their own development branches.
Perforce, on the other hand tends to get tripped up by this type of situation. Perforce over analyzes the history and selects the wrong base. This is not a problem when you merge your changes from the parent branch into the child branch, but does cause problems when you merge from the child branch back into the parent branch.

Therefore, special steps need to be taken in Perforce when you are merging back into the parent branch when you are using convergent branching.
Convergent Branching with Perforce
Since Perforce has a preference for divergent branching, Perforce may have issues when attempting to merge convergent branches such as a feature or development branch to their parent branch.

In order to get around this issue, Perforce recommends that you Merge Up/Copy Down. That is, you merge any changes from the parent branch to the child branch, but when you are ready to merge your changes from the child branch back to the parent branch, you should copy those changes back.
In order to copy your changes from the child branch back to the parent branch, and have Perforce successfully track the history, you need to take several steps to accomplish this as shown in the command line example below. What each step means and why you run these steps are explained below the command line commands.

~/p4clients/celox/[1]:$ p4 opened

~/p4clients/celox/[2]:$ p4 integrate –n ./MAIN/... ./CELOX-4.0.1/...

~/p4clients/celox/[3]:$ p4 integrate –f ./CELOX-4.0.1/... ./MAIN/...

~/p4clients/celox/[4]:$ p4 resolve –at

~/p4clients/celox/[5]:$ p4 diff –sr | p4 –x – revert

~/p4clients/celox/[6]:$ p4 integrate ./CELOX-4.0.1/... ./MAIN/...

~/p4clients/celox/[7]:$ p4 resolve –at

~/p4clients/celox/[8]:$ p4 submit

1. Run the p4 opened command to verify that there are no changes already opened in this workspace. If there are, you will need to either revert them, or submit them to the Perforce archive. Always start off with a clean view.

2. Run the p4 integrate command with the -n option from the parent to the child branch. This is to verify that there are no changes from the parent branch that must first be brought over from the child branch. If changes are reported, you will need to first merge these changes from the parent branch to the child branch before merging changes from the child branch back to the parent.
3. Run the p4 integrate command to integrate the files from the child branch to the parent branch. The -f flag forces the integration of files even if Perforce believes that it is not necessary to consider these files for integration.
4. Resolve all files in the integration. The -at flag tells Perforce to accept theirs which means that all files on the child’s branch will be copied over to the parent branch.

5. Find all files that have not been changed and revert them. Most of the time, this is a file on the child branch that has not been modified since the last merge, and should not be included in the integration.
6. Run the p4 integrate command one more time. This time you do not use the -f flag to force integrations. In the previous step, we reverted all files that were not changed, and most of the time this is correct. However, there are circumstances where changes did occur, but the changes resulted in the original file being restored. Even though there is no physical change, Perforce needs to track that this merge was considered. Running the p4 integrate again catches these issues.

7. Run the resolve command one more time. Again the -at command line parameter (accept theirs) will simply copy the child’s source files to the parent’s branch.

8. Submit the changes. The Convergent Merge is now complete and the parent and child branch agree with each other.
The following shows the same steps in the P4V GUI

[image: image11.png]Fie Edi View Connectin Tools Window Help

SavsR @0l BBA0ANDEAS&HA O
7 va.
2 Depot Tree B, % |[A Pendng Changelits
'S nbkbin2brpe-celox | | workspace Changelists: [nbk6n2b-pe-celox] v,
E=1 Changelst_~ User Descrton
+ (3 depot defat

| _—
78 Depot | B2 Workspace @ Fies | A Pendng | 1 Banches | @ submited | x

p4 change o

p4 depots

P fstat P -C 01 2 default W //nbkEn2bpo-celow
771kBri2h pe-celos... - el not opened on i client

B

Figure 11: Step #1 – Verify no opened files in view
(Changelist is empty)
[image: image12.png]Integrate

File Speciication | Branch Specifiation

Souce: [//depol/Efp/Celox/MAIN/.
Destinaton: [#/depol/Efp/Celox/CELON-A 0.1/

Source Revisian Range:

Souce Stat: [[Revison | @ Number O Latestrevisin

Souce Enc: [[Revison | O Number @ Latestrevisin

] Do ot copy targetfes o warkspace () | Feverse mappings i barch vien 1)

[] Enabl baseless merges (i) [] Enabl integratons around delted revisions ()
[] Disegard al integyaton histoy (4] Do notsyne targetfls to head revision (k)
[Distegard indiect inegration history (1) [] Propagate source fetypes totarge fles (4]

Fending Changelists: | default rbk6n2b@nbkErizh pe-celos

Figure 12: Step #2 - Verify that there are no changes that must be first incorporated from parent to child
(use Preview button)

[image: image13.png]Integration Preview.
}7depol/Efp/CelosMAIN;... -l evisonts) aeady ntegrate

Figure 13: Step #2 (Con’d) – Everything is fine

[image: image14.png]Integrate

File Speciication | Branch Specifiation

Souce: [//depol/Efp/Celo/CELONA 0.1/
Destinaton: [¢/depol/E fp/Celox/MAIN/.

Source Revisian Range:

Souce Stat: [[Revison | @ Number O Latestrevisin

Souce Enc: [[Revison | O Number @ Latestrevisin

] Do ot copy targetfes o warkspace () | Feverse mappings i barch vien 1)

[] Enabl baseless merges (i) [] Enabl integratons around delted revisions ()

Distegard alintegration istry (1)] Do notsyne targetfls to head revision (k)

[Distegard indiect inegration history (1) [] Propagate source fetypes totarge fles (4]

Fending Changelists: | default rbk6n2b@nbkErizh pe-celos

Figure 14: Step #3 - Force Integration from Child to Parent
(Note Disregard all integration history is selected)
[image: image15.png]dcs02:1666, nbkén2b - Perfo =]
Fie Edi View Connectin Tools Window Help

SE 48R 290 BB A0AEITANER. O

J/depot/Efp/Celow/ CELOX 4,01/ v
8 DepelTree H. Y ||A Perdng Chongekss
'S nbkbin2brpe-celox | | workspace Changelists: [nbk6n2b-pe-celox] v
= Lteion | Changeist User Descrption
Clceuxaso
BcLoxast Submi. Clivs
%3511 Revert Unchanged Fies
ClceLoxasi2 Revert Fies civR
DceLoxas2 | Fesigiies |
CceLox 353
New Pending Changelst, cunt
Clceoxass o s

Edit Pending Changslis ‘defaul’

DceLoxass Print Pending Changelist ‘default’.. Cti+P

CICELOX356
CICELOX3561 Refiesh Pending Changelist List
CICELOX%3562 Refiesh ‘default

CICELOX357 =
CICELOX401

Ij
3 Depot | B2 Warkspace 3 Fies | A Pending | [0 Branches | @ sbrited x

Log
1/0eDOUE /L EIK/MAIN/UpOaeIels G - egile o //GepoUE /L EIH/LELLYS-4.1 1/ Upaaierls i usngpase / 5
integrate complete. 1435 fes affected

p4 change o

< |

[l

Figure 15: Step #4 - Resolve Files

[image: image16.png]Resolve (scsmerldcs02:1666, nbkén2b)
Fies to resove:

@ Fsolve (ous/taiget) @ Resalve Wit thers/source)

B c\pdclnts\ColoMAINNurit\Messag. . (2 //depot/E1p/Celor/CELD 4 0.1 Nurite.

B c\pdclints\ColoMAIN cleanbuld.cd (9] //depol/Efp/Celos/CELDX 4.0.1/cearbuid.

B c\pdclints\Colo MAINADala\FlashLib... 9] //depot/Efp/Celos/CELOX 4.0.1/DatalFlas

P bt s\Cokn AN Mo Messsn (90 oot Eo/Celos/CFL 0.4 1 it
Recommended acton:

Click the "Auto” button below.

There ate mulipl fs 1o resolve, we recommend that you st ty and resolve sl he fles automaticaly

Reesolve oplions:

Sppicaton il atcmtoaly s lls

© Accept changed i (orly e fledifers fom the base)
© Merge yours and this if no confict evist

© Acceptyours

@ Accepttheis

© Merge yours and heis ncluing corfict makers

il selvels et e

Figure 16: Step #4 (Con’d) – Resolve the Differences
(Note Accept Theirs is chosen)
[image: image17.png]Fie Edi View Connectin Tools Window Help

“d| 48R 220 BRA0AHIBTAEAS HI. 0

J/depal/Efp/Celon/CELOX 401/ ~a
8 DepelTree H. Y ||A Perdng Chongekss
'S nbkbin2brpe-celox | | workspace Changelists: [nbk6n2b-pe-celox] v
@ [Changeist User Descrton
= Eceor Subrit cuss
SeLoass Thee ar 1438 fle
CceLoxas1 L T N—
BlceLoxasta Rever Fes CuleR
B ceLovast2 Resole Fles
Chceloxas2 New Pending Changelst cn
ChceLoxas3 6t Pending Changeit defaul’
ChceLoxass Pin Pending Changeli ‘defoul’._ CikP
QceLoxass Refesh Pending Changel Lis
QceLox2s6 Reltesh defaul’
ChceLox3561
CceLox3s62
ChceLoxas?
ChceLox401
=0
]
73 Depot | 72 Warkspace 2 Fies | A Pendng | [Branches | @ Submited x

PA s LU /0epots” //GepOUE I 1GepoU IprLelonr
i tesolve o - //nbkEnZb po-celw/MAIN/Dala/DocumeniFispostory/LedgeiS enaio.cs //rkEnZb pc-celowMAIN/Cient/Windows Common/Cor
pé fsal P 01 (753 ems}

))

[EAES

Figure 17: Step #5 – Revert Unchanged Files

[image: image18.png]Integrate

File Speciication | Branch Specifiation

Souce: [//depol/Efp/Celo/CELONA 0.1/
Destinaton: [¢/depol/E fp/Celox/MAIN/.

Source Revisian Range:

Souce Stat: [[Revison | @ Number O Latestrevisin

Souce Enc: [[Revison | O Number @ Latestrevisin

] Do ot copy targetfes o warkspace () | Feverse mappings i barch vien 1)

[] Enabl baseless merges (i) [] Enabl integratons around delted revisions ()

[] Disegard al integyaton histoy (4] Do notsyne targetfls to head revision (k)

[Distegard indiect inegration history (1) [] Propagate source fetypes totarge fles (4]

Fending Changelists: | default rbk6n2b@nbkErizh pe-celos

Figure 18: Step #6 – Second Integration
(Note Disregard all integration history is off)
[image: image19.png]Resolve (scsmerldcs02:1666, nbkén2b)
Fies to resove:

@ Fsolve (ous/taiget) @ Resalve Wit thers/source)

B c\pdclnts\ColoMAINNurit\Messag. . (2 //depot/E1p/Celor/CELD 4 0.1 Nurite.

B c\pdclints\ColoMAIN cleanbuld.cd (9] //depol/Efp/Celos/CELDX 4.0.1/cearbuid.

B c\pdclints\Colo MAINADala\FlashLib... 9] //depot/Efp/Celos/CELOX 4.0.1/DatalFlas

P bt s\Cokn AN Mo Messsn (90 oot Eo/Celos/CFL 0.4 1 it
Recommended acton:

Click the "Auto” button below.

There ate mulipl fs 1o resolve, we recommend that you st ty and resolve sl he fles automaticaly

Reesolve oplions:

Sppicaton il atcmtoaly s lls

© Accept changed i (orly e fledifers fom the base)
© Merge yours and this if no confict evist

© Acceptyours

@ Accepttheis

© Merge yours and heis ncluing corfict makers

il selvels et e

Figure 19: Step #7 – Resolve once again with Accept Theirs
[image: image20.png]Submit Changelist: default

¥ Wiite a changelist description

Inegraling from CELOX-4.0.1 to MAIN

¥ Choose files to submit

O Fies
VB /1depot/Efp/Celos/MAIN/Cientwindows /Common/AppUpdater/S erverPolle.c

[———
[————
[——
S ————
B 10 ol MAIN i o Comon/Caos Comon/Ers/E5

e s

<

[Chesk ot selecte fles afersubmit

b Link jobs to changelist (optional):

Sibrn] (Save s Numbord hanga] | Corce

Figure 20: Step #8 – Submit your changes
