
Server Deployment Package (SDP) for
Perforce Helix

SDP User Guide (for Unix)

Perforce Professional Services

Version v2020.1, 2020-09-12

Table of Contents
Preface . Ê1

1. Overview . Ê2

1.1. Using this Guide . Ê2

1.2. Getting the SDP . Ê2

2. Setting up the SDP . Ê3

2.1. Terminology and pre-requisites . Ê3

2.2. Volume Layout and Hardware . Ê3

3. Installing the SDP on Unix / Linux . Ê5

3.1. Initial setup . Ê6

3.1.1. Use of SSL. Ê11

3.1.2. Configuration script mkdirs.cfg . Ê12

3.2. Configuring (Automatic) Service Start on Boot . Ê13

3.2.1. For Systems using systemd . Ê13

3.2.2. For (older) systems, still using init.d . Ê14

3.2.3. Starting/Stopping Perforce Server Products . Ê14

3.3. Completing Your Server Configuration . Ê15

3.3.1. Validating your SDP installation . Ê16

3.4. Configuring protections, file types, monitoring and security . Ê18

3.5. Operating system configuration . Ê19

3.6. Other server configurables . Ê19

3.7. Archiving configuration files . Ê19

4. Backup, Replication, and Recovery . Ê20

4.1. Typical Backup Procedure . Ê20

4.2. Planning for HA and DR . Ê21

4.2.1. Further Resources . Ê22

4.2.2. Creating a Failover Replica for Commit or Edge Server . Ê22

4.2.3. What is a Failover Replica? . Ê22

4.2.4. Mandatory vs Non-mandatory Standbys . Ê22

4.2.5. Server host naming conventions . Ê23

4.3. Full One-Way Replication . Ê24

4.3.1. Replication Setup . Ê24

4.3.2. Replication Setup for Failover . Ê25

4.3.3. Pre-requisites for Failover . Ê25

4.3.4. Using mkrep.sh . Ê26

4.3.4.1. Server Types . Ê26

4.3.4.2. SiteTags.cfg . Ê27

4.3.4.3. Example . Ê27

4.3.4.4. Mkrep.sh output . Ê28

4.3.5. Setting up a Replica Manually . Ê31

4.4. Recovery Procedures . Ê34

4.4.1. Recovering a master server from a checkpoint and journal(s) . Ê34

4.4.2. Recovering a replica from a checkpoint . Ê35

4.4.3. Recovering from a tape backup . Ê35

4.4.4. Failover to a replicated standby machine . Ê36

5. Server Upgrades . Ê37

5.1. Upgrading an existing SDP installation . Ê37

5.2. P4D Server upgrades . Ê37

5.3. Database Modifications . Ê37

6. Maximizing Server Performance . Ê39

6.1. Ensure Transparent Huge Pages (THP) is turned off . Ê39

6.2. Putting server.locks directory into RAM . Ê40

6.3. Optimizing the database files . Ê41

6.4. P4V Performance Settings . Ê41

6.5. Proactive Performance Maintenance . Ê41

6.5.1. Limiting large requests . Ê41

6.5.2. Offloading remote syncs . Ê42

7. Tools and Scripts . Ê43

7.1. General SDP Usage. Ê43

7.1.1. Linux . Ê43

7.1.2. Monitoring SDP activities . Ê44

7.2. Core Scripts . Ê44

7.2.1. p4_vars . Ê44

7.2.2. p4_<instance>.vars . Ê44

7.2.3. p4master_run . Ê45

7.2.4. daily_checkpoint.sh . Ê45

7.2.5. recreate_offline_db.sh . Ê45

7.2.6. live_checkpoint.sh . Ê46

7.2.7. p4verify.sh . Ê46

7.2.8. p4login . Ê49

7.2.9. p4d_<instance>_init . Ê51

7.2.10. refresh_P4ROOT_from_offline_db.sh . Ê52

7.2.11. run_if_master.sh . Ê52

7.2.12. run_if_edge.sh . Ê52

7.2.13. run_if_replica.sh . Ê52

7.2.14. run_if_master/edge/replica.sh . Ê52

7.3. More Server Scripts . Ê53

7.3.1. upgrade.sh . Ê53

7.3.2. p4.crontab . Ê53

7.3.3. verify_sdp.sh . Ê53

7.4. Other Scripts and Files . Ê56

7.4.1. backup_functions.sh . Ê56

7.4.2. broker_rotate.sh . Ê56

7.4.3. edge_dump.sh . Ê56

7.4.4. edge_vars . Ê56

7.4.5. edge_shelf_replicate.sh . Ê57

7.4.6. load_checkpoint.sh . Ê57

7.4.7. gen_default_broker_cfg.sh . Ê59

7.4.8. journal_watch.sh . Ê60

7.4.9. kill_idle.sh . Ê60

7.4.10. p4d_base . Ê61

7.4.11. p4broker_base . Ê61

7.4.12. p4ftpd_base . Ê61

7.4.13. p4p_base . Ê61

7.4.14. p4pcm.pl . Ê61

7.4.15. p4review.py . Ê62

7.4.16. p4review2.py . Ê62

7.4.17. p4sanity_check.sh . Ê63

7.4.18. p4web_base . Ê63

7.4.19. p4dstate.sh . Ê63

7.4.20. ps_functions.sh . Ê64

7.4.21. pull.sh . Ê64

7.4.22. pull_test.sh . Ê65

7.4.23. purge_revisions.sh . Ê65

7.4.24. recover_edge.sh . Ê67

7.4.25. replica_cleanup.sh . Ê67

7.4.26. replica_status.sh . Ê67

7.4.27. request_replica_checkpoint.sh . Ê68

7.4.28. rotate_journal.sh . Ê68

7.4.29. submit.sh . Ê68

7.4.30. submit_test.sh . Ê69

7.4.31. sync_replica.sh . Ê70

7.4.32. templates directory . Ê70

7.4.33. update_limits.py . Ê70

Appendix A: SDP Package Contents . Ê71

A.1. Volume Layout and Server Planning . Ê71

A.1.1. Memory and CPU . Ê71

A.1.2. Directory Structure Configuration Script for Linux/Unix . Ê72

A.1.3. P4D versions and links . Ê73

A.1.4. Case Insensitive P4D on Unix . Ê74

Appendix B: Frequently Asked Questions/Troubleshooting . Ê76

B.1. Journal out of sequence . Ê76

B.2. Unexpected end of file in replica daily sync . Ê76

Appendix C: Starting and Stopping Services . Ê77

C.1. SDP Service Management with SysV init mechanism . Ê77

C.1.1. SDP Service Management with the systemd init mechanism . Ê77

C.1.2. Brokers and Proxies . Ê78

C.1.3. Root or sudo required with systemd . Ê79

Preface
The Server Deployment Package (SDP) is the implementation of PerforceÕs recommendations for
operating and managing a production Perforce Helix Core Version Control System. It is intended to
provide the Helix Core administration team with tools to help:

¥ Simplify Management

¥ High Availability (HA)

¥ Disaster Recovery (DR)

¥ Fast and Safe Upgrades

¥ Production Focus

¥ Best Practice Configurables

¥ Optimal Performance, Data Safety, and Simplified Backup

This guide is intended to provide instructions of setting up the SDP to help provide users of Helix
Core with the above benefits.

This guide assumes some familiarity with Perforce and does not duplicate the basic information in
the Perforce user documentation. This document only relates to the Server Deployment Package
(SDP) all other Helix Core documentation can be found here: Perforce Support Documentation

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document or the SDP to consulting@perforce.com .

SDP User Guide (for Unix) Preface - 1 of 79

© 2010-2020 Perforce Software, Inc. 1

https://www.perforce.com/support/self-service-resources/documentation
mailto:consulting@perforce.com

Chapter 1. Overview
The SDP has four main components:

¥ Hardware and storage layout recommendations for Perforce.

¥ Scripts to automate critical maintenance activities

¥ Scripts to aid the setup and management of replication (including failover for DR/HA)

¥ Scripts to assist with routine administration tasks.

Each of these components is covered, in detail, in this guide.

1.1. Using this Guide
Chapter 2, Setting up the SDP describes concepts and re-requisites

Chapter 3, Installing the SDP on Unix / Linux consists of what you need to know to setup Helix Core
sever on a Unix platform.

Chapter 4, Backup, Replication, and Recovery gives information around the Backup, Restoration and
Replication of Helix Core, including some guidance on planning for HA (High Availability) and DR
(Disaster Recovery)

Chapter 5, Server Upgrades also covers upgrades of p4d and related executables as well as the SDP
itself.

Chapter 6, Maximizing Server Performance covers optimizations and proactive actions.

Chapter 7, Tools and Scripts covers all the scripts used within the SDP in detail.

Appendix A, SDP Package Contents address details of the SDP package.

Appendix B, Frequently Asked Questions/Troubleshooting is useful for other questions.

Appendix C, Starting and Stopping Services gives on overview of starting and stopping services with
common init mechanisms, systemd and SysV.

1.2. Getting the SDP
The SDP is downloaded as a single zipped tar file the latest version can be found at:
https://swarm.workshop.perforce.com/projects/perforce-software-sdp/files/downloads

2 of 79 - Chapter 1. Overview SDP User Guide (for Unix)

2 © 2010-2020 Perforce Software, Inc.

https://swarm.workshop.perforce.com/projects/perforce-software-sdp/files/downloads

Chapter 2. Setting up the SDP
This section tells you how to configure the SDP to setup a new Helix Core server. Whilst the
standard installation of Helix Core is fully covered in the
linke:https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/Home-
p4sag.html[System Administrator Guide] this section covers the details most relevant to the SDP.

The SDP can be installed on multiple server machines, and each server machine can host one or
more Helix Core server instances.

The SDP implements a standard logical directory structure which can be implemented fleixbly on
lost of different physical hosts.

2.1. Terminology and pre-requisites
1. The term server refers to a Helix Core server instance , unless otherwise specified.

2. The term metadata refers to the Helix Core database files

3. Instance: a separate Helix Core instantiation using its own p4d daemon/process

Pre-Requisites:

1. The Helix Core binaries (p4d, p4, p4broker, p4p) have been downloaded (see Chapter 3,
Installing the SDP on Unix / Linux)

2. sudo access is required

3. System administrator available for configuration of drives / volumes (especially if on network
or SAN or similar)

4. Supported Unix version, currently these versions are fully supported - for other versions please
speak with Perforce Support

! Ubuntu 18.04 LTS (bionic)

! Ubuntu 20.04 LTS (focal fossa)

! CentOS or Red Hat (RHEL) 7.x

! CentOS or Red Hat (RHEL) 8.x

! SUSE Linux Enterprise Server 12

! We have seen CentOS/RHEL perform noticably better than Ubuntu with the same
storage (e.g. All Flash arrays, and SAN drives) - and thus recommend it.

2.2. Volume Layout and Hardware
As can be expected from a version control system, good disk (storage) management is key to
maximising data integrity and performance. Perforce recommend using multiple physical volumes
for each server instance. Using three or four volumes per instance reduces the chance of hardware
failure affecting more than one instance. When naming volumes and directories the SDP assumes

SDP User Guide (for Unix) Chapter 2. Setting up the SDP - 3 of 79

© 2010-2020 Perforce Software, Inc. 3

the "hx" prefix is used to indicate Helix volumes (your own naming conventions/standards can be
used instead). For optimal performance on UNIX machines, the XFS file system is recommended but
not mandated.

¥ Perforce metadata (database files), 1 or 2 volumes: Use the fastest volume possible, ideally
SSD or RAID 1+0 on a dedicated controller with the maximum cache available on it. These
volumes default to /hxmetadata1 and /hxmetadata2.

It is fine to have these both pointing to the same physical volume, e.g. /hxmetadata.

¥ Journals and logs: a fast volume, ideally SSD or RAID 1+0 on its own controller with the
standard amount of cache on it. This volume is normally called /hxlogs and should usually be
backed up.

If a separate logs volume is not available, put the logs on the /hxmetadata1 or /hxmetadata
volume.

¥ Depot data, archive files, scripts, and checkpoints : Use a large volume, with RAID 5 on its
own controller with a standard amount of cache or a SAN or NAS volume (NFS access is fine).
This volume is the only volume that must be backed up. The SDP backup scripts place the
metadata snapshots on this volume.

This volume is normally called /hxdepots .

! If multiple controllers are not available, put the hxlogs and hxdepots volumes on
the same controller.

"
Do not run anti-virus tools or back up tools against the hxmetadata volume(s) or
hxlogs volume(s), because they can interfere with the operation of the Perforce
server.

On Unix/Linux platforms, the SDP will create a "convenience" directory containing links to the
volumes for each instance, by default named /p4 . The volume layout is shown in Appendix A, SDP
Package Contents. This convenience directory enables easy access to the different parts of the file
system for each instance.

For example:

¥ /p4/1/root contains the database files for instance 1

¥ /p4/1/logs contains the log files for instance 1

¥ /p4/1/bin contains the binaries and scripts for instance 1

¥ /p4/common/bin contains the binaries and scripts common to all instances

4 of 79 - Chapter 2. Setting up the SDP SDP User Guide (for Unix)

4 © 2010-2020 Perforce Software, Inc.

Chapter 3. Installing the SDP on Unix / Linux
See the Helix Installer documentation, which simplifies the process of doing "green field"
installations of the SDP on Linux.

The following documentation covers internal details of how the SDP can be deployed more
manually.

To install Perforce Server and the SDP, perform the steps laid out below:

¥ Set up a user account, file system, and configuration scripts.

¥ Run the configuration script.

¥ Start the server and configure the required file structure for the SDP.

1. If it doesnÕt already exist, create a group called perforce :

sudo groupadd perforce

2. Create a user called perforce and set the userÕs home directory to /p4 on a local disk.

sudo useradd -d /p4 -s /bin/bash -m perforce -g perforce

3. Create or mount the server file system volumes (per layout in previous section)

! /hxdepots

! /hxlogs

and either:

! /hxmetadata

or

! /hxmetadata1

! /hxmetadata2

4. These directories should be owned by: perforce:perforce

sudo chown -R perforce:perforce /hx*

5. Either download the SDP directly or move the previously downloaded version to /hxdepots

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 5 of 79

© 2010-2020 Perforce Software, Inc. 5

https://swarm.workshop.perforce.com/projects/perforce_software-helix-installer

cd /hxdepots
export sdpver=2019.3.26571 # Specify desired latest release
wget
https://swarm.workshop.perforce.com/downloads/guest/perforce_software/sdp/downloads
/sdp.Unix.${sdpver}.tgz

Or:

mv sdp.Unix.${sdpver}.tgz /hxdepots

6. Untar and uncompress the downloaded sdp files:

tar -zxvf sdp.Unix.${sdpver}.tgz

7. Set environment variable SDP, this makes certain later steps easier.

export SDP=/hxdepots/sdp

8. Make the entire $SDP (/hxdepot/sdp) directory writable:

chmod -R +w $SDP

9. Download the appropriate p4, p4d and p4broker binaries for your release and platform
(substituting desired release for r20.1 below)

cd $SDP/Server/Unix/p4/common/bin
wget http://ftp.perforce.com/perforce/r20.1/bin.linux26x86_64/p4
wget http://ftp.perforce.com/perforce/r20.1/bin.linux26x86_64/p4d
wget http://ftp.perforce.com/perforce/r20.1/bin.linux26x86_64/p4broker

10. make them executable

chmod +x p4*

3.1. Initial setup
The next steps highlight the setup and configuration of a new Helix Core instance using the
mkdirs.sh script included in the SDP.

Usage

6 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

6 © 2010-2020 Perforce Software, Inc.

USAGE for mkdirs.sh v4.1.1:

mkdirs.sh <instance> [-s <ServerID>] [-t <server_type>] [-MDD /bigdisk] [-MLG /jnl] [-
MDB1 /db1] [-MDB2 /db2] [-f] [-p] [-test [-clean]] [-n] [-L <log>] [-d|-D]

or

mkdirs.sh [-h|-man]

DESCRIPTION:

This script initializes an SDP instance on a single machine.

This script is intended to support two scenarios:

* First time SDP installation on a given machine.
* Adding new SDP instances (separate Helix Core data sets) to an existing
Ê SDP installation on a given machine.

And SDP instance is a single Helix Core data set, with its own unique
set of one set of users, changelist numbers, jobs, labels, versioned
files, etc. An organization may run a single instance or multiple
instances.

This is intended to be run either as root or as the operating system
user account (OSUSER) that p4d is configured to run as, typically
'perforce'. It should be run as root for the initial install.
Subsequent additions of new instances do not require root.

If an initial install as done by a user other than root, various
directories must exist and be writable and owned by 'perforce' before starting:

* /p4
* /hxdepots
* /hxlogs
* /hxmetadata

This script creates an init script in the /p4/N/bin directory.

After running this script, set up the crontab based on templates
generated in /p4/common/etc/cron.d. For convenience, a sample cronat
is generated for the current machine in /p4/common/etc/cron.d named

crontab.<osuser>.<host>

where <osuser> is the user that services run as (typically 'perforce'),
and <host> is the short hostname (as returned by a 'hostname -s' command).

Next, put the license file in place in the P4ROOT dir, and launch the server

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 7 of 79

© 2010-2020 Perforce Software, Inc. 7

with the init script.

Then run /p4/common/bin/p4master_run instance /p4/common/bin/live_checkpoint.sh
and then run both the daily_checkpoint.sh and recreate_db_checkpoint.sh to
make sure everything is working before setting up the crontab.

Also run /p4/common/bin/p4master_run <instance> /p4/common/bin/p4review.py <instance>
to make sure the review script is working properly. If you intend to use
Swarm, you can skip configuration of the review daemon, and instead configure
Swarm to handle review-style email notifications.

REQUIRED PARAMETERS:
Ê<instance>
Ê Specify the SDP instance name to add. This is a reference to the Perforce
Ê Helix Core data set.

OPTIONS:
Ê-s <ServerID>
Ê Specify the ServerID, overriding the REPLICA_ID setting in the configuration
Ê file.

Ê-S <TargetServerID>
Ê Specify the ServerID of the P4TARGET of the server being installed.
Ê Use this when setting up an edge server.

Ê-t <server_type>
Ê Specify the server type, overriding the SERVER_TYPE setting in the config
Ê file. Valid values are:
Ê * p4d_master - A master/commit server.
Ê * p4d_replica - A replica with all metadata from the master (not filtered in any
way).
Ê * p4d_filtered_replica - A filtered replica or filtered forwarding replica.
Ê * p4d_edge - An edge server.
Ê * p4d_edge_replica - Replica of an edge server. If used, '-S <TargetServerID>'
Ê is required.
Ê * p4broker - An SDP host running only a broker, with no p4d.
Ê * p4proxy - An SDP host running a proxy (maybe with a broker in front), with no
p4d.

Ê-MDD /bigdisk
Ê-MLG /jnl
Ê-MDB1 /db1
Ê-MDB2 /db2
Ê Specify the '-M*' to specify mount points, overriding DD/LG/DB1/DB2
Ê settings in the config file. Sample:

Ê -MDD /bigdisk -MLG /jnl -MDB1 /fast

Ê If -MDB2 is not specified, it is set the the same value as -MDB1 if
Ê that is set, or else it defaults to the same default value as DB1.

8 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

8 © 2010-2020 Perforce Software, Inc.

Ê-f Specify -f 'fast mode' to skip chown/chmod commands on depot files.
Ê This should only be used when you are certain the ownership and
Ê permissions are correct, and if you have large amounts of existing
Ê data for which the chown/chmod of the directory tree would be
Ê slow.

Ê-p Specify '-p' to halt processing after preflight checks are complete,
Ê and before actual processing starts. By default, procesing starts
Ê immediately upon successful completion of preflight checks.

Ê-L <log>
Ê Specify the path to a log file, or the special value 'off' to disable
Ê logging. By default, all output (stdout and stderr) goes to this file
Ê in the current directory:

Ê mkdirs.<instance>.<datestamp>.log

Ê NOTE: This script is self-logging. That is, output displayed on the screen
Ê is simultaneously captured in the log file. Do not run this script with
Ê redirection operators like '> log' or '2>&1', and do not use 'tee.'

DEBUGGING OPTIONS:
Ê-test Specify '-test' to execute a simulated install to /tmp/p4 as the install
Ê root (rather than /p4), and with the mount point directories specifed in
Ê the configuration file prefixed with /tmp/hxmounts, defaulting to:
Ê * /tmp/hxmounts/hxdepots
Ê * /tmp/hxmounts/hxlogs
Ê * /tmp/hxmounts/hxmetadata

Ê-clean
Ê Specify '-clean' with '-test' to clean up from prior test installs,
Ê which will result in removal of files/folders installed under /tmp/hxmounts
Ê and /tmp/p4.

Ê Do not specify '-clean' if you want to test a series of installs.

Ê-n No-Op. In No-Op mode, no actions that affect data or structures are taken.
Ê Instead, commands that would be run are displayed. This is an alternative
Ê to -test. Unlike '-p' which stops after the preflight checks, with '-n' more
Ê processing logic can be exercised, with greater detail about what commands
Ê that would be executed without '-n'.

Ê-d Increase verbosity for debugging.

Ê-D Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
Ê-h Display short help message
Ê-man Display man-style help message

FILES:

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 9 of 79

© 2010-2020 Perforce Software, Inc. 9

Ê The mkdirs.sh script uses a configuration file for many settings. A
Ê sample file, mkdirs.cfg, is included with the SDP. After determining
Ê your SDP instance name (e.g. '1' or 'abc'), create a configuration
Ê file for it named mkdirs.<N>.cfg, replacing 'N' with your instance.

Ê Running 'mkdirs.sh N' will load configuration settings from mkdirs.N.cfg.

UPGRADING SDP:
Ê This script can be useful in testing and upgrading to new versions of the SDP,
Ê when the '-test' flag is used.

EXAMPLES:
Ê Example 1: Setup of first instance

Ê Setup of the first instance on a machine using the default instance name,
Ê '1', executed after using sudo to become root:
Ê $ sudo su -
Ê $ cd /hxdepots/sdp/Server/Unix/setup
Ê $ vi mkdirs.cfg

Ê # Adjust settings as desired, e.g P4PORT, P4BROKERPORT, etc.

Ê $./mkdirs.sh

Ê A log will be generated, mkdirs.1.<timestamp>.log

Ê Example 2: Setup of additional instance named 'abc'.

Ê Setup a second instanced on the machine, which will be a seprate Helix Core
Ê instantce with its own P4ROOT, its own set of users and changelists, and
Ê its own license file (copied from the master instance).

Ê Note that while the first run of mkdirs.sh on a given machine should be done
Ê as root, but subsequent instane additions should be done as the 'perforce'
Ê user (or whatever operating system user accounts Perforce Helix services run
Ê as).

Ê $ sudo su - perforce
Ê $ cd /hxdepots/sdp/Server/Unix/setup
Ê $ cp -p mkdirs.cfg mkdirs.abc.cfg
Ê $ vi mkdirs.abc.cfg

Ê # Adjust settings in mkdirs.abc.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.

Ê $./mkdirs.sh abc

Ê A log will be generated, mkdirs.abc.<timestamp>.log

" If you use a "name" for the instance (not an integer) you MUST modify the P4PORT
variable in the mkdirs.cfg file.

10 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

10 © 2010-2020 Perforce Software, Inc.

! The instance name must map to the name of the cfg file or the default file will be
used with potentially unexpected results.

For example, mkdirs.sh 1 requires mkdirs.1.cfg , or mkdirs.sh lon requires mkdirs.lon.cfg

3. Put the Perforce license file for the server into /p4/1/root

!
if you have multiple instances and have been provided with port-specific licenses
by Perforce, the appropriate license file must be stored in the appropriate
/p4/<instance>/root folder.

" the license file must be renamed to license

Your Helix Core instance is now setup, but not running. The next steps detail how to make the Helix
Core server a system service.

You are then free to start up the p4d instance as documented Section 3.2.3, ÒStarting/Stopping
Perforce Server ProductsÓ

Please note that if you have configured SSL, then refer to Section 3.1.1, ÒUse of SSLÓ

3.1.1. Use of SSL

As documented in the comments in mkdirs.cfg, if you are planning to use SSL you need to set the
value of:

SSL_PREFIX=ssl:

Then you need to put certificates in /p4/ssl after the SDP install or you can generate a self signed
certificate as follows:

Edit /p4/ssl/config.txt to put in the info for your company. Then run:

/p4/common/bin/p4master_run <instance> /p4/<instance>/p4d_<instance> -Gc

For example using instance 1:

/p4/common/bin/p4master_run 1 /p4/1/bin/p4d_1 -Gc

In order to validate that SSL is working correctly:

source /p4/common/bin/p4_vars 1

Check that P4TRUST is appropriately set in the output of:

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 11 of 79

© 2010-2020 Perforce Software, Inc. 11

p4 set

Update the P4TRUST values (answer yes when prompted - the second command uses the value of
the hostname command):

p4 -p ssl:1666 trust

p4 -p ssl:`hostname`:1666 trust

Check the stored P4TRUST values:

p4 trust -l

Check you are not prompted for trust:

p4 login
p4 info

3.1.2. Configuration script mkdirs.cfg

The mkdirs.sh script executed above resides in $SDP/Server/Unix/setup . It sets up the basic directory
structure used by the SDP. Carefully review the config file mkdirs. instance .cfg for this script before
running it, and adjust the values of the variables as required. The important parameters are:

Parameter Description

DB1 Name of the hxmetadata1 volume (can be same
as DB2)

DB2 Name of the hxmetadata2 volume (can be same
as DB1)

DD Name of the hxdepots volume

LG Name of the hxlogs volume

CN Volume for /p4/common

SDP Path to SDP distribution file tree

SHAREDDATA TRUE or FALSE - whether sharing the /hxdepots
volume with a replica - normally this is FALSE

ADMINUSER P4USER value of a Perforce super user that
operates SDP scripts, typically perforce or
p4admin.

12 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

12 © 2010-2020 Perforce Software, Inc.

Parameter Description

OSUSER Operating system user that will run the Perforce
instance, typically perforce.

OSGROUP Operating system group that OSUSER belongs to,
typically perforce.

CASE_SENSITIVE Indicates if server has special case sensitivity
settings

SSL_PREFIX Set if SSL is required so either "ssl:" or blank for
no SSL

P4ADMINPASS

P4SERVICEPASS

Password to use for Perforce superuser account
- can be edited later in
/p4/common/config/.p4password.p4_1.admin

Service UserÕs password for replication - can be
edited later - same dir as above.

P4MASTERHOST Fully qualified DNS name of the Perforce master
server machine for this instance. If an HA for an
edge server this should refer to the edge server.
Otherwise refer to the commit server.

For a detailed description of this config file it is fully documented with in-file comments, or see

3.2. Configuring (Automatic) Service Start on Boot
You normally want to configure your host such that the Helix Core Server (and/or Proxy or Broker)
will autostart when the machine boots.

This is done using Systemd or Init scripts as covered below.

3.2.1. For Systems using systemd

RHEL 7 or 8, CentOS 7 or 8, SuSE 12, Ubuntu (>= v16.04) (and other) distributions utilize systemd /
systemctl as the mechanism for controlling services, replacing the earlier init process. At present
mkdirs.sh does not generate the systemd configuration file(s) automatically, but a sample is
included in the SDP distribution in ($SDP/Server/Unix/setup/systemd), along with a README.md file
that describes the configuration process, including for multiple instances.

We recommend that you give the OS user (perforce) sudo access, so that it can run the commands
below prefixing them with sudo.

For simple installation run these commands as the root user (or prefix with sudo):

cp $SDP/Server/Unix/setup/system/p4d_1.system /etc/systemd/system/
sudo systemctl enable p4d_1

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 13 of 79

© 2010-2020 Perforce Software, Inc. 13

|The above enables service for auto-start on boot. The following show management commands:

sudo systemctl status p4d_1
sudo systemctl start p4d_1
sudo systemctl stop p4d_1

"
If you are using systemd and you have configured systemctl services, then it is vital
you ALWAYS use systemctl to start/stop etc. Otherwise you risk database
corruption if systemd does not think the service is running when it actually is
running (for example - on shutdown systemd will just kill processes without doing
it cleanly and waiting for them, because it thinks the service is not running).

3.2.2. For (older) systems, still using init.d

The mkdirs.sh script creates a set of startup scripts in the instance-specific bin folder:

/p4/1/bin/p4d_1_init
/p4/1/bin/p4broker_1_init # only created if a p4broker executable found
/p4/1/bin/p4p_1_init # only created if a p4p executable found

Run these commands as the root user (or sudo): Repeat this step for all init scripts you wish to add.

cd /etc/init.d
ln -s /p4/1/bin/p4d_1_init
chkconfig --add p4d_1_init
chkconfig p4d_1_init on

3.2.3. Starting/Stopping Perforce Server Products

The SDP includes templates for initialization (start/stop) scripts, "init scripts," for a variety of
Perforce server products, including:

¥ p4d

¥ p4broker

¥ p4p

¥ p4dtg

¥ p4ftpd

¥ p4web

The init scripts are named /p4/<instance>/bin/<service>_<instance>_init , e.g. /p4/1/bin/p4d_1_init
or /p4/1/bin/p4broker_1_init .

For example, the init script for starting p4d for Instance 1 is /p4/1/bin/p4d_1_init . All init scripts
accept at least start, stop, and status arguments. The perforce user can start p4d by calling:

14 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

14 © 2010-2020 Perforce Software, Inc.

p4d_1_init start

And stop it by calling:

p4d_1_init stop

Once logged into Perforce as a super user, the p4 admin stop command can also be used to stop p4d.

All init scripts can be started as the perforce user or the root user (except p4web, which must start
initially as root). The application runs as the perforce user in any case. If the init scripts are
configured as system services (non-systemd distributions), they can also be called by the root user
using the service command, as in this example to start p4d:

service p4d_1_init start

Templates for the init scripts used by mkdirs.sh are stored in:

/p4/common/etc/init.d

There are also basic crontab templates for a Perforce master and replica server in:

/p4/common/etc/cron.d

These define schedules for routine checkpoint operations, replica status checks, and email reviews.

The Perforce should have a super user defined as named by the P4USER setting in mkdir.

To configure and start instance 1, follow these steps:

1. Start the Perforce server by calling

p4d_1_init start

or use sudo systemctl start p4d_1 if using sytemd

3.3. Completing Your Server Configuration
1. Ensure that the admin user configured above has the correct password defined in

/p4/common/config/.p4passwd.p4_1.admin, and then run the p4login script (which calls the p4
login command using the .p4passwd.p4_1.admin file)

2. For new servers, run this script, which sets several recommended configurables:

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 15 of 79

© 2010-2020 Perforce Software, Inc. 15

$SDP/Server/setup/configure_new_server.sh 1

For existing servers, examine this file, and manually apply the p4 configure command to set
configurables on your Perforce server.

Initialize the perforce userÕs crontab with one of these commands:

crontab /p4/p4.crontab

and customise execution times for the commands within the crontab files to suite the specific
installation.

The SDP uses wrapper scripts in the crontab: run_if_master.sh , run_if_edge.sh , run_if_replica.sh .
We suggest you ensure these are working as desired, e.g.

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

The above should output yes if you are on the master (commit) machine (or replica/edge as
appropriate), but otherwise nothing. Any issues with the above indicate incorrect values for
$MASTER_ID, or for other values within /p4/common/config/p4_1.vars (assuming instance 1). You can
debug this with:

bash -xv /p4/common/bin/run_if_master.sh 1 echo yes

If in doubt contact support.

3.3.1. Validating your SDP installation

Source your SDP environment variables and check that they look appropriate - for <instance> 1:

source /p4/common/bin/p4_vars 1

The output of p4 set should be something like:

16 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

16 © 2010-2020 Perforce Software, Inc.

P4CONFIG=/p4/1/.p4config (config 'noconfig')
P4ENVIRO=/dev/null/.p4enviro
P4JOURNAL=/p4/1/logs/journal
P4LOG=/p4/1/logs/log
P4PCACHE=/p4/1/cache
P4PORT=ssl:1666
P4ROOT=/p4/1/root
P4SSLDIR=/p4/ssl
P4TICKETS=/p4/1/.p4tickets
P4TRUST=/p4/1/.p4trust
P4USER=perforce

There is a script /p4/common/bin/verify_sdp.sh . Run this specifying the <instance> id, e.g.

/p4/common/bin/verify_sdp.sh 1

The output should be something like:

verify_sdp.sh v5.6.1 Starting SDP verification on host helixcorevm1 at Fri 2020-08-14
17:02:45 UTC with this command line:
/p4/common/bin/verify_sdp.sh 1

If you have any questions about the output from this script, contact
support@perforce.com.
--
Doing preflight sanity checks.
Preflight Check: Ensuring these utils are in PATH: date ls grep awk id head tail
Verified: Essential tools are in the PATH.
Preflight Check: cd /p4/common/bin
Verified: cd works to: /p4/common/bin
Preflight Check: Checking current user owns /p4/common/bin
Verified: Current user [perforce] owns /p4/common/bin
Preflight Check: Checking /p4 and /p4/<instance> are local dirs.
Verified: P4HOME has expected value: /p4/1
Verified: This P4HOME path is not a symlink: /p4/1
Verified: cd to /p4 OK.
Verified: Dir /p4 is a local dir.
Verified: cd to /p4/1 OK.
Verified: P4HOME dir /p4/1 is a local dir.

Finishing with:

Verifications completed, with 0 errors and 0 warnings detected in 57 checks.

If it mentions something like:

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 17 of 79

© 2010-2020 Perforce Software, Inc. 17

Verifications completed, with 2 errors and 1 warnings detected in 57 checks.

then review the details. If in doubt contact support@perforce.com

3.4. Configuring protections, file types, monitoring and
security
After the server is installed and configured, most sites will want to modify server permissions
(protections) and security settings. Other common configuration steps include modifying the file
type map and enabling process monitoring. To configure permissions, perform the following steps:

1. To set up protections, issue the p4 protect command. The protections table is displayed.

2. Delete the following line:

write user * * //depot/...

3. Define protections for your server using groups. Perforce uses an inclusionary model. No access
is given by default, you must specifically grant access to users/groups in the protections table. It
is best for performance to grant users specific access to the areas of the depot that they need
rather than granting everyone open access, and then trying to remove access via exclusionary
mappings in the protect table even if that means you end up generating a larger protect table.

4. To set the serverÕs default file types, run the p4 typemap command and define typemap entries
to override PerforceÕs default behavior.

5. Add any file type entries that are specific to your site. Suggestions:

! For already-compressed file types (such as .zip , .gz , .avi , .gif), assign a file type of
binary+Fl to prevent the server from attempting to compress them again before storing
them.

! For regular binary files, add binary+l to make so that only one person at a time can check
them out.

A sample file is provided in $SDP/Server/config/typemap

If you are doing things like games development with Unreal Engine or Unity , then there are specific
recommended typemaps to add in KB articles: Search the Knowledge Base

1. To make your changelists default to restricted (for high security environments):

p4 configure set defaultChangeType=restricted

18 of 79 - Chapter 3. Installing the SDP on Unix / Linux SDP User Guide (for Unix)

18 © 2010-2020 Perforce Software, Inc.

mailto:support@perforce.com
https://community.perforce.com/s/

3.5. Operating system configuration
Check Chapter 6, Maximizing Server Performance for detailed recommendations.

3.6. Other server configurables
There are various configurables that you should consider setting for your server.

Some suggestions are in the file: $SDP/Server/setup/configure_new_server.sh

Review the contents and either apply individual settings manually, or edit the file and apply the
newly edited version. If you have any questions, please see the configurables section in Command
Reference Guide appendix (get the right version for your server!). You can also contact support
regarding questions.

3.7. Archiving configuration files
Now that the server is running properly, copy the following configuration files to the hxdepots
volume for backup:

¥ Any init scripts used in /etc/init.d or any systemd scripts to /etc/systemd/system

¥ A copy of the crontab file, obtained using crontab -l .

¥ Any other relevant configuration scripts, such as cluster configuration scripts, failover scripts,
or disk failover configuration files.

SDP User Guide (for Unix) Chapter 3. Installing the SDP on Unix / Linux - 19 of 79

© 2010-2020 Perforce Software, Inc. 19

https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html

Chapter 4. Backup, Replication, and
Recovery
Perforce servers maintain metadata and versioned files . The metadata contains all the information
about the files in the depots. Metadata resides in database (db.*) files in the serverÕs root directory
(P4ROOT). The versioned files contain the file changes that have been submitted to the server.
Versioned files reside on the hxdepots volume.

This section assumes that you understand the basics of Perforce backup and recovery. For more
information, consult the Perforce System AdministratorÕs Guide and failover .

4.1. Typical Backup Procedure
The SDPÕs maintenance scripts, run as cron tasks, periodically back up the metadata. The weekly
sequence is described below.

Seven nights a week, perform the following tasks:

1. Truncate the active journal.

2. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

3. Create a checkpoint from the offline database.

4. Recreate the offline database from the last checkpoint.

Once a week, perform the following tasks:

1. Verify all depot files.

Once every few months, perform the following tasks:

1. Stop the live server.

2. Truncate the active journal.

3. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

4. Archive the live database.

5. Move the offline database to the live database directory.

6. Start the live server.

7. Create a new checkpoint from the archive of the live database.

8. Recreate the offline database from the last checkpoint.

9. Verify all depots.

This normal maintenance procedure puts the checkpoints (metadata snapshots) on the hxdepots
volume, which contains the versioned files. Backing up the hxdepots volume with a normal backup
utility like robocopy or rsync provides you with all the data necessary to recreate the server.

20 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

20 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/failover.html#Failover

To ensure that the backup does not interfere with the metadata backups (checkpoints), coordinate
backup of the hxdepots volume using the SDP maintenance scripts.

The preceding maintenance procedure minimizes server downtime, because checkpoints are
created from offline or saved databases while the server is running.

!
With no additional configuration, the normal maintenance prevents loss of more
than one dayÕs metadata changes. To provide an optimal Recovery Point Objective
(RPO), the SDP provides additional tools for replication.

4.2. Planning for HA and DR
The concepts for HA (High Availability) and DR (Disaster Recovery) are fairly similar - they are both
types of Helix Core replica.

When you have servers with Services of commit-server , standard , or edge-server - see deployment
architectures you should consider your requirements for how to recover from a failure to any such
servers.

See also Replica types and use cases

The key issues are around ensuring that you have have appropriate values for the following
measures for your Helix Core installation:

¥ RTO - Recovery Time Objective - how long will it take you to recover to a backup?

¥ RPO - Recovery Point Objective - how much data are you prepared to risk losing if you have to
failover to a backup server?

We need to consider planned vs unplanned failover. Planned may be due to upgrading the core
Operating System or some other dependency in your infrastructure, or a similar activity.

Unplanned covers risks you are seeking to mitigate with failover:

¥ loss of a machine, or some machine related hardware failure (e.g. network)

¥ loss of a VM cluster

¥ failure of storage

¥ loss of a data center or machine room

¥ etcÉ

So, if your main commit-server fails, how fast should be you be able to be up and running again, and
how much data might you be prepared to lose? What is the potential disruption to your
organisation if the Helix Core repository is down? How many people would be impacted in some
way?

You also need to consider the costs of your mitigation strategies. For example, this can range from:

¥ taking a backup once per 24 hours and requiring maybe an hour or two to restore it. Thus you
might lose up to 24 hours of work for an unplanned failure, and require several hours to

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 21 of 79

© 2010-2020 Perforce Software, Inc. 21

http://en.wikipedia.org/wiki/Recovery_point_objective
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://community.perforce.com/s/article/5434

restore.

¥ having a high availability replica which is a mirror of the server hardware and ready to take
over within minutes if required

Having a replica for HA or DR is likely to reduce your RPO and RTO to well under an hour (<10
minutes if properly prepared for) - at the cost of the resources to run such a replica, and the
management overhead to monitor it appropriately.

Typically we would define:

¥ An HA replica is close to its upstream server, e.g. in the same Data Center - this minimises the
latency for replication, and reduces RPO

¥ A DR replica is in a more remote location, so maybe risks being further behind in replication
(thus higher RPO), but mitigates against catastrophic loss of a data center or similar. Note that
"further behind" is still typically seconds for metadata, but can be minutes for submits with
many GB of files.

4.2.1. Further Resources

¥ High Reliability Solutions

4.2.2. Creating a Failover Replica for Commit or Edge Server

A commit server is the ultimate store for submitted data, and also for any workspace state (WIP -
work in progress) for users directly working with the commit server.

An edge server maintains its own copy of workspace state (WIP). If you have people connecting to
an edge server, then any workspaces they create (and files they open for some action) will be only
stored on the edge server. Thus it is normally recommended to have an HA backup server, so that
users donÕt lose their state in case of failover.

There is a concept of a "build edge" which is an edge server which only supports build farm users.
In this scenario it may be deemed acceptable to not have an HA backup server, since in the case of
failure of the edge, it can be re-seeded from the commit server. All build farm clients would be
recreated from scratch so there would be no problems.

4.2.3. What is a Failover Replica?

As of 2018.2 release, p4d supports a standby replica (replica with Services set to standby or
forwarding-standby). Such a replica performs a journalcopy replication of metadata, with a local pull
thread to update its db.* files.

See also: Configuring a Helix Core Standby although the SDP script Section 4.3.4, ÒUsing mkrep.shÓ
does all you require.

4.2.4. Mandatory vs Non-mandatory Standbys

When defining a standby server, you run p4 server commit-standby for example, to get:

22 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

22 © 2010-2020 Perforce Software, Inc.

https://community.perforce.com/s/article/3166
https://community.perforce.com/s/article/16462

ServerID: commit-standby
Type: server
Address: {standbyserver host}:{port number}
Services: standby
Options: nomandatory
ReplicatingFrom: {commit-server-ID}
Description: Standby server for {commit-server-ID}.

The Options field can be nomandatory or mandatory.

In the case of mandatory, the upstream commit server will wait until this server confirms it has
processed and journal entries before responding to other downstream replicas. This allows easy
failover, since it is guaranteed that no downstream servers is ahead of the replica.

Thus downstream servers can simply be re-directed to point to the standby and will carry on
working without problems.

"
If a server which is marked as mandatory goes offline for any reason, the replication
to other replicas will STOP - and it may not be obvious why it has stopped! Thus it
is very important to monitor very carefully your "mandatory" replicas!

If set to nomandatory then there is no risk of delaying dowsntream replicas, however there is equally
no guarantee that they will be able to switch seamlessly over to the new server.

!
We recommend creating mandatory replica(s) if the server is local to its commit
server, and also if you have good monitoring in place to quickly detect replication
lag or other issues.

4.2.5. Server host naming conventions

This is recommended, but not a requirement for SDP scripts to implement failover.

¥ Use a name that does not indicate switchable roles, e.g. donÕt indicate in the name whether a
host is a master/primary or backup, or edge server and itÕs backup. This might otherwise lead to
confusion once you have performed a failover and the host name is no longer appropriate.

¥ Use names ending numeric designators, e.g. -01 or -05. The goal is to avoid being in a post-
failover situation where a machine with master or primary is actually the backup. Also, the
assumption is that host names will never need to change.

¥ While you donÕt want switchable roles baked into the hostname, you can have static roles, e.g.
use p4d vs. p4p in the host name (as those generally donÕt change). The p4d could be primary,
standby, edge, edgeÕs standby (switchable roles).

¥ Using a short geographic site is sometimes helpful/desirable. If used, use the same site tag used
in the ServerID, e.g. aus. Valid site tags should be listed in: /p4/common/config/SiteTags.cfg - see
Section 4.3.4.2, ÒSiteTags.cfgÓ

¥ Using a short tag to indicate the major OS version is sometimes helpful/desirable, eg. c7 for
CentOS 7, or r8 for RHEL 8. This is based on the idea that when the major OS is upgraded, you

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 23 of 79

© 2010-2020 Perforce Software, Inc. 23

either move to new hardware, or change the host name (an exception to the rule above about
never changing the hostname). This option maybe overkill for many sites.

¥ End users should reference a DNS name that may include the site tag, but would exclude the
number, OS indicator, and server type (p4d/p4p/p4broker), replacing all that with just perforce or
optionally just p4. General idea is that users neednÕt be bothered by under-the-covers tech of
whether something is a proxy or replica.

¥ For edge servers, it is advisable to include edge in both the host and DNS name, as users and
admins needs to be aware of the functional differences due to a server being an edge server.

Examples:

¥ p4d-aus-r7-03 , a master in Austin on RHEL 7, pointed to by a DNS name like p4-aus.

¥ p4d-aus-03, a master in Austin (no indication of server OS), pointed to by a DNS name like p4-
aus.

¥ p4d-aus-r7-04 , a standby replica in Austin on RHEL 7, not pointed to by a DNS until failover, at
which point it gets pointed to by p4-aus.

¥ p4p-syd-r8-05 , a proxy in Sydney on RHEL 8, pointed to by a DNS name like p4-syd.

¥ p4d-syd-r8-04 , a replica that replaced the proxy in Sydney, on RHEL 8, pointed to by a DNS name
like p4-syd (same as the proxy it replaced).

¥ p4d-edge-tok-s12-03 , an edge in Tokyo running SuSE12, pointed to by a DNS name like p4edge-
tok .

¥ p4d-edge-tok-s12-04 , a replica of an edge in Tokyo running SuSE12, not pointed to by a DNS
name until failover, at which point it gets pointed to by p4edge-tok.

FQDNs (fully qualified DNS names) of short DNS names used in these examples would also exist,
and would be based on the same short names.

4.3. Full One-Way Replication
Perforce supports a full one-way replication of data from a master server to a replica, including
versioned files. The p4 pull command is the replication mechanism, and a replica server can be
configured to know it is a replica and use the replication command. The p4 pull mechanism
requires very little configuration and no additional scripting. As this replication mechanism is
simple and effective, we recommend it as the preferred replication technique. Replica servers can
also be configured to only contain metadata, which can be useful for reporting or offline
checkpointing purposes. See the Distributing Perforce Guide for details on setting up replica
servers.

If you wish to use the replica as a read-only server, you can use the P4Broker to direct read-only
commands to the replica or you can use a forwarding replica. The broker can do load balancing to a
pool of replicas if you need more than one replica to handle your load.

4.3.1. Replication Setup

To configure a replica server, first configure a machine identically to the master server (at least as

24 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

24 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/replication.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_pull.html#p4_pull
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html

regards the link structure such as /p4 , /p4/common/bin and /p4/ instance /*), then install the SDP on it
to match the master server installation. Once the machine and SDP install is in place, you need to
configure the master server for replication.

Perforce supports many types of replicas suited to a variety of purposes, such as:

¥ Real-time backup,

¥ Providing a disaster recovery solution,

¥ Load distribution to enhance performance,

¥ Distributed development,

¥ Dedicated resources for automated systems, such as build servers, and more.

We always recommend first setting up the replica as a read-only replica and ensuring that
everything is working. Once that is the case you can easily modify server specs and configurables to
change it to a forwarding replica, or an edge server etc.

4.3.2. Replication Setup for Failover

This is just a special case of replication, but implementing Section 4.2.3, ÒWhat is a Failover
Replica?Ó

Please note the section below Section 4.3.4, ÒUsing mkrep.shÓ which implements many details.

4.3.3. Pre-requisites for Failover

These are vital as part of your planning.

¥ Obtain and install a license for your replica(s)

Your commit or standard server has a license file (tied to IP address), while your replicas do not
require one to function as replicas.

However, in order for a replica to function as a replacement for a commit or standard server, it
must have a suitable license installed.

This should be requested when the replica is first created. See the form:
https://www.perforce.com/support/duplicate-server-request

¥ Review your authentication mechanism (LDAP etc) - is the LDAP server contactable from the
replica machine (firewalls etc configured appropriately)

¥ Review all your triggers and how they are deployed - will they work on the failover host?

Is the right version of Perl/Python etc correctly installed and configured on the failover host
with all imported libraries?

¥ Review the configuration of options such as Section 6.1, ÒEnsure Transparent Huge Pages (THP)
is turned offÓ and also Section 6.2, ÒPutting server.locks directory into RAMÓ are correctly
configured for your HA server machine - otherwise you risk reduced performance after
failover.

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 25 of 79

© 2010-2020 Perforce Software, Inc. 25

https://www.perforce.com/support/duplicate-server-request

"
TEST, TEST, TEST!!! It is important to test the above issues as part of your planning.
For peace of mind you donÕt want to be finding problems at the time of trying to
failover for real, which may be in the middle of the night!

4.3.4. Using mkrep.sh

This script automates the following:

¥ creation of all the configurables for a replica appropriate to its type (e.g. forwarding-replica,
forwarding-standby, edge-server etc).

¥ standard naming conventions are used for server ids, service user names etc. This simplifies
managing multiple server/replica topologies and understanding the intended use of a replica
(e.g. that it is intended for HA - high availability)

¥ creation of service user account, password, and with appropriate permissions

¥ creation of server spec

¥ detailed instructions to follow in order to create a checkpoint and restore on the replica server

Prerequisites:

¥ You must have a server spec for your master server, typically defined with Services: commit-
server (standard is fine if no edge servers are to be created, but it is not a problem to use commit-
server even without any edge servers) - use the serverid (output of p4 serverid) as the name.

¥ You should be running p4d 2018.2 or later (earlier versions of SDP address the use of pre 2018.2
servers) and 2020.1+ is recommended

¥ You should have a configuration file which defines site tags - this is part of naming and is
validated.

4.3.4.1. Server Types

These are:

¥ ha - High Availability

¥ ham - High Availability (Metadata only)

¥ ro - Read only replica

¥ rom - Read only replica (Metadata only)

¥ fr - Forwarding replica

¥ fs - Forwarding standby

¥ frm - (Metadata only)

¥ fsm - (Metadata only)

¥ ffr - Filtered forwarding replica

¥ edge - Edge server

Replicas with standby in the name are always unfiltered, and use the journalcopy method of

26 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

26 © 2010-2020 Perforce Software, Inc.

replication, which copies a byte-for-byte verbatim journal file rather than one that is merely
logically equivalent. This can also perform better as it multi-threads the actions of the replica to
pull the journal and use it to update local metadata.

4.3.4.2. SiteTags.cfg

This is a file which specifies valid sites (see mkrep.sh parameters).

Location is: /p4/common/config/SiteTags.cfg

Example/Format

Valid Geographic site tags.

Each is intended to indciate a geography, and optionally a specific Data
Center (or Computer Room, or Computer Closet) within a given geographic
location.
#
The format is:
Name:Description
The Name must be alphanumeric only. The Description may contain spaces.
Lines starting with # and blank lines are ignored.

bej: Beijing, China
bos: Boston, MA, USA
blr: Bangalore, India
chi: Chicago greater metro area
cni: Chennai, India
pune: Pune, India
lv: Las Vegas, NV, USA
mlb: Melbourne, Australia
syd: Sydney, Australia

4.3.4.3. Example

An example run is:

/p4/common/bin/mkrep.sh -i 1 -t fs -s bos -r p4d-bos-02 -skip_ssh

The above will:

¥ Create a replica for instance 1

¥ Of type fs (forwarding standby) - with appropriate configurables

¥ For site bos (e.g. Boston)

¥ On host name p4d-bos-02

¥ Without checking that passwordless ssh is possible to the host p4d-bos-02

The tag has several purposes:

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 27 of 79

© 2010-2020 Perforce Software, Inc. 27

¥ Short Hand. Each tag represents a combination of 'Type:' and fully qualified 'Services:' values
used in server specs.

¥ Distillation. Only the most useful Type/Services combinations have a shorthand form.

¥ For forwarding replicas, the name includes the critical distinction of whether any replication
filtering is used; as filtering of any kind disqualifies a replica from being a potential failover
target. (No such distinction is needed for edge servers, which are filtered by definition).

4.3.4.4. Mkrep.sh output

The output (which is also written to a log file in /p4/<instance>/logs/mkrep.*) describes a number of
steps required to continue setting up the replica, e.g.

¥ Rotate the current live journal (to save the configuration parameters required)

¥ Copy across latest checkpoint and the subsequent rotated journals to the replica host machine

¥ Restore the copied checkpoints/journals into /p4/<instance>/root (and offline_db)

¥ Create a password file for service user

¥ Create appropriate server.id files

¥ Login the service user to the upstream server (usually commit server)

¥ Start the replica process

¥ Monitor that all is well with p4 pull -lj

More details on these steps can be found in the manual process below as well as the actualy
mkrep.sh output.

Usage

USAGE for mkrep.sh v2.4.9:

mkrep.sh -i <SDP_Instance> -t <Type> -s <Site_Tag> -r <Replica_Host> [-f
<From_ServerID>] [-p] [-ssh_opts="opts"] [-skip_ssh] [-L <log>] [-si] [-v<n>] [-n] [-
D]

or

mkrep.sh [-h|-man|-V]

DESCRIPTION:
Ê This script creates makes a replica, and provides enough information to
Ê make it ready in all respects.

OPTIONS:
Ê-i <SDP_Instance>
Ê Specify the SDP Instance.

Ê-t <Type>
Ê Specify the replica type tag. The type corresponds to the 'Type:' and

28 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

28 © 2010-2020 Perforce Software, Inc.

Ê 'Services:' field of the server spec, which describes the type of services
Ê offered by a given replica.

Ê Valid values are:
Ê * ha: High Availability mandatory standby replica, for 'p4 failover' (P4D
2018.2+)
Ê * ham: High Availability metadata-only mandatory standby replica, for 'p4
failover' (P4D 2018.2+)
Ê * ro: Read-Only standby replica.
Ê * rom: Read-Only standby replica, Metadata only.
Ê * fr: Forwarding Replica (Unfiltered).
Ê * fs: Forwarding Standby (Unfiltered).
Ê * frm: Forwarding Replica (Unfiltered, Metadata only).
Ê * fsm: Forwarding Standby (Unfiltered, Metadata only).
Ê * ffr: Filtered Forwarding Replica. Not a valid failover target.
Ê * edge: Edge Server. Filtered by definition.

Ê Replicas with 'standby' are always unfiltered, and use the 'journalcopy'
Ê method of replication, which copies a byte-for-byte verbatim journal file
Ê rather than one that is merely logically equivalent.

Ê The tag has several purposes:
Ê 1. Short Hand. Each tag represents a combination of 'Type:' and fully
Ê qualified 'Services:' values used in server specs.

Ê 2. Distillation. Only the most useful Type/Services combinations have a
Ê shorthand form.

Ê 3. For forwarding replicas, the name includes the critical distinction of
Ê whether any replication filtering is used; as filtering of any kind disqualifies
Ê a replica from being a potential failover target. (No such distinction is
Ê needed for edge servers, which are filtered by definition).

Ê-s <Site_Tag>
Ê Specify a geographic site tag indicating the location and/or data center where
Ê the replica will physically be located. Valid site tags are defined in the site
Ê tags file:

Ê /p4/common/config/SiteTags.cfg

Ê Current valid site tags defined in this file are:
Ê tgrep: /p4/common/config/SiteTags.cfg: No such file or directory

Ê-r <Replica_Host>
Ê Specify the target replica host.

Ê-f <From_ServerID>
Ê Specify ServerID of the P4TARGET server from which we are replicating.
Ê This is used to populate the 'ReplicatingFrom' field of the server
Ê spec. The value must be a valid ServerID.

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 29 of 79

© 2010-2020 Perforce Software, Inc. 29

Ê By default, this is determined dynamically checking the ServerID of the
Ê master server. This option should be used if the target is something
Ê other than the master. For example, to create an HA replica of an edge
Ê server, you might specify something like '-f p4d_edge_syd'.

Ê-p This script performs a check to ensure that the Protections table grants
Ê super access to the group .

Ê By default, an error is displayed if the check fails, i.e. if super user
Ê access for the group cannot be verified. This is
Ê because, by default, we want to avoid making changes to the Protections
Ê table. Some sites have local policies or custom automation that requires
Ê site-specific procedures to update the Protections table.

Ê If '-p' is specified, an attempt is made to append the Protections table
Ê an entry like:

Ê super group * //...

Ê-ssh_opts="opts"
Ê Specify '-ssh_opts' to pass paraemters on to the ssh command. For
Ê example, to specify ssh operation on non-standard port 2222, specify
Ê '-ssh_opts="-p 2222"'.

Ê-skip_ssh
Ê Specify '-skip_ssh' to skip the SSH access preflight check.

Ê This is useful if you only intend to do the metadata preparation phase
Ê of creating a new replica, prior to SSH being setup or perhaps even
Ê prior to the hardware being available.

Ê-v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

Ê-L <log>
Ê Specify the path to a log file, or the special value 'off' to disable
Ê logging. By default, all output (stdout and stderr) goes in the logs
Ê directory referenced by $LOGS.

Ê NOTE: This script is self-logging. That is, output displayed on the screen
Ê is simultaneously captured in the log file. Do not run this script with
Ê redirection operators like '> log' or '2>&1', and do not use 'tee.'

-si Operate silently. All output (stdout and stderr) is redirected to the log
Ê only; no output appears on the terminal. This cannot be used with
Ê '-L off'.

Ê-n No-Op. Prints commands instead of running them.

Ê-D Set extreme debugging verbosity.

Ê-f Full Mode Setup: The completes an edge servers setup so no additional steps

30 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

30 © 2010-2020 Perforce Software, Inc.

Ê are required. This setup requires an ssh connection from the master to the
Ê edge to be in place first. It also requires the depot log journal and /p4
Ê mounts to be in place and setup as expected. This setup assumes a standard
Ê SDP setup.

HELP OPTIONS:
Ê-h Display short help message
Ê-man Display man-style help message
Ê-V Dispay version info for this script and its libraries.

DEPENDENCIES:
Ê This script depends on ssh keys being defined to allow the Perforce
Ê operating system user () to ssh to any necessary machines
Ê without a password.

Ê This script assumes the replica host already has the SDP fully
Ê configured.

FILES:
Ê This Site Tags file defines the list of valid geographic site tags:
Ê /p4/common/config/SiteTags.cfg

EXAMPLES:
Ê Prepare an edge server to run on host syc-helix-04:
Ê mkrep.sh -i acme -t edge -s syd -r syc-helix-04

4.3.5. Setting up a Replica Manually

We strongly recommend the use of mkrep.sh as it avoids forgetting particular details. However it is
possible to manually configure a replica.

In the sample below, the replica name will be p4d_fr_bos, it is instance 1 on a particular host, the
service user name is svc_p4d_fr_bos, and the master serverÕs hostname is svrmaster . This is
following Section 4.2.5, ÒServer host naming conventionsÓ

The following sample commands illustrate how to setup a simple read-only replica.

First we ensure that journalPrefix is set appropriately for the master server (in this case we assume
instance 1 rather than a named instance):

p4 configure set master#journalPrefix=/p4/1/checkpoints/p4_1

Then we set values for the replica itself:

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 31 of 79

© 2010-2020 Perforce Software, Inc. 31

p4 configure set p4d_fr_bos#P4TARGET=svrmaster:1667
p4 configure set "p4d_fr_bos#startup.1=pull -i 1"
p4 configure set "p4d_fr_bos#startup.2=pull -u -i 1"
p4 configure set "p4d_fr_bos#startup.3=pull -u -i 1"
p4 configure set "p4d_fr_bos#startup.4=pull -u -i 1"
p4 configure set "p4d_fr_bos#startup.5=pull -u -i 1"
p4 configure set "p4d_fr_bos#db.replication=readonly"
p4 configure set "p4d_fr_bos#lbr.replication=readonly"
p4 configure set p4d_fr_bos#serviceUser=svc_p4d_fr_bos

Then the following also need to be setup:

¥ Create a service user for the replica (Add the Type: service field to the user form before saving):

p4 user -f svc_p4d_fr_bos

¥ Set the service userÕs password:

p4 passwd svc_p4d_fr_bos

¥ Add the service user svc_p4d_fr_bos to a specific group, e.g. ServiceUsers which has a Timeout
field set to unlimited :

p4 group ServiceUsers

¥ Make sure the ServiceUsers group has super access in protections table:

p4 protect

Now that the settings are in the master server, you need to create a checkpoint to seed the replica.
Run:

/p4/common/bin/daily_checkpoint.sh 1

When the checkpoint finishes, rsync the checkpoint plus the versioned files over to the replica:

rsync -avz /p4/1/checkpoints/p4_1.ckp.###.gz perforce@p4d-bos-02:/p4/1/checkpoints/.

rsync -avz /p4/1/depots/ perforce@p4d-bos-02:/p4/1/depots/

(Assuming perforce is the OS user name and p4d-bos-02 is the name of the replica server in the

32 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

32 © 2010-2020 Perforce Software, Inc.

commands above, and that # is the checkpoint number created by the daily backup.)

Once the rsync finishes, go to the replica machine run the following:

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z /p4/1/checkpoints/p4_1.ckp.###.gz

Login as the service user (specifying appropriate password when prompted), and making sure that
the login ticket generated is stored in the same place as specified in the P4TICKETS configurable
value set above for the replica (the following uses bash syntax):

source /p4/common/bin/p4_vars 1
/p4/1/bin/p4_1 -p svrmaster:1667 -u svc_p4d_fr_bos login

Start the replica instance (either using _init script or systemctl if on systemd):

/p4/1/bin/p4d_1_init start

Now, you can log into the replica server itself and run p4 pull -lj to check to see if replication is
working. If you see any numbers with a negative sign in front of them, replication is not working.
The most likely cause of this is that the service user is not logged in. Rerun the steps above to login
the service user and check again. If replication still is not working, check /p4/1/logs/log on the
replica, and also look for authentication failures in the log for the master instance on svrmaster.

The final steps for setting up the replica server are to set up the crontab for the replica server.

To configure the ssh trust:

On both the master and replica servers, go to the perforce userÕs home directory and run:

ssh-keygen -t rsa

Just use the defaults for the questions it asks.

Now from the master, run:

rsync -avz ~/.ssh/id_rsa.pub perforce@p4d-bos-02:~/.ssh/authorized_keys

and from the replica, run:

rsync -avz ~/.ssh/id_rsa.pub perforce@svrmaster:~/.ssh/authorized_keys

The crontab (/p4/p4.crontab) contains several lines which are prefixed by
/p4/common/bin/run_if_replica.sh or run_if_edge.sh or run_if_master.sh

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 33 of 79

© 2010-2020 Perforce Software, Inc. 33

These can be tested to make sure all is valid with:

/p4/common/bin/run_if_replica.sh 1 echo yes

If "yes" is output then SDP thinks the current hostname with instance 1 is a replica server. Similarly
for edge/master.

The log files will be in /p4/1/logs , so you can check for any errors from each script.

4.4. Recovery Procedures
There are three scenarios that require you to recover server data:

Metadata Depotdata Action required

lost or corrupt Intact Recover metadata as described
below

Intact lost or corrupt Call Perforce Support

lost or corrupt lost or corrupt Recover metadata as described
below.

Recover the hxdepots volume
using your normal backup
utilities.

Restoring the metadata from a backup also optimizes the database files.

4.4.1. Recovering a master server from a checkpoint and journal(s)

The checkpoint files are stored in the /p4/ instance /checkpoints directory, and the most recent
checkpoint is named p4_instance .ckp. number.gz . Recreating up-to-date database files requires the
most recent checkpoint, from /p4/ instance /checkpoints and the journal file from /p4/ instance /logs .

To recover the server database manually, perform the following steps from the root directory of the
server (/p4/instance/root).

Assuming instance 1:

1. Stop the Perforce Server by issuing the following command:

/p4/1/bin/p4_1 admin stop

2. Delete the old database files in the /p4/1/root/save directory

3. Move the live database files (db.*) to the save directory.

4. Use the following command to restore from the most recent checkpoint.

34 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

34 © 2010-2020 Perforce Software, Inc.

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z /p4/1/checkpoints/p4_1.ckp.####.gz

5. To replay the transactions that occurred after the checkpoint was created, issue the following
command:

/p4/1/bin/p4d_1 -r /p4/1/root -jr /p4/1/logs/journal

6. Restart your Perforce server.

If the Perforce service starts without errors, delete the old database files from
/p4/instance/root/save .

If problems are reported when you attempt to recover from the most recent checkpoint, try
recovering from the preceding checkpoint and journal. If you are successful, replay the subsequent
journal. If the journals are corrupted, contact Perforce Technical Support . For full details about
backup and recovery, refer to the Perforce System AdministratorÕs Guide .

4.4.2. Recovering a replica from a checkpoint

This is very similar to creating a replica in the first place as described above.

If you have been running the replica crontab commands as suggested, then you will have the latest
checkpoints from the master already copied across to the replica through the use of Section 7.4.31,
Òsync_replica.shÓ.

See the steps in the script Section 7.4.31, Òsync_replica.shÓ for details (note that it deletes the state
and rdb.lbr files from the replica root directory so that the replica starts replicating from the start
of a journal).

Remember to ensure you have logged the service user in to the master server (and that the ticket is
stored in the correct location as described when setting up the replica).

4.4.3. Recovering from a tape backup

This section describes how to recover from a tape or other offline backup to a new server machine
if the server machine fails. The tape backup for the server is made from the hxdepots volume. The
new server machine must have the same volume layout and user/group settings as the original
server. In other words, the new server must be as identical as possible to the server that failed.

To recover from a tape backup, perform the following steps (assuming instance 1):

1. Recover the hxdepots volume from your backup tape.

2. Create the /p4 convenience directory on the OS volume.

3. Create the directories /metadata/p4/1/root/save and /metadata/p4/1/offline_db .

4. Change ownership of these directories to the OS account that runs the Perforce processes.

5. Switch to the Perforce OS account, and create a link in the /p4 directory to /depotadata/p4/1 .

SDP User Guide (for Unix) Chapter 4. Backup, Replication, and Recovery - 35 of 79

© 2010-2020 Perforce Software, Inc. 35

mailto:support@perforce.com
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html

6. Create a link in the /p4 directory to /hxdepots/p4/common.

7. As a super-user, reinstall and enable the init.d scripts

8. Find the last available checkpoint, under /p4/1/checkpoints

9. Recover the latest checkpoint by running:

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z <last_ckp_file>

10. Recover the checkpoint to the offline_db directory (assuming instance 1):

/p4/1/bin/p4d_1 -r /p4/1/offline_db -jr -z <last_ckp_file>

11. Reinstall the Perforce server license to the server root directory.

12. Start the perforce service by running 1/p4/1/bin/p4d_1_init start`

13. Verify that the server instance is running.

14. Reinstall the server crontab or scheduled tasks.

15. Perform any other initial server machine configuration.

16. Verify the database and versioned files by running the p4verify.sh script. Note that files using
the +k file type modifier might be reported as BAD! after being moved. Contact Perforce
Technical Support for assistance in determining if these files are actually corrupt.

4.4.4. Failover to a replicated standby machine

See SDP Failover Guide (PDF) or SDP Failover Guide (HTML) for detailed steps.

36 of 79 - Chapter 4. Backup, Replication, and Recovery SDP User Guide (for Unix)

36 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/file.types.synopsis.modifiers.html
SDP_Failover_Guide.pdf
SDP_Failover_Guide.html

Chapter 5. Server Upgrades
This section describes typical maintenance tasks and best practices for administering server
machines.

5.1. Upgrading an existing SDP installation
If you have an earlier version of the Server Deployment Package (SDP) installed, youÕll want to be
aware of the new -test flag to the SDP setup script, mkdirs.sh e.g.

sudo mkdirs.sh 1 -test

This will install into /tmp and allow you to recursively diff the installed files with your existing
installation and manually update as necessary.

See the instructions in the file README.md / README.html in the root of the SDP directory.

5.2. P4D Server upgrades
Upgrading a Helix Core server instance in the SDP framework is a simple process involving a few
steps.

¥ Download the new p4 and p4d executables for your OS from ftp.perforce.com and place them in
/p4/common/bin

¥ Run:

/p4/common/bin/upgrade.sh <instance>

e.g.

/p4/common/bin/upgrade.sh 1

¥ If you are running replicas, upgrade the replicas first, and then the master (outside " in)

Please refer to details for Section 7.3.1, Òupgrade.shÓ

5.3. Database Modifications
Occasionally modifications are made to the Perforce database from one release to another. For
example, server upgrades and some recovery procedures modify the database.

When upgrading the server, replaying a journal patch, or performing any activity that modifies the
db.* files, you must restart the offline checkpoint process so that the files in the offline_db directory
match the ones in the live server directory. The easiest way to restart the offline checkpoint process

SDP User Guide (for Unix) Chapter 5. Server Upgrades - 37 of 79

© 2010-2020 Perforce Software, Inc. 37

ftp://ftp.perforce.com

is to run the live_checkpoint script after modifying the db.* files, as follows:

/p4/common/bin/live_checkpoint.sh 1

This script makes a new checkpoint of the modified database files in the live root directory, then
recovers that checkpoint to the offline_db directory so that both directories are in sync. This script
can also be used anytime to create a checkpoint of the live database.

This command should be run when an error occurs during offline checkpointing. It restarts the
offline checkpoint process from the live database files to bring the offline copy back in sync. If the
live checkpoint script fails, contact Perforce Consulting at consulting@perforce.com .

38 of 79 - Chapter 5. Server Upgrades SDP User Guide (for Unix)

38 © 2010-2020 Perforce Software, Inc.

mailto:consulting@perforce.com

Chapter 6. Maximizing Server Performance
The following sections provide some guidelines for maximizing the performance of the Perforce
Server, using tools provided by the SDP. More information on this topic can be found in the
Knowledge Base .

6.1. Ensure Transparent Huge Pages (THP) is turned
off
This is reference KB Article on Platform Notes

There is a script in the SDP which will do this:

/p4/sdp/Server/Unix/setup/os_tweaks.sh

It needs to be run as root or using sudo. This will not persist after system is rebooted.

! We recommend the usage of tuned

Install as appropriate for your Linux distribution (so as root):

yum install tuned

or

apt-get install tuned

1. Create a customized tuned profile with disabled THP. Create a new directory in /etc/tuned
directory with desired profile name:

mkdir /etc/tuned/nothp_profile

2. Then create a new tuned.conf file for nothp_profile , and insert the new tuning info:

cat <<EOF > /etc/tuned/nothp_profile/tuned.conf
[main]
include= throughput-performance

[vm]
transparent_hugepages=never
EOF

SDP User Guide (for Unix) Chapter 6. Maximizing Server Performance - 39 of 79

© 2010-2020 Perforce Software, Inc. 39

https://community.perforce.com/s/article/2529
https://community.perforce.com/s/article/3005

3. Make the script executable

chmod +x /etc/tuned/nothp_profile/tuned.conf

4. Enable nothp_profile using the tuned-adm command.

tuned-adm profile nothp_profile

5. This change will immediately take effect and persist after reboots. To verify if THP are disabled
or not, run below command:

cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

6.2. Putting server.locks directory into RAM
The server.locks directory is maintained in the $P4ROOT (so /p4/1/root) for a running server. This
directory contains a tree of 17 byte long files which is used for lock co-ordination amongst p4d
processes.

This directory can be removed every time the p4d instance is restarted, so it is safe to put it into a
tmpfs filesystem.

Even on a large installation with many hundreds or thousands of users, this directory will be
unlikely to exceed 1GB, so a 2GB filesystem will be ample.

Instructions (as user root):

1. Create directory to mount, and change ownership to perforce user (or $OSUSER if SDP config
specifies a different name)

mkdir /hxserverlocks
chown perforce:perforce /hxserverlocks

2. Add a line to /etc/fstab :

tmpfs /hxserverlocks tmpfs size=1G,mode=0755 0 0

3. Mount the drive:

mount -a

4. Check it is looking correct:

40 of 79 - Chapter 6. Maximizing Server Performance SDP User Guide (for Unix)

40 © 2010-2020 Perforce Software, Inc.

df -h

As user perforce , set the configurable, specifying the serverid of your server (to ensure it is not set
globally and picked up by all replicas):

p4 configure set <serverid>#server.locks.dir=<serverlocks dir>

p4 configure set master.1#server.locks.dir=/p4serverlocks

This will take effect immediately - it does not require a server restart.

" If you set this globally (without servid# prefix), then you should ensure that all
replicas have a similarly named directory availab.e

"
Consider failover options - so review your HA failover server configuration and
create a similar entry - otherwise if you failover then performance will be
reduced.

6.3. Optimizing the database files
The Perforce ServerÕs database is composed of b-tree files. The server does not fully rebalance and
compress them during normal operation. To optimize the files, you must checkpoint and restore the
server. This normally only needs to be done very few months.

To minimize the size of back up files and maximize server performance, minimize the size of the
db.have and db.label files.

6.4. P4V Performance Settings
These are covered in: https://community.perforce.com/s/article/2878

6.5. Proactive Performance Maintenance
This section describes some things that can be done to proactively to enhance scalability and
maintain performance.

6.5.1. Limiting large requests

To prevent large requests from overwhelming the server, you can limit the amount of data and
time allowed per query by setting the maxresults, maxscanrows and maxlocktime parameters to
the lowest setting that does not interfere with normal daily activities. As a good starting point, set
maxscanrows to maxresults * 3; set maxresults to slightly larger than the maximum number of files
the users need to be able to sync to do their work; and set maxlocktime to 30000 milliseconds. These

SDP User Guide (for Unix) Chapter 6. Maximizing Server Performance - 41 of 79

© 2010-2020 Perforce Software, Inc. 41

https://community.perforce.com/s/article/2878

values must be adjusted up as the size of your server and the number of revisions of the files grow.
To simplify administration, assign limits to groups rather than individual users.

To prevent users from inadvertently accessing large numbers of files, define their client view to be
as narrow as possible, considering the requirements of their work. Similarly, limit users' access in
the protections table to the smallest number of directories that are required for them to do their
job.

Finally, keep triggers simple. Complex triggers increase load on the server.

6.5.2. Offloading remote syncs

For remote users who need to sync large numbers of files, Perforce offers a proxy server . P4P, the
Perforce Proxy, is run on a machine that is on the remote users' local network. The Perforce Proxy
caches file revisions, serving them to the remote users and diverting that load from the main
server.

P4P is included in the Windows installer. To launch P4P on Unix machines, copy the
/p4/common/etc/init.d/p4p_1_init script to /p4/1/bin/p4p_1_init . Then review and customize the
script to specify your server volume names and directories.

P4P does not require special hardware but it can be quite CPU intensive if it is working with binary
files, which are CPU-intensive to attempt to compress. It doesnÕt need to be backed up. If the P4P
instance isnÕt working, users can switch their port back to the main server and continue working
until the instance of P4P is fixed.

42 of 79 - Chapter 6. Maximizing Server Performance SDP User Guide (for Unix)

42 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.proxy.html

Chapter 7. Tools and Scripts
This section describes the various scripts and files provided as part of the SDP package.

7.1. General SDP Usage
This section presents an overview of the SDP scripts and tools, with details covered in subsequent
sections.

7.1.1. Linux

Most scripts and tools reside in /p4/common/bin. The /p4/<instance>/bin directory (e.g. /p4/1/bin)
contains scripts or links that are specific to that instance such as wrappers for the p4d executable.

Older versions of the SDP required you to always run important administrative commands using
the p4master_run script, and specify fully qualified paths. This script loads environment information
from /p4/common/bin/p4_vars, the central environment file of the SDP, ensuring a controlled
environment. The p4_vars file includes instance specific environment data from
/p4/common/config/p4_ instance . vars e.g. /p4/common/config/p4_1.vars . The p4master_run script is
still used when running p4 commands against the server unless you set up your environment first
by sourcing p4_vars with the instance as a parameter (for bash shell: source /p4/common/bin/p4_vars
1). Administrative scripts, such as daily_backup.sh , no longer need to be called with p4master_run
however, they just need you to pass the instance number to them as a parameter.

When invoking a Perforce command directly on the server machine, use the p4_ instance wrapper
that is located in /p4/ instance /bin . This wrapper invokes the correct version of the p4 client for the
instance. The use of these wrappers enables easy upgrades, because the wrapper is a link to the
correct version of the p4 client. There is a similar wrapper for the p4d executable, called
p4d_instance .

!
This wrapper is important to handle case sensitivity in a consistent manner, e.g.
when running a Unix server in case-insensitive mode. If you just execut p4d
directly when it should be case-insenstive, then you may cause problems, or
commands will fail.

Below are some usage examples for instance 1.

Example Remarks

/p4/common/bin/p4master_run 1 /p4/1/bin/p4_1
admin stop

Run p4 admin stop on instance 1

/p4/common/bin/live_checkpoint.sh 1 Take a checkpoint of the live database on
instance 1

/p4/common/bin/p4login 1 Log in as the perforce user (superuser) on
instance 1.

Some maintenance scripts can be run from any client workspace, if the user has administrative
access to Perforce.

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 43 of 79

© 2010-2020 Perforce Software, Inc. 43

7.1.2. Monitoring SDP activities

The important SDP maintenance and backup scripts generate email notifications when they
complete.

For further monitoring, you can consider options such as:

¥ Making the SDP log files available via a password protected HTTP server.

¥ Directing the SDP notification emails to an automated system that interprets the logs.

7.2. Core Scripts
The core SDP scripts are those related to checkpoints and other scheduled operations, and all run
from /p4/common/bin.

If you source /p4/common/bin/p4_vars <instance> then the /p4/common/bin directory will be added to
your $PATH.

7.2.1. p4_vars

Defines the environment variables required by the Perforce server. This script uses a specified
instance number as a basis for setting environment variables. It will look for and open the
respective p4_<instance>.vars file (see next section).

This script also sets server logging options and configurables.

It is intended to be used by other scripts fro common environment settings, and also by users for
setting the environment of their Bash shell.

Usage

source /p4/common/bin/p4_vars 1

7.2.2. p4_<instance>.vars

Defines the environment variables for a specific instance, including P4PORT etc.

This script is called by Section 7.2.1, Òp4_varsÓ - it is not intended to be called directly by a user.

For instance 1:

p4_1.vars

For instance art :

p4_art.vars

44 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

44 © 2010-2020 Perforce Software, Inc.

Location : /p4/common/config

7.2.3. p4master_run

This is the wrapper script to other SDP scripts. This ensures that the shell environment is loaded
from p4_vars. It provides a '-c' flag for silent operation, used in many crontab so that email is sent
from the scripts themselves.

This script is somewhat historical, in that most scripts now directly source the p4_vars script
directly. It is still occasionally useful.

7.2.4. daily_checkpoint.sh

This script is configured to run six days a week using crontab. The script:

¥ truncates the journal

¥ replays it into the offline_db directory

¥ creates a new checkpoint from the resulting database files

¥ recreates the offline_db databsae from the new checkpoint.

This procedure rebalances and compresses the database files in the offline_db directory. These are
rotated into the live (root) databse, by the script Section 7.2.10,
Òrefresh_P4ROOT_from_offline_db.shÓ

Usage

/p4/common/bin/daily_checkpoint.sh <instance>
/p4/common/bin/daily_checkpoint.sh 1

7.2.5. recreate_offline_db.sh

Recovers the offline_db database from the latest checkpoint and replays any journals since then. If
you have a problem with the offline database then it is worth running this script first before
running Section 7.2.6, Òlive_checkpoint.shÓ, as the latter will stop the server while it is running,
which can take hours for a large installation.

Run this script if an error occurs while replaying a journal during daily checkpoint process.

This script recreates offline_db files from the latest checkpoint. If it fails, then check to see if the
most recent checkpoint in the /p4/<instance>/checkpoints directory is bad (ie doesnÕt look like the
right size compared to the others), and if so, delete it and rerun this script. If the error you are
getting is that the journal replay failed, then the only option is to run Section 7.2.6,
Òlive_checkpoint.shÓ script.

Usage

/p4/common/bin/recreate_offline_db.sh <instance>
/p4/common/bin/recreate_offline_db.sh 1

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 45 of 79

© 2010-2020 Perforce Software, Inc. 45

7.2.6. live_checkpoint.sh

This is a fallback option for use when you suspect that the offline_db has become corrupt.

This performs the following actions:

¥ Stops the server

¥ Creates a checkpoint from the live database files

¥ Recovers the offline_db database from that checkpoint to rebalance and compress the files

Run this script when creating the server and if an error occurs while replaying a journal during the
off-line checkpoint process.

"
Be aware it locks live database for the duration of the checkpoint which can take
hours for a large installation (please check the /p4/1/logs/checkpoint.log for the
most recent output of daily_backup.sh to see how long checkpoints take to
create/restore).

Usage

/p4/common/bin/live_checkpoint.sh <instance>
/p4/common/bin/live_checkpoint.sh 1

7.2.7. p4verify.sh

Verifies the integrity of the depot files. This script is run by crontab on a regular basis.

It verifies both shelves and ordinary archive files

Any errors in the log file (e.g. /p4/1/logs/p4verify.log) should be handled according to KB articles:

¥ MISSING! errors from p4 verify

¥ BAD! error from p4 verify

If in doubt contact support@perforce.com

Our recommendation is that you should expect this to be without error, and you should address
errors sooner rather than later. This may involve obliterating unrecoverable errors.

!
when run on replicas, this will also append the -t flag to the p4 verify command
to ensure that MISSING files are scheduled for transfer. This is useful to keep
replicas (including edge servers) up-to-date.

Usage

/p4/common/bin/p4verify.sh <instance>
/p4/common/bin/p4verify.sh 1

46 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

46 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_verify.html
https://community.perforce.com/s/article/3186
https://community.perforce.com/s/article/2404
mailto:support@perforce.com

USAGE for v5.2.3:

p4verify.sh [<instance>] [-nu] [-nr] [-ns] [-nS] [-a] [-recent] [-L <log>] [-v] [-D]

Ê or

p4verify.sh -h|-man

DESCRIPTION:

Ê This script performs a 'p4 verify' of all submitted and shelved versioned
Ê files in depots of all types except 'remote' and 'archive' type depots.

Ê If run on a replica, it schedules archive failures for transfer to the
Ê replica.

OPTIONS:
<instance>
Ê Specify the SDP instances. If not specified, the SDP_INSTANCE
Ê environment variable is used instead. If the instance is not
Ê defined by a parameter and SDP_INSTANCE is not defined, p4verify.sh
Ê exists immediately with an error message.

Ê-nu Specify '-nu' (No Unload) to skip verification of the singleton depot
Ê of type 'unload' (if created). The 'unload' depot is verified
Ê by default.

Ê-nr Specify '-nr' (No Regular) to skip verification of regular submitted
Ê archive files. The '-nr' option is not compatible with '-recent'.
Ê Regular submitted archive files are verified by default.

Ê-ns Specify '-ns' (No Spec Depot) to skip verification of singleton depot
Ê of type 'spec' (if created). The 'spec' depot is verified by default.

Ê-nS Specify '-nS' (No Shelves) to skip verification of shelved archive
Ê files, i.e. to skip the 'p4 verify -qS'.

Ê-a Specify '-a' (Archive Depots) to do verification of depots of type
Ê 'archive'. Depots of type 'archive' are not verified by default, as
Ê archive depots are often physicially removed from the server's
Ê storage subsystem for long-term cold storage.

Ê-recent
Ê Specify that only recent changelists should be verified.
Ê The $SDP_RECENT_CHANGES_TO_VERIFY variable defines how many
Ê changelists are considered recent; the default is 200.

Ê If the default is not appropriate for your site, add
Ê "export SDP_RECENT_CHANGES_TO_VERIFY" to /p4/common/config/p4_N.vars to
Ê change the default for an instance, or to /p4/common/bin/p4_vars to
Ê change it globally. If $SDP_RECENT_CHANGES_TO_VERIFY is unset, the

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 47 of 79

© 2010-2020 Perforce Software, Inc. 47

Ê default is 200.

Ê When -recent is used, neither shelves nor files in the unload depot
Ê are verified.

Ê-v Verbose. Show output of verify attempts, which is suppressed by default.
Ê Setting SDP_SHOW_LOG=1 in the shell environment has the same effect as -v.

Ê The default behavior of this script is to generate no terminal outpout,
Ê but instead to write output into a log file -- see LOGGING below. If
Ê '-v' is specified, the generated log is sent to stdout at the end of
Ê processing. This flag is not recommended for routine cron operation or
Ê for large data sets.

Ê-L <log>
Ê Specify the log file to use. The default is /p4/N/logs/p4verify.log

Ê Log rotation and old log cleanup logic does not apply to log files
Ê specified with -L. Thus, using -L is not recommended for routine scheduled
Ê operation, e.g. via crontab.

Ê-D Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man Display man-style help message

EXAMPLES:
Ê This script is typically called via cron with only the instance
Ê paramter as an argument, e.g.:
Ê p4verify.sh N

LOGGING:
Ê This script generates no output by default. All (stdout and stderr) is
Ê logged to /p4/N/logs/p4verify.log.

Ê The exception is usage errors, which result an error being sent to
Ê stderr followed usage info on stdout, followed by an immediate exit.

Ê If the '-v' flag is used, the contents of the log are displayed to
Ê stdout at the end of processing.

EXIT CODES:
Ê An exit code of 0 indicates no errors were encounted attempting to
Ê perform verifications, AND that all verifications attempted
Ê reported no problems.

Ê A exit status of 1 indicates that verifications could not be
Ê attempted for some reason.

Ê A exit status of 2 indicates that verifications were successfully

48 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

48 © 2010-2020 Perforce Software, Inc.

Ê performed, but that problems such as BAD or MISSING files
Ê were detected, or else system limits prevented verification.

7.2.8. p4login

Executes a p4 login command, using the administration password configured in mkdirs.cfg and
subsequently stored in a text file: /p4/common/config/.p4passwd .p4_<instance>.admin

Usage

USAGE for p4login v4.4.1:

p4login [<instance>] [-p <port> | -service] [-automation] [-all]

Ê or

p4login -h|-man

DESCRIPTION:

Ê In its simplest form, this script simply logs in P4USER to P4PORT
Ê using the defined password access mechanism.

Ê It generates a login ticket for the SDP super user, defined by
Ê P4USER when sourcing the SDP standard shell environment. It is
Ê called from cron scripts, and so does not normally generate any
Ê output.

Ê If run on a replica with the -service option, the serviceUser defined
Ê for the given replica is logged in.

Ê The $SDP_AUTOMATION_USERS variable can be defined in
Ê /p4_N.vars. If defined, this should contain a
Ê comma-delimited list of automation users to be logged in when the
Ê -automation option is used. A definition might look like:

Ê export SDP_AUTOMATION_USERS=builder,trigger-admin,p4review

Ê Login behaviour is affected by external factors:
Ê 1. P4AUTH, if defined, affects login behavior on replicas.

Ê 2. The auth.id setting, if defined, affects login behaviors (and
Ê generally simplifies them).

Ê 3. The $SDP_ALWAYS_LOGIN variable. If set to 1, this causes p4login
Ê to always execute a 'p4 login' command to generate a login ticket,
Ê even if a 'p4 login -s' test indicates none is needed. By default,
Ê the login is skipped if a 'p4 login -s' test indicates a long-term
Ê ticket is available that expires 31+days in the future.
Ê Add "export SDP_ALWYAYS_LOGIN=1" to /p4_N.vars to

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 49 of 79

© 2010-2020 Perforce Software, Inc. 49

Ê change the default for an instance, or to /p4/common/bin/p4_vars to
Ê change it globally. If unset, the default is 0.

Ê 4. If the P4PORT contains an ssl: prefix, the P4TRUST relationship
Ê is checked, and if necessary, a p4 trust -f -y is done to establish
Ê trust.

OPTIONS:
<instance>
Ê Specify the SDP instances. If not specified, the SDP_INSTANCE
Ê environment variable is used instead. If the instance is not
Ê defined by a parameter and SDP_INSTANCE is not defined, p4login
Ê exists immediately with an error message.

Ê-service
Ê Specify -service when run on a replica or edge server to login
Ê the super user and the replication service user.

Ê This option is not compatible with '-p <port>'.

Ê-p <port>
Ê Specify a P4PORT value to login to, overriding the default
Ê defined by P4PORT setting in the environment. If operating
Ê on a host other than the master, and auth.id is set, this
Ê flag is ignored; the P4TARGET for the replica is used
Ê instead.

Ê This option is not compatible with '-service'.

Ê-automation
Ê Specify -automation to login external automation users defined
Ê by the $SDP_AUTOMATION_USERS variable.

Ê-v Show ouptput of login attempts, which is suppressed by default.
Ê Setting SDP_SHOW_LOG=1 in the shell environment has the same
Ê effect as -v.

Ê-L <log>
Ê Specify the log file to use. The default is /p4/N/logs/p4login.log

Ê-d Set debugging verbosity.

Ê-D Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man Display man-style help message

EXAMPLES:
Ê 1. Typical usage for automation, with instance SDP_INSTANCE defined
Ê in the environment by sourcing p4_vars, and logging in only the super

50 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

50 © 2010-2020 Perforce Software, Inc.

Ê user P4USER to P4PORT:
Ê source /p4/common/bin/p4_vars abc
Ê p4login

Ê Login in only P4USER to the specified port, P4MASTERPORT in this example:
Ê p4login -p $P4MASTERPORT

Ê Login the super user P4USER, and then login the replication serviceUser
Ê for the current ServerID:
Ê p4login -service

Ê Login external automation users (see SDP_AUTOMATION_USERS above):
Ê p4login -automation

Ê Login all users:
Ê p4login -all

Ê Or: p4login -service -automation

LOGGING:
Ê This script generates no output by default. All (stdout and stderr) is
Ê logged to /p4/N/logs/p4login.log.

Ê The exception is usage errors, which result an error being sent to
Ê stderr followed usage info on stdout, followed by an immediate exit.

Ê If the '-v' flag is used, the contents of the log are displayed to
Ê stdout at the end of processing.

EXIT CODES:
Ê An exit code of 0 indicates a valid login ticket exists, while a
Ê non-zero exit code indicates a failure to login.

7.2.9. p4d_<instance>_init

Starts the Perforce server. Can be called directly or as describe in Section 3.2, ÒConfiguring
(Automatic) Service Start on BootÓ

"
Do not use directly if you have configured systemctl for systemd Linux
distributions such as CentOS 7.x. This risks database corruption if systemd does not
think the service is running when it actually is running (for example on shutdown
systemd will just kill processes without waiting for them).

This script sources /p4/common/bin/p4_vars, then runs /p4/common/bin/p4d_base (Section 7.4.10,
Òp4d_baseÓ).

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 51 of 79

© 2010-2020 Perforce Software, Inc. 51

Usage

/p4/<instance>/bin/p4d_<instance>_init [start | stop | status | restart]
/p4/1/bin/p4d_1_init start

7.2.10. refresh_P4ROOT_from_offline_db.sh

This script is intended to be used every 1-3 months to ensure that your live (root) database files are
defragmented.

It will:

¥ stop p4d

¥ truncate/rotate live journal

¥ replay journals to offline_db

¥ switch the links between root and offline_db

¥ restart p4d

It also knows how to do similar processes on edge servers and standby servers or other replicas.

Usage

/p4/common/bin/refresh_P4ROOT_from_offline_db.sh <instance>
/p4/common/bin/refresh_P4ROOT_from_offline_db.sh 1

7.2.11. run_if_master.sh

See Section 7.2.14, Òrun_if_master/edge/replica.shÓ

7.2.12. run_if_edge.sh

See Section 7.2.14, Òrun_if_master/edge/replica.shÓ

7.2.13. run_if_replica.sh

See Section 7.2.14, Òrun_if_master/edge/replica.shÓ

7.2.14. run_if_master/edge/replica.sh

The SDP uses wrapper scripts in the crontab: run_if_master.sh , run_if_edge.sh , run_if_replica.sh .
We suggest you ensure these are working as desired, e.g.

Usage

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

52 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

52 © 2010-2020 Perforce Software, Inc.

It is important to ensure these are returning the valid results for the server machine you are on.

Any issues with these scripts are likely configuration issues with /p4/common/config/p4_1.vars (for
instance 1)

7.3. More Server Scripts
These scripts are helpful components of the SDP that run on the server, but are not included in the
default crontab schedules.

7.3.1. upgrade.sh

Runs a typical upgrade process, once new p4 and p4d binaries are available in /p4/common/bin -
saved as p4 and p4d respectively (overwriting any existing files with those names).

This script will:

¥ Rotate the journal (to provide a clean recovery point)

¥ Apply all necessary journals to offline_db

¥ Stop the server

¥ Create an appropriately versioned link for new p4/p4d/p4broker etc

¥ Link those into /p4/1/bin (per instance)

¥ Run p4d -xu on live and offline_db to perform database upgrades (in a version aware manner,
for example pre 2018.2 servers are treated differently to 2018.2 or later servers)

¥ Restart server instance

The links for different versions of p4d are described in Section A.1.3, ÒP4D versions and linksÓ

! it is not recommended to do the linking manually (although of course possible, but
surprisingly easy to get wrong!).

Usage

/p4/common/bin/upgrade.sh <instance>
/p4/common/bin/upgrade.sh 1

7.3.2. p4.crontab

Contains crontab entries to run the server maintenance scripts.

Location : /p4/sdp/Server/Unix/p4/common/etc/cron.d

7.3.3. verify_sdp.sh

Does basic verification of SDP setup.

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 53 of 79

© 2010-2020 Perforce Software, Inc. 53

Usage

USAGE for verify_sdp.sh v5.9.0:

verify_sdp.sh [<instance>] [-online] [-skip <test>[,<test2>,...]] [-si] [-L <log>|off
] [-D]

Ê or

verify_sdp.sh -h|-man

DESCRIPTION:

Ê This script verifies the current SDP setup for the specified instance.

Ê Useful if you change anything, particularly after an SDP upgrade.

OPTIONS:
Ê<instance>
Ê Specify the SDP instances. If not specified, the SDP_INSTANCE
Ê environment variable is used instead. If the instance is not
Ê defined by a parameter and SDP_INSTANCE is not defined,
Ê exits immediately with an error message.

Ê-online
Ê Online mode. Does additional checks that require P4D to be online.

Ê-skip <test>[,<test2>,...]

Ê Specify a comma-delimited list of test names to skip.

Ê Valid test names:

Ê * crontab: Skip crontab check. Use this if you do not expect crontab to
Ê be configured, perhaps if you use a different scheduler.
Ê * license: Skip license related checks.
Ê * version: Skip version checks.
Ê * excess: Skip checks for excess copies of p4d/p4p/p4broker in PATH.

Ê As an alternative to using the '-skip' command, the shell environment
Ê variable VERIFY_SDP_SKIP_TEST_LIST can be set to a comma-separated
Ê list of test names to skip. Using the command line parameter is the
Ê best choice for temporarily skipping tests, while specifying the
Ê environment variable is better for making permament exceptions (e.g.
Ê always exclusing the crontab check if crontabs are not used at this
Ê site). The variable should be set in /p4/common/config/p4_N.vars.

Ê If the '-skip' option is provided, the VERIFY_SDP_SKIP_TEST_LIST
Ê variable is ignored (not appended to). So it may make sense to
Ê reference the variable on the command line. For example, if the
Ê value of the variable is 'crontab', to skip crontab and license

54 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

54 © 2010-2020 Perforce Software, Inc.

Ê checks, you could specify:

Ê -skip $VERIFY_SDP_SKIP_TEST_LIST,license

Ê-si Silent mode, useful for cron operation. Both stdout and stderr
Ê are still captured in the log. The '-si' option cannot be used
Ê with '-L off'.

Ê-L <log>
Ê Specify the log file to use. The default is /p4/N/logs/verify_sdp.log
Ê The special value 'off' disables logging to a file.

Ê Note that '-L off' and '-si' are mutually exclusive.

Ê-D Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man Display man-style help message

EXAMPLES:
Ê Example 1: Typical usage:

Ê This script is typically called after SDP update with only the instance
Ê name or number as an argument, e.g.:

Ê verify_sdp.sh 1

Ê Example 2: Skipping some checks.

Ê verify_sdp.sh 1 -skip crontab

Ê Example 3: Automation Usage

Ê If used from automation already doing its own logging, use -L off:

Ê verify_sdp.sh 1 -L off

LOGGING:
Ê This script generates a log file and also displays it to stdout at the
Ê end of processing. By default, the log is:
Ê /p4/N/logs/verify_sdp.log.

Ê The exception is usage errors, which result an error being sent to
Ê stderr followed usage info on stdout, followed by an immediate exit.

Ê If the '-si' (silent) flag is used, the log is generated, but its
Ê contents are not displayed to stdout at the end of processing.

EXIT CODES:
Ê An exit code of 0 indicates no errors were encounted attempting to

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 55 of 79

© 2010-2020 Perforce Software, Inc. 55

Ê perform verifications, and that all checks verified cleanly.

7.4. Other Scripts and Files
The following table describes other files in the SDP distribution. These files are usually not invoked
directly by you; rather, they are invoked by higher-level scripts.

7.4.1. backup_functions.sh

This contains lots of standard Bash functions which are used in other scripts.

It is sourced (source /p4/common/bin/backup_functions.sh) by most of the other scripts in order to
use the common shared functions and to avoid duplication.

It is not intendend to be called directly by the user.

7.4.2. broker_rotate.sh

This script rotates the broker log file on an instance that only has the broker running.

It can be added to a crontab for e.g. daily log rotation.

Usage

/p4/common/bin/broker_rotate.sh <instance>
/p4/common/bin/broker_rotate.sh 1

7.4.3. edge_dump.sh

This script is designed to create a seed checkpoint for an Edge server.

An edge server is naturally filtered, with certain database tables (e.g. db.have) excluded. In addition
to implicit filtering, the server spec may specify additional tables to be excluded, e.g. by using the
ArchiveDataFilter field of the server spec.

The script requires the SDP instance and the edge ServerID.

Usage

/p4/common/bin/edge_dump.sh <instance> <edge server id>
/p4/common/bin/edge_dump.sh 1 p4d_edge_syd

It will output the full path of the checkpoint to be copied to the edge server and used with Section
7.4.24, Òrecover_edge.shÓ

7.4.4. edge_vars

This file is sourced by scripts that work on edge servers.

56 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

56 © 2010-2020 Perforce Software, Inc.

It sets the correct list db.* files that are edge-specific in the federated architecture. This version is
dependent on the version of p4d in use.

It is not intended for users to call directly.

7.4.5. edge_shelf_replicate.sh

This script is intended to be run on an edge server and will ensure that all shelves are replicated to
that edge server (by running p4 print on them).

Only use if directed to by support/consulting.

7.4.6. load_checkpoint.sh

Loads a checkpoint for commit/edge/replica instance.

Usage

USAGE for load_checkpoint.sh v2.3.5:

load_checkpoint.sh <checkpoint> [-i <instance>] [-s <ServerID>] [-c] [-l] [-r] [-b] [-
y] [-L <log>] [-si] [-v<n>] [-D]

or

load_checkpoint.sh [-h|-man|-V]

DESCRIPTION:
Ê This script loads a specified checkpoint into /p4/N/root and /p4/N/offline_db,
Ê where 'N' is the SDP instance name.

Ê At the start of processing, preflight checks are done. Preflight checks
Ê include:
Ê * The specified checkpoint and corresponding *.md5 file must exist.
Ê * The $P4ROOT/server.id file must exist, unless '-s' is specified.
Ê * The $P4ROOT/license file must exist, unless '-l' is specified.
Ê * Basic SDP structure and key files must exist.

Ê If the preflight passes, the p4d_N service is shutdown, and also the
Ê p4broker_N service is shutdown if configured.

Ê Next, the specified checkpoint is loaded. Upon completion, the Helix Core
Ê server process, p4d_N, is started.

Ê If the server to be started is a replica, the serviceUser configured for
Ê the replica is logged into the P4TARGET server. Any needed 'p4 trust' and
Ê 'p4 login' commands are done to enable replication.

Ê Note that this part of the processing will fail if the correct super user
Ê password is not stored in the standard SDP password file,

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 57 of 79

© 2010-2020 Perforce Software, Inc. 57

Ê /p4/common/config/.p4passwd.p4_N.admin

Ê After starting the server, a local 'p4 trust' is done if needed, and then
Ê a 'p4login -service -v' and 'p4login -v'.

Ê By default, the p4d_N service is started, but the p4broker_N service is not.
Ê Specify '-b' to restart both services.

ARGUMENTS AND OPTIONS:
Ê<checkpoint>
Ê Specify the path to the checkpoint file to load.

Ê The file may be a compressed or uncompressed checkpoint, and it may bea case
Ê sensitive or case-insensitive checkpoint. The checkpoint file must have a
Ê corresponding *.md5 checksum file in the same directory, with one of two name
Ê variations: If the checkpoint file is /somewhere/foo.gz, the checksum file may
Ê be named /somewhere/foo.gz.md5 or /somewhere/foo.md5.

Ê-i <instance>
Ê Specify the SDP instance. This can be omitted if SDP_INSTANCE is already
Ê defined.

Ê-s <ServerID>
Ê Specify the ServerID. This value is written into $P4ROOT/server.id file.

Ê If no $P4ROOT/server.id file exists, this flag is required.

Ê If the $P4ROOT/server.id file exists, this argument is not needed. If this
Ê '-s <ServerID>' is given and a $P4ROOT/server.id file exists, the value in
Ê the file must match the value specified with this argument.

Ê-c Specify that SSL certificates are required, and not to be generated with
Ê 'p4d_N -Gc'.

Ê By default, if '-c' is not supplied and SSL certs are not availalbe, certs
Ê are generated automatically with 'p4d_N -Gc'.

Ê-l Specify that the server is to start without a license file. By default, if
Ê there is no $P4ROOT/license file, this script will abort. Note that if '-l'
Ê is specified and a license file is actually needed, the attempt this script makes
Ê to start the server after loading the checkpoint will fail.

Ê-r Specify '-r' to replay only to P4ROOT. By default, this script replays both
Ê to P4ROOT and the offline_db.

Ê-b Specify '-b' to start the a p4broker process (if configured). By default
Ê the p4d process is started after loading the checkpoint, but the p4broker
Ê process is not. This can be useful to ensure the human administrator has
Ê an opportunity to do sanity checks before enabling the broker to allow
Ê access by end users (if the broker is deployed for this usage).

58 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

58 © 2010-2020 Perforce Software, Inc.

Ê-y Use the '-y' flag to bypass an interactive warning and confirmation
Ê prompt.

Ê-v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest). The default is 5.

Ê-L <log>
Ê Specify the path to a log file. By default, all output (stdout and stderr)
Ê goes to:
Ê /p4/<instance>/logs/load_checkpoint.<timestamp>.log

Ê NOTE: This script is self-logging. That is, output displayed on the screen
Ê is simultaneously captured in the log file. Do not run this script with
Ê redirection operators like '> log' or '2>&1', and do not use 'tee.'

Ê-si Operate silently. All output (stdout and stderr) is redirected to the log
Ê only; no output appears on the terminal.

Ê-D Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man Display man-style help message
Ê-V Dispay version info for this script and its libraries.

EXAMPLES:
Ê Sample non-interactive usage (bash syntax):
Ê nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz -i 1 -y -si <
/dev/null > /dev/null 2>&1 &

Ê Then, monitor with:
Ê tail -f $(ls -t $LOGS/load_checkpoint.*.log|head -1)

7.4.7. gen_default_broker_cfg.sh

Generate an SDP instance-specific variant of the generic P4Broker config file. Display to standard
output.

Usage:

cd /p4/common/bin
gen_default_broker_cfg.sh 1 > /tmp/p4broker.cfg.ToBeReviewed

The final p4broker.cfg should end up here:

/p4/common/config/p4_${SDP_INSTANCE}.${SERVERID}.broker.cfg

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 59 of 79

© 2010-2020 Perforce Software, Inc. 59

7.4.8. journal_watch.sh

This script will check diskspace available to P4JOURNAL and trigger a journal rotation based on
specified thresholds. This is useful in case you are in danger of running out of disk space and your
rotated journal files are stored on a separate partition than the active journal.

This script is using the following external variables:

¥ SDP_INSTANCE - The instance of Perforce that is being backed up. If not set in environment,
pass in as argument to script.

¥ P4JOURNALWARN - Amount of space left (K,M,G,%) before min journal space where an email
alert is sent

¥ P4JOURNALWARNALERT - Send an alert if warn threshold is reached (true/false, default: false)

¥ P4JOURNALROTATE - Amount of space left (K,M,G,%) before min journal space to trigger a
journal rotation

¥ P4OVERRIDEKEEPJNL - Allow script to temporarily override KEEPJNL to retain enough journals
to replay against oldest checkpoint (true/false, default: false)

Usage

/p4/common/bin/journal_watch.sh <P4JOURNALWARN> <P4JOURNALWARNALERT> <P4JOURNALROTATE>
<P4OVERRIDEKEEPJNL (Optional)>

Examples

Run from CLI that will warn via email if less than 20% is available and rotate journal when less
than 10% is available

./journal_watch.sh 20% TRUE 10% TRUE

Cron job that will warn via email if less than 20% is available and rotate journal when less than
10% is available

30 * * * * [-e /p4/common/bin] && /p4/common/bin/run_if_master.sh ${INSTANCE}
/p4/common/bin/journal_watch.sh ${INSTANCE} 20\% TRUE 10\% TRUE

7.4.9. kill_idle.sh

Runs p4 monitor terminate on all processes showing in the output of p4 monitor show that are in the
IDLE state.

Usage

/p4/common/bin/kill_idle.sh <instance>
/p4/common/bin/kill_idle.sh 1

60 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

60 © 2010-2020 Perforce Software, Inc.

7.4.10. p4d_base

This is the script to start/stop/restart the p4d instance.

It is called by p4d_<instance>_init script (and thus also systemctl on systemd Linux distributions)

It ensures appropriate parameters are specified for journal/log and other variables.

Usage

/p4/common/bin/p4d_base <instance> [start|stop|admin_stop|status|restart|force_start
]
/p4/common/bin/p4d_base 1 start

7.4.11. p4broker_base

Very similar to Section 7.4.10, Òp4d_baseÓ but for the p4broker service instance.

See p4broker in SysAdmin Guide

7.4.12. p4ftpd_base

Very similar to Section 7.4.10, Òp4d_baseÓ but for the p4ftp service instance.

This product is very seldom used these days!

See P4FTP Installation Guide.

7.4.13. p4p_base

Very similar to Section 7.4.10, Òp4d_baseÓ but for the p4p (P4 Proxy) service instance.

See p4proxy in SysAdmin Guide

7.4.14. p4pcm.pl

This utility removes files in the proxy cache if the amount of free disk space falls below the low
threshold.

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 61 of 79

© 2010-2020 Perforce Software, Inc. 61

https://www.perforce.com/manuals/p4dist/Content/P4Dist/chapter.broker.html
https://www.perforce.com/manuals/p4ftp/index.html
https://www.perforce.com/manuals/p4dist/Content/P4Dist/chapter.proxy.html

Usage

Usage:

Ê p4pcm.pl [-d "proxy cache dir"] [-tlow <low_threshold>] [-thigh <high_threshold>]
[-n]
or
Ê p4pcm.pl -h

This utility removes files in the proxy cache if the amount of free disk space
falls below the low threshold (default 10GB). It removes files (oldest first)
until the high threshold is (default 20GB) is reached. Specify the thresholds
in kilobyte units (kb).

The '-d "proxy cache dir"' argument is required unless $P4PCACHE is defined,
in which case it is used.

The log is $LOGS/p4pcm.log if $LOGS is defined, else p4pcm.log in the current
directory.

Use '-n' to show what files would be removed.

7.4.15. p4review.py

Sends out email containing the change descriptions to users who are configured as reviewers for
affected files (done by setting the Reviews: field in the user specification). This script is a version of
the p4review.py script that is available on the Perforce Web site, but has been modified to use the
server instance number. It relies on a configuration file in /p4/common/config, called
p4_<instance>.p4review.cfg . On Windows, a driver called run_p4review.cmd, located in the same
directory, allows you to run the review daemon through the Windows scheduler .

This is not required if you have installed Swarm which also performs notification functions and is
easier for users to configure.

Usage

/p4/common/bin/p4review.py # Uses config file as above

7.4.16. p4review2.py

Enhanced version of Section 7.4.15, Òp4review.pyÓ

1. Run p4review2.py --sample-config > p4review.conf

2. Edit the file p4review.conf

3. Add a crontab similar to this:

! * * * * python2.7 /path/to/p4review2.py -c /path/to/p4review.conf

Features:

62 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

62 © 2010-2020 Perforce Software, Inc.

http://en.wikipedia.org/wiki/Task_Scheduler

¥ Prevent multiple copies running concurrently with a simple lock file.

¥ Logging support built-in.

¥ Takes command-line options.

¥ Configurable subject and email templates.

¥ Can (optionally) include URLs for changelists/jobs. Examples for P4Web included.

¥ Use P4Python when available and use P4 (the CLI) as a fallback.

¥ Option to send a single email per user per invocation instead of multiple ones.

¥ Reads config from a INI-like file using ConfigParser

¥ Have command line options that overrides environment variables.

¥ Handles unicode-enabled server and non-ASCII characters on a non-unicode-enabled server.

¥ Option to opt-in (--opt-in-path) reviews globally (for migration from old review daemon).

¥ Configurable URLs for changes/jobs/users (for swarm).

¥ Able to limit the maximum email message size with a configurable.

¥ SMTP auth and TLS (not SSL) support.

¥ Handles P4 auth (optional, not recommended!).

7.4.17. p4sanity_check.sh

This is a simple script to run:

¥ p4 set

¥ p4 info

¥ p4 changes -m 10

Usage

/p4/common/bin/p4sanity_check.sh <instance>
/p4/common/bin/p4sanity_check.sh 1

7.4.18. p4web_base

Very similar to Section 7.4.10, Òp4d_baseÓ but for the p4web service instance.

This product is very seldom used these days - since it has been replaced by Swarm.

7.4.19. p4dstate.sh

This is a trouble-shooting script for use when directed by support, e.g. in situations such as server
hanging, major locking problems etc.

It is an "SDP-aware" version of the standard p4dstate.sh so that it only requires the SDP instance to
be specified as a parameter (since the location of logs etc are defined by SDP).

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 63 of 79

© 2010-2020 Perforce Software, Inc. 63

https://community.perforce.com/s/article/15261

Usage

sudo /p4/common/bin/p4dstate.sh <instance>
sudo /p4/common/bin/p4dstate.sh 1

7.4.20. ps_functions.sh

Common functions for using 'ps' to check on process ids. Not intended to be called directly but just
to be sourced by other scripts.

get_pids ($exe)

Usage

Call with an exe name, e.g. /p4/1/bin/p4web_1

Examples

p4web_pids=$(get_pids $P4WEBBIN)
p4broker_pids=$(get_pids $P4BROKERBIN)

7.4.21. pull.sh

This is a reference pull trigger implementation for External Archive Transfer using pull-archive
and edge-content triggers

It is a fast content transfer mechanism using Aspera (and can be adapted to other similar UDP
based products.) An Edge server uses this trigger to pull files from its upstream Commit server. It
replaces or augments the built in replication archive pull and is useful in scenarios where there are
lots of large (binary) files and commit/edge are geographically distribbuted with high latency
and/or low bandwidth between them.

See also companion trigger Section 7.4.29, Òsubmit.shÓ

It is based around getting a list of files to copy from commit to edge. Do the copy using ascp (Aspera
file copy)

Configurable pull.trigger.dir should be set to a temp folder like /p4/1/tmp

Startup commands look like:

startup.2=pull -i 1 -u --trigger --batch=1000

The trigger entry for the pull commands looks like this:

64 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

64 © 2010-2020 Perforce Software, Inc.

https://community.perforce.com/s/article/15337
https://community.perforce.com/s/article/15337

pull_archive pull-archive pull "/p4/common/bin/triggers/pull.sh %archiveList%"

There are some pull trigger options, but the are not necessary with Aspera. Aspera works best if
you give it the max batch size of 1000 and set up 1 or more threads. Note, that each thread will use
the max bandwidth you specify, so a single pull-trigger thread is probably all you will want.

The ascp user needs to have ssl public keys set up or export ASPERA_SCP_PASS.

The ascp user should be set up with the target as / with full write access to the volume where the
depot files are located. The easiest way to do that is to use the same user that is running the p4d
service.

!
ensure ascp is correctly configured and working in your environment:
https://www-01.ibm.com/support/docview.wss?uid=ibm10747281 (search for "ascp
connectivity testing")

Standard SDP environment is assumed, e.g P4USER, P4PORT, OSUSER, P4BIN, etc. are set, PATH is
appropriate, and a super user is logged in with a non-expiring ticket.

" Read the trigger comments for any customization requirements required for your
environment.

See also the test version of the script: Section 7.4.22, Òpull_test.shÓ

See script for details and to customize for your environment.

7.4.22. pull_test.sh

"
THIS IS A TEST SCRIPT - it substitutes for Section 7.4.21, Òpull.shÓ which uses
AsperaÕs ascp and replaces that with Linux standard scp utility. IT IS NOT
INTENDED FOR PRODUCTION USE!!!!

If you donÕt have an Aspera license, then you can test with this script to understand the process.

See script for details.

There is a demonstrator project showing usage: https://github.com/rcowham/p4d-edge-pull-demo

7.4.23. purge_revisions.sh

This script will allow you to archive files and optionally purge files based on a configurable number
of days and minimum revisions that you want to keep. This is useful if you want to keep a certain
number of days worth of files instead of a specific number of revisions.

Note: If you run this script with purge mode disabled, and then enable it after the fact, all
previously archived files specified in the configuration file will be purged if the configured criteria
is met.

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 65 of 79

© 2010-2020 Perforce Software, Inc. 65

https://www-01.ibm.com/support/docview.wss?uid=ibm10747281
../Server/Unix/p4/common/bin/triggers/pull.sh
../Server/Unix/p4/common/bin/triggers/pull_test.sh
https://github.com/rcowham/p4d-edge-pull-demo

Prior to running this script, you may want to disable server locks for archive to reduce impact to
end users.

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/
configurables.configurables.html#server.locks.archive

Parameters:

¥ SDP_INSTANCE - The instance of Perforce that is being backed up. If not set in environment,
pass in as argument to script.

¥ P4_ARCHIVE_CONFIG - The location of the config file used to determine retention. If not set in
environment, pass in as argument to script. This can be stored on a physical disk or somewhere
in perforce.

¥ P4_ARCHIVE_DEPOT - Depot to archive the files in (string)

¥ P4_ARCHIVE_REPORT_MODE - Do not archive revisions; report on which revisions would have
been archived (bool - default: true)

¥ P4_ARCHIVE_TEXT - Archive text files (or other revisions stored in delta format, such as files of
type binary+D) (bool - default: false)

¥ P4_PURGE_MODE - Enables purging of files after they are archived (bool - default: false)

Config File Format

The config file should contain a list of file paths, number of days and minimum of revisions to keep
in a tab delimited format.

<PATH> <DAYS> <MINIMUM REVISIONS>

Example:

//test/1.txt 10 1
//test/2.txt 1 3
//test/3.txt 10 10
//test/4.txt 30 3
//test/5.txt 30 8

Usage

/p4/common/bin/purge_revisions.sh <SDP_INSTANCE> <P4_ARCHIVE_CONFIG>
<P4_ARCHIVE_DEPOT> <P4_ARCHIVE_REPORT_MODE (Optional)> 4_ARCHIVE_TEXT (Optional)>
<P4_PURGE_MODE (Optional)>

Examples

Run from CLI that will archive files as defined in the config file

./purge_revisions.sh 1 /p4/common/config/p4_1.p4purge.cfg archive FALSE

66 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

66 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.locks.archive
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.locks.archive

Cron job that will will archive files as defined in the config file, including text files

30 0 * * * [-e /p4/common/bin] && /p4/common/bin/run_if_master.sh ${INSTANCE}
/p4/common/bin/purge_revisions.sh $NSTANCE} /p4/common/config/p4_1.p4purge.cfg archive
FALSE FALSE

7.4.24. recover_edge.sh

This script is designed to rebuild an Edge server from a seed checkpoint from the master WHILE
KEEPING THE EXISTING EDGE SPECIFIC DATA.

You have to first copy the seed checkpoint from the master, created with Section 7.4.3,
Òedge_dump.shÓ, to the edge server before running this script. (Alternately, a full checkpoint from
the master can be used so long as the edge server spec does not specify any filtering, e.g. does not
use ArchiveDataFilter.)

Then run this script on the Edge server host with the instance number and full path of the master
seed checkpoint as parameters.

Usage

/p4/common/bin/recover_edge.sh <instance> <absolute path to checkpoint>
/p4/common/bin/recover_edge.sh 1 /p4/1/checkpoints/p4_1.edge_syd.seed.ckp.9188.gz

7.4.25. replica_cleanup.sh

This script performs the following actions for a replica:

¥ rotate logs

¥ remove old checkpoints and journals

¥ remove old logs

It is a convenenience script for occasional use.

Usage

/p4/common/bin/replica_cleanup.sh <instance>
/p4/common/bin/replica_cleanup.sh 1

7.4.26. replica_status.sh

This script is regularly run by crontab on a replica or edge (using Section 7.2.13, Òrun_if_replica.shÓ)

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 67 of 79

© 2010-2020 Perforce Software, Inc. 67

0 8 * * * [-e /p4/common/bin] && /p4/common/bin/run_if_replica.sh ${INSTANCE}
/p4/common/bin/replica_status.sh ${INSTANCE} > /dev/null
0 8 * * * [-e /p4/common/bin] && /p4/common/bin/run_if_edge.sh ${INSTANCE}
/p4/common/bin/replica_status.sh ${INSTANCE} > /dev/null

It performs a p4 pull -lj command on the replica to report current replication status, and emails
this to the standard SDP administrator email on a daily basis. This is useful for monitoring purposes
to detect replica lag or similar problems.

If you are using enhance monitoring such as p4prometheus then this script may not be required.

Usage

/p4/common/bin/replica_status.sh <instance>
/p4/common/bin/replica_status.sh 1

7.4.27. request_replica_checkpoint.sh

This script is intended to be run on a standby replica. It essentially just calls 'p4 admin checkpoint
-Z' to reqeust a checkpoint and exits. The actual checkpoint is created on the next journal rotation
on the master.

Usage

/p4/common/bin/request_replica_checkpoint.sh <instance>
/p4/common/bin/request_replica_checkpoint.sh 1

7.4.28. rotate_journal.sh

This script is a convenience script to perform the following actions for the specified instance (single
parameter):

¥ rotate live journal

¥ replay it to the offline_db

¥ rotate logs files according to the settings in p4_vars for things like KEEP_LOGS

It is not often used.

Usage

/p4/common/bin/rotate_journal.sh <instance>
/p4/common/bin/rotate_journal.sh 1

7.4.29. submit.sh

Example submit trigger for External Archive Transfer using pull-archive and edge-content triggers

68 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

68 © 2010-2020 Perforce Software, Inc.

https://github.com/perforce/p4prometheus
https://community.perforce.com/s/article/15337

This is a reference edge-content trigger for use with an Edge/Commit server topology - the Edge
server uses this trigger to transmit files which are being submitted to the Commit instead of using
its normal file transfer mechanism. This trigger uses Aspera for fast file transfer, and UDP, rather
than TCP and is typically much faster, especially with high latency connections.

Companion trigger/script to Section 7.4.21, Òpull.shÓ

Uses fstat -Ob with some filtering to generate a list of files to be copied. Create a temp file with the
filename pairs expected by ascp, and then perform the copy.

This configurable must be set:

rpl.submit.nocopy=1

The edge-content trigger looks like this:

EdgeSubmit edge-content //... "/p4/common/bin/triggers/ascpSubmit.sh %changelist%"

The ascp user needs to have ssl public keys set up or export ASPERA_SCP_PASS. The ascp user should
be set up with the target as / with full write access to the volume where the depot files are located.
The easiest way to do that is to use the same user that is running the p4d service.

!
ensure ascp is correctly configured and working in your environment:
https://www-01.ibm.com/support/docview.wss?uid=ibm10747281 (search for "ascp
connectivity testing")

Standard SDP environment is assumed, e.g P4USER, P4PORT, OSUSER, P4BIN, etc. are set, PATH is
appropriate, and a super user is logged in with a non-expiring ticket.

See the test version of this script below: Section 7.4.30, Òsubmit_test.shÓ

See script for details and to customize for your environment.

7.4.30. submit_test.sh

"
THIS IS A TEST SCRIPT - it substitutes for Section 7.4.29, Òsubmit.shÓ (which uses
Aspera) - and replaces ascp with Linux standard scp. IT IS NOT INTENDED FOR
PRODUCTION USE!!!!

If you donÕt have an Aspera license, then you can test with this script to understand the process.

See script for details.

There is a demonstrator project showing usage: https://github.com/rcowham/p4d-edge-pull-demo

SDP User Guide (for Unix) Chapter 7. Tools and Scripts - 69 of 79

© 2010-2020 Perforce Software, Inc. 69

https://www-01.ibm.com/support/docview.wss?uid=ibm10747281
../Server/Unix/p4/common/bin/triggers/submit.sh
../Server/Unix/p4/common/bin/triggers/submit_test.sh
https://github.com/rcowham/p4d-edge-pull-demo

7.4.31. sync_replica.sh

This script is included in the standard crontab for a replica.

It runs rsync to mirror the /p4/1/checkpoints (assumings instance 1) directory to the replica
machine.

It then uses the latest checkpoint in that directory to update the local offline_db directory for the
replica.

This ensures that the replica can be quickly and easily reseeded if required without having to first
copy checkpoints locally (which can take hours over slow WAN links).

Usage

/p4/common/bin/sync_replica.sh <instance>
/p4/common/bin/sync_replica.sh 1

7.4.32. templates directory

This sub-directory of /p4/common/bin contains some files which can be used as templates for new
commands if you wish:

¥ template.pl - Perl

¥ template.py - Python

¥ template.py.cfg - config file for python

¥ template.sh - Bash

They are not intended to be run directly.

7.4.33. update_limits.py

This is a Python script which is intended to be called from a crontab entry one per hour.

It ensures that all current users are added to the limits group. This makes it easy for an
administrator to configure global limits on values such as MaxScanRows, MaxSearchResults etc.
This can reduce load on a heavily loaded instance.

For more information:

¥ Maximising Perforce Helix Core Performance

¥ Multiple MaxScanRows and similar values

Usage

/p4/common/bin/update_limits.py <instance>
/p4/common/bin/update_limits.py 1

70 of 79 - Chapter 7. Tools and Scripts SDP User Guide (for Unix)

70 © 2010-2020 Perforce Software, Inc.

https://community.perforce.com/s/article/2529
https://community.perforce.com/s/article/2521

Appendix A: SDP Package Contents
The directory structure of the SDP is shown below in Figure 1 - SDP Package Directory Structure.
This includes all SDP files, including documentation and maintenance scripts. A subset of these files
are deployed to server machines during the installation process.

sdp
Ê doc
Ê Server (Core SDP Files)
Ê Unix
Ê setup (unix specific setup)
Ê p4
Ê common
Ê bin (Backup scripts, etc)
Ê triggers (Example triggers)
Ê config
Ê etc
Ê cron.d
Ê init.d
Ê lib
Ê test
Ê setup (cross platform setup - typemap, configure, etc)
Ê test (automated test scripts)

Figure 1 - SDP Package Directory Structure

A.1. Volume Layout and Server Planning
Figure 2: SDP Runtime Structure and Volume Layout, viewed from the top down, displays a
Perforce application administratorÕs view of the system, which shows how to navigate the directory
structure to find databases, log files, and versioned files in the depots. Viewed from the bottom up,
it displays a Perforce system administratorÕs view, emphasizing the physical volume where Perforce
data is stored.

A.1.1. Memory and CPU

Make sure the server has enough memory to cache the db.rev database file and to prevent the
server from paging during user queries. Maximum performance is obtained if the server has
enough memory to keep all of the database files in memory. While the p4d process itself is frugal
with system resources such as RAM, it benefits from an excess of RAM due to modern operating
systems using excess RAM as file I/O cache. This is to the great benefit of p4d, even though the p4d
process itself may not be seen as consuming much RAM directly.

Below are some approximate guidelines for allocating memory.

¥ 1.5 kilobyte of RAM per file revision stored in the server.

¥ 32 MB of RAM per user.

SDP User Guide (for Unix) Appendix A: SDP Package Contents - 71 of 79

© 2010-2020 Perforce Software, Inc. 71

INFO: When doing detailed history imports from legacy SCM systems into Perforce, there may be
many revisions of files. You want to account for (total files) x (average number of revisions per
file) rather than simply the total number of files.

Use the fastest processors available with the fastest available bus speed. Faster processors are
typically more desirable than a greater number of cores and provide better performance since
quick bursts of computational speed are more important to PerforceÕs performance than the
number of processors. Have a minimum of two processors so that the offline checkpoint and back
up processes do not interfere with your Perforce server. There are log analysis options to diagnose
underperforming servers and improve things. Contact Perforce Support/Perforce Consulting for
details.

A.1.2. Directory Structure Configuration Script for Linux/Unix

This script describes the steps performed by the mkdirs.sh script on Linux/Unix platforms. Please
review this appendix carefully before running these steps manually. Assuming the three-volume
configuration described in the Volume Layout and Hardware section are used, the following
directories are created. The following examples are illustrated with "1" as the server instance
number.

Directory Remarks

/p4 Must be under root (/) on the OS volume

/hxdepots/p4/1/bin Files in here are generated by the mkdirs.sh
script.

/hxdepots/p4/1/depots

/hxdepots/p4/1/tmp

/hxdepots/p4/common/config Contains p4_<instance>.vars file, e.g. p4_1.vars

/hxdepots/p4/common/bin Files from $SDP/Server/Unix/p4/common/bin.

/hxdepots/p4/common/etc Contains init.d and cron.d .

/hxlogs/p4/1/logs/old

/hxmetadata2/p4/1/db2 Contains offline copy of main server databases
(linked by /p4/1/offline_db .

/hxmetadata1/p4/1/db1/save Used only during running of
refresh_P4ROOT_from_offline_db.sh for extra
redundancy.

Next, mkdirs.sh creates the following symlinks in the /hxdepots/p4/1 directory:

Link source Link target Command

/hxmetadata1/p4/1/db1 /p4/1/root ln -s /hxmetadata1/p4/1/root

/hxmetadata2/p4/1/db2 /p4/1/offline_db ln -s
/hxmetadata1/p4/1/offline_db

/hxlogs/p4/1/logs /p4/1/logs ln -s /hxlogs/p4/1/logs

72 of 79 - Appendix A: SDP Package Contents SDP User Guide (for Unix)

72 © 2010-2020 Perforce Software, Inc.

Then these symlinks are created in the /p4 directory:

Link source Link target Command

/hxdepots/p4/1 /p4/1 ln -s /hxdepots/p4/1 /p4/1

/hxdepots/p4/common /p4/common ln -s /hxdepots/p4/common
/p4/common

Next, mkdirs.sh renames the Perforce binaries to include version and build number, and then
creates appropriate symlinks.

A.1.3. P4D versions and links

The versioned binary links in /p4/common/bin are as below.

For the example of <instance> 1 we have:

ls -l /p4/1/bin
p4d_1 -> /p4/common/bin/p4d_1_bin

The structure is shown in this example, illustrating values for two instances, with instance #1 using
p4d release 2018.1 and instance #2 using release 2018.2.

In /p4/1/bin:

p4_1 -> /p4/common/bin/p4_1_bin
p4d_1 -> /p4/common/bin/p4d_1_bin

In /p4/2/bin:

p4_2 -> /p4/common/bin/p4_2
p4d_2 -> /p4/common/bin/p4d_2

In /p4/common/bin:

p4_1_bin -> p4_2018.1_bin
p4_2018.1_bin -> p4_2018.1.685046
p4_2018.1.685046

p4_2_bin -> p4_2018.2_bin
p4_2018.2_bin -> p4_2018.2.700949
p4_2018.2.700949

SDP User Guide (for Unix) Appendix A: SDP Package Contents - 73 of 79

© 2010-2020 Perforce Software, Inc. 73

p4d_1_bin -> p4d_2018.1_bin
p4d_2018.1_bin -> p4d_2018.1.685046
p4d_2018.1.685046

p4d_2_bin -> p4d_2018.2_bin
p4d_2018.2_bin -> p4d_2018.2.700949
p4d_2018.2.700949

The naming of the last comes from:

./p4d_2018.2.700949 -V

Rev. P4D/LINUX26X86_64/2018.2/700949 (2019/07/31).

So we see the build number p4d_2018.2.700949 being included in the name of the p4d executable.

!
Although this link structure may appear quite complex, it is easy to understand,
and it allows different instances on the same server host to be running with
different patch levels, or indeed different releases. And you can upgrade those
instances independently of each other which can be very useful.

A.1.4. Case Insensitive P4D on Unix

By default p4d is case sensitive on Unix for filenames and directory names etc.

It is possible and quite common to run your server in case insensitive mode. This is often done
when Windows is the main operating system in use on the client host machines.

" In "case insensitive" mode, that means that you should ALWAYS execute p4d with
the flag -C1 (or you risk possible table corruption in some circumstances).

The SDP achieves this by executing a simple Bash script:

#!/bin/bash
P4D=/p4/common/bin/p4d_${SDP_INSTANCE}_bin
shellcheck disable=SC2016
exec $P4D -C1 "$@"

So the above will ensure that /p4/common/bin/p4d_1_bin (for instance 1) is executed with the -C1 flag.

As noted above, for case sensitive servers, p4d_1 is normally just a link:

74 of 79 - Appendix A: SDP Package Contents SDP User Guide (for Unix)

74 © 2010-2020 Perforce Software, Inc.

/p4/1/bin/p4d_1 -> /p4/common/bin/p4d_1_bin

SDP User Guide (for Unix) Appendix A: SDP Package Contents - 75 of 79

© 2010-2020 Perforce Software, Inc. 75

Appendix B: Frequently Asked
Questions/Troubleshooting
This appendix lists common questions and problems encountered by SDP users. Do not hesitate to
contact consulting@perforce.com if additional assistance is required.

B.1. Journal out of sequence
This error is encountered when the offline and live databases are no longer in sync, and will cause
the offline checkpoint process to fail. Because the scripts will replay all outstanding journals, this
error is much less likely to occur. This error can be fixed by running the Section 7.2.6,
Òlive_checkpoint.shÓ script. Alternatively, if you know that the checkpoints created from previous
runs of Section 7.2.4, Òdaily_checkpoint.shÓ are correct, then restore the offline_db from the last
known good checkpoint.

B.2. Unexpected end of file in replica daily sync
Check the start time and duration of the Section 7.2.4, Òdaily_checkpoint.shÓ cron job on the master.
If this overlaps with the start time of the Section 7.4.31, Òsync_replica.shÓ cron job on a replica, a
truncated checkpoint may be rsyncÕd to the replica and replaying this will result in an error.

Adjust the replicaÕs cronjob to start later to resolve this.

Default cron job times, as installed by the SDP are initial estimates, and should be adjusted to suit
your production environment.

76 of 79 - Appendix B: Frequently Asked Questions/Troubleshooting SDP User Guide (for Unix)

76 © 2010-2020 Perforce Software, Inc.

mailto:consulting@perforce.com

