Perforce Helix Server Deployment
Package (for Windows)

Perforce Professional Services

Version v2020.1, 2021-05-07

Table of Contents

Preface
1. Overview
1.1. Windows SDP vs Unix SDP
1.2. Downloading SDP
2. Configuring the Perforce Server
2.1. Volume Layout and Hardware
2.2. Instance Names
3. Installing the Perforce Server and the SDP
3.1. Clean Installation
3.1.1. Pre-requisites
3.1.2. Configuring Powershell
3.1.3. Initial setup
3.1.4. Running Configuration script
3.1.5. sdp_config.ini
3.1.6. Installing service(s)
3.1.7. Start the server to test
3.1.8. Applying configurables to the server instance
3.1.9. Configuring the server
3.1.10. Verifying your server installation
3.1.11. Scheduling maintenance scripts
3.1.12. Saving your configuration files in Perforce
3.1.13. Archiving configuration files
3.1.14. Configuring a New Instance on an existing machine
3.1.15. Upgrading an existing (non SDP) Windows installation
3.1.16. Upgrading an older Windows SDP installation
3.1.17. Configuring protections, file types, monitoring and security
3.2. General SDP Usage
4. Backup, Replication, and Recovery
4.1. Typical Backup Procedure
4.2. Planning for HA and DR
4.2.1. Further Resources
4.2.2. Creating a Failover Replica for Commit or Edge Server
4.2.3. What is a Failover Replica?
4.2.4. Mandatory vs Non-mandatory Standbys
4.2.5. Server host naming conventions
4.2.6. Pre-requisites for Failover
4.3. Full One-Way Replication
4.3.1. Replication Setup

© 00 N N N 0 U1 wow N DNDN e

NN NN NN DN DN DN DN N N P R R s s s s s
O Ul Ul R W W W WN R, RO O 0000 NN U U R WWw N

4.4. Replication Setup Details

4.5. Recovery Procedures

4.5.1. Recovering from a checkpoint and journal(s)

4.5.2. Recovering from a tape backup

4.5.3. Failover to a replicated standby machine

5. Server Maintenance
5.1. Server upgrades
5.1.1. Database Modifications
5.1.2. Unloading and Reloading labels
5.1.3. Workspace management
5.1.4. Removing empty changelists
6. Maximizing Server Performance
6.1. Optimizing the database files
6.2. Managing server load
6.2.1. Limiting large requests
6.2.2. Offloading remote syncs
6.3. P4V performance settings
7. Tools and Scripts
7.1. Standard scripts
7.2. Core scripts
7.2.1. daily-backup.ps1
7.2.2. p4verify.psl
7.3. Other scripts and tools
7.3.1. create-filtered-edge-checkpoint.ps1

7.3.2. create-offline-db-from-checkpoint.ps1

7.3.3. grep.exe
7.3.4. gzip.exe
7.3.5. live-checkpoint.ps1
7.3.6. recover-edge.psl
7.3.7. recreate-live-from-offline-db.ps1
7.3.8. replica-status.ps1
7.3.9. rotate-log-files.ps1
7.3.10. SDP-functions.ps1
7.3.11. send-test-email.ps1
7.3.12. svcinst.exe
7.3.13. sync-replica.ps1
7.3.14. upgrade.ps1
Appendix A: Frequently Asked Questions
A.1.Journal out of sequence
A.2. Emails not being sent

A.2.1. Gmail Less Secure App Access

26
28
28
29
30
31
31
31
32
33
33
34
34
34
34
34
35
37
37
37
37
38
39
39
40
41
41
41
42
43
44
44
45
45
46
46
47
49
49
49
49

A.2.2. Implicit and Explicit Settings
A.2.3. Explicit SSL
A.2.4. Implicit SSL
Appendix B: SDP Package Contents and Planning
B.1. Memory and CPU
B.1.1. Monitoring SDP activities

49
49
50
51
51
51

Preface - 1 of 51

Preface

The Server Deployment Package (SDP) is the implementation of Perforce’s recommendations for
operating and managing a production Perforce Helix Core Version Control System. It is intended to
provide the Helix Core administration team with tools to help:

» Simplify Management

* High Availability (HA)

* Disaster Recovery (DR)

 Fast and Safe Upgrades

* Production Focus

* Best Practice Configurables

* Optimal Performance, Data Safety, and Simplified Backup

This guide is intended to provide instructions of setting up the SDP to help provide users of Helix
Core with the above benefits.

This guide assumes some familiarity with Perforce and does not duplicate the basic information in
the Perforce user documentation. This document only relates to the Server Deployment Package
(SDP) all other Helix Core documentation can be found here: Perforce Support Documentation

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document or the SDP to consulting@perforce.com.

© 2010-2020 Perforce Software, Inc. 1

https://www.perforce.com/support/self-service-resources/documentation
mailto:consulting@perforce.com

2 of 51 - Chapter 1. Overview

Chapter 1. Overview

The SDP has four main components:

* Hardware and storage layout recommendations for Perforce.

« Scripts to automate critical maintenance activities

Scripts to aid the setup and management of replication (including failover for DR/HA)

* Scripts to assist with routine administration tasks.

Each of these components is covered, in detail, in this guide.

1.1. Windows SDP vs Unix SDP

The principles of the SDP are the same on both operating systems. The similarities are:

« Similar logical structure for file/directory layout (starting from /p4 and c:\p4 respectively)

 This logical structure can be mapped to flexible physical structure for desired performance and
redundancy criteria

Support for offline checkpointing (root vs offline_db) using an automated daily script
» Support for regular archive verification using an automated script
* Emailing of results for basic monitoring

* Some things like triggers written in Python or Perl are cross platform
The differences are:

* Unix scripts/tools are mainly written in Bash, whereas Windows mainly uses Powershell

* Windows Perforce Helix Core deployments tend to be simpler than Unix ones (fewer replicas
etc), so there are more scripts for Unix SDP to manage replicas.

1.2. Downloading SDP

This is available: https://swarm.workshop.perforce.com/files/guest/perforce_software/sdp/
downloads/sdp.Windows.zip

See Section 3.1, “Clean Installation” for where to put it after downloading.

2 © 2010-2020 Perforce Software, Inc.

https://swarm.workshop.perforce.com/files/guest/perforce_software/sdp/downloads/sdp.Windows.zip
https://swarm.workshop.perforce.com/files/guest/perforce_software/sdp/downloads/sdp.Windows.zip

Chapter 2. Configuring the Perforce Server - 3 of 51

Chapter 2. Configuring the Perforce Server

This chapter tells you how to configure a Perforce server machine and an instance of the Perforce
Server. These topics are covered more fully in the Knowledge Base; this chapter covers the details
most relevant to the SDP.

The SDP can be installed on multiple server machines, and each server machine can host one or
more Perforce server instances. (In this guide, the term server refers to a Perforce server instance
unless otherwise specified.) Each server instance is assigned a number. This guide uses instance
number 1 in the example commands and procedures. Other instance numbers can be substituted as
required.

This chapter also describes the general usage of SDP scripts and tools.

2.1. Volume Layout and Hardware

To ensure maximum data integrity and performance, use three different physical volumes for each
server instance. Three volumes can be used for all instances hosted on one server machine, but
using three volumes per instance reduces the chance of hardware failure affecting more than one
instance.

While re recommend 3 volumes (drives), it is often practical to put all the files onto
o a single physical volume. We do NOT recommend the use of the C: drive (operating
system root)!

* Perforce metadata (database files): Use the fastest volume possible, ideally RAID 1+0 on a
dedicated controller with the maximum cache available on it. This volume is normally called
metadata.

* Journals and logs: Use a fast volume, ideally RAID 1+0 on its own controller with the standard
amount of cache on it. This volume is normally called logs. If a separate logs volume is not
available, put the logs on the depotdata volume.

* Depot data, archive files, scripts, and checkpoints: Use a large volume, with RAID 5 on its
own controller with a standard amount of cache or a SAN or NAS volume. This volume is the
only volume that MUST be backed up (although we recommend also backing up logs). The
backup scripts place the metadata snapshots on this volume. This volume can be backed up to
tape or another long term backup device. This volume is normally called depotdata.

If three controllers are not available, put the logs and depotdata volumes on the same controller. Do
not run anti-virus tools or back up tools against the metadata volume(s) or logs volume(s), because
they can interfere with the operation of the Perforce server.

o The SDP assumes (but does not require) the three volumes described above. It can
easily be configured to use a single volume on which all data is stored.

View Figure 2: Volume Layout (below), viewed from the top down, displays a Perforce application
administrator’s view of the system, which shows how to navigate the directory structure to find
databases 1ng files, and versioned files in the depots. Viewed from the bottom up, it dicp] VS a

MMMMMMMMM y A AU 122TS it Lo puUio. v wWol 22020 MUV UM, MisSpaay

a
© 2010-2020 Perforce Software, Inc. 3

https://community.perforce.com/s/article/2529

4 of 51 - Chapter 2. Configuring the Perforce Server

Perforce system administrator’s view, emphasizing the physical volume where Perforce data is
stored.

Both Unix and Windows installation of the SDP now use symlinks (on Windows this is via the
mKklink tool).

1/root

common |

|
A= x |
A i I
gt ,‘
o/

'~
|
|

~_

SDP

-/ -
s |
7

\ -

Database

Offline
database

- journal
checkpoints

)

)

Jmetadata
flogs

depots

0

/depotdata
Figure 2: Volume Layout

The links are shown as <SYMLINKD> below on a Windows installation.

Directory of c:\p4

20/06/2020 15:05 <DIR> .

20/06/2020 15:05 <DIR> ..

20/06/2020 15:05 <SYMLINKD> common [f:\p4\common]
20/06/2020 15:05 <SYMLINKD> config [f:\p4\config]
20/06/2020 15:05 <SYMLINKD> 1 [f:\p4\1]

4 © 2010-2020 Perforce Software, Inc.

Chapter 2. Configuring the Perforce Server - 5 of 51

Directory of c:\p4\1

20/06/2020 15:05 <DIR> .

20/06/2020 15:05 <DIR> ..

20/06/2020 15:05 <DIR> bin

20/06/2020 15:05 <DIR> checkpoints

20/06/2020 15:05 <DIR> depots

20/06/2020 15:05 <SYMLINKD> logs [g:\p4\1\logs]
20/06/2020 15:05 <SYMLINKD> offline_db [e:\p4\1\offline_db]
20/06/2020 15:05 <SYMLINKD> root [e:\p4\1\root]
20/06/2020 15:05 <DIR> ssl

20/06/2020 15:05 <DIR> tmp

2.2. Instance Names

Traditionally the SDP has used integers for instance names which show up in the paths above, for
example C:\p4\ 1\root.

However it is increasingly the case that alphanumeric names are used for instances, e.g. C:\p4\
Acme\root. Commonly organizations strive to use a single Perforce instance, one logical data set,
which may be replicated around the globe. Using a single instance optimizes collaboration and
simplifies code access for all development activity. When there is a single instance, the name ‘1' is
as good as any. When there is more than one instance, e.g. if there are isolated silos of development
activity, an alphanumeric name may be more helpful than an integer for identifying the data set,
such as Acme or perhaps LegacyApps. Another instance is sometimes to develop and test things
like Perforce trigger scripts before rolling them out to the live production instance, or to provide a
standing internal training data set.

In any case it is worth thinking and planning your naming, particularly if you have multiple
instances including replicas of different types and these are located on different hosts.

If you are using instance numbers, then an example configuration where there are 2 master server
instances, each with a replica, might be:

Server hostname Instance ID Port
p4d-sfo-01 1 1666
sfo-p4d-01 2 2666
sfo-p4d-02 1 1666
sfo-p4d-02 2 2666

For consistency, instances with same ID should refer to the same logical data set, they just run on
different machines.

Alternatively, alphanumeric names can be clearer and easier:

Server hostname Instance ID Port

sfo-p4d-01 Acme 5000
© 2010-2020 Perforce Software, Inc. 5

6 of 51 - Chapter 2. Configuring the Perforce Server

Server hostname Instance ID Port
sfo-p4d-01 Test 5999
sfo-p4d-02 Acme 5000
sfo-p4d-02 Test 5999

Some sites apply a convention to the port number to identify whether the P4PORT value is that of a
master server, a broker, replica, edge server, or proxy. In such cases the first digit is reserved to
identify the instance, and the remaining 3 digits identify the target service, e.g. 666 for a broker, 999
for a master server, 668 for a proxy.

Host naming conventions vary from site to site, and often have local naming preferences or
constraints. These examples the the code of the nearest major airport, sfo in this case, as a location
code. Using location in the hostname is merely an example of a site preference, not necessarily a
best practice.

End user P4PORT values typically do not reference the actual machine names. Instead they
reference an alias, e.g. perforce or sfo-p4d (without the -01). This helps make failover operations
more transparent.

6 © 2010-2020 Perforce Software, Inc.

Chapter 3. Installing the Perforce Server and the SDP - 7 of 51
Chapter 3. Installing the Perforce Server and
the SDP

This chapter tells you how to install a Perforce server instance in the SDP framework. For more
details about server installation, refer to the Perforce System Administrator’s Guide.

Many companies use a single Perforce Server to manage their files, while others use multiple
servers. The choice depends on network topology, the geographic distribution of work, and the
relationships among the files being managed. If multiple servers are run, assign each instance a
number and use that number as part of the name assigned to depots, to make the relationship of
depots and servers obvious. See the discussion above on Instance Names.

3.1. Clean Installation

In this section we describe the server and SDP installation process on Windows. The process
consists of:

1. Initial setup of the file system and configuration files.

2. Running the SDP configuration script.

3. Starting the server and performing initial configuration.

3.1.1. Pre-requisites
The following are required (details mentioned below):

* Administrator account on the server
* Python installed (see below)
» Perforce Helix Core executables (p4.exe/p4d.exe - see below)

» Powershell 5.x or greater (default on Windows 10 or Windows Server 2016+)
Optional (but recommended):
* Perforce Helix Visual client (P4V - optional but very useful, together with P4Admin - the Admin
tool)

* An editor (Notepad will do, but Download Notepad++)

* GOW (Gnu on Windows) - optional but very useful for parsing log files etc.

3.1.2. Configuring Powershell

The scripts now use Powershell rather than .BAT files due to improved error handling and options,
and code re-use (via a single included module rather than duplication of functionality in every
script). This also allows us to keep the scripts more closely aligned with the functionality of the Unix
scripts.

It is important to enable local scripts to be run. The following command must be run within an
© 2010-2020 Perforce Software, Inc. 7

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/install.windows.html
https://notepad-plus-plus.org/downloads/
https://github.com/bmatzelle/gow/releases

8 of 51 - Chapter 3. Installing the Perforce Server and the SDP
Powershell Administrator prompt:

get-executionpolicy

The result needs to be either RemoteSigned or Unrestricted. If not then set it as below.
For Windows 10, Windows Server 2016 or later, run the following commands as Administrator:

* x86
Open C:\Windows\SysWOW64\cmd.exe
Run the command:

powershell Set-ExecutionPolicy RemoteSigned

* x64
Open C:\Windows\system32\cmd.exe
Run the command:

powershell Set-ExecutionPolicy RemoteSigned

Use get-executionpolicy to check the policy has been updated. You may need to ensure that the
various scripts are not "blocked" - right click in Windows Explorer and check Properties options.

3.1.3. Initial setup
Prior to installing the Perforce server, perform the following steps.

1. Mount the volumes for the three-volume configuration described in Volume Layout and
Hardware. The procedure assumes the drives are mapped as follows:

o Metadata on e:

o Depotdata on f:

o Logsong:
(r) If you do not have a logs volume, put the logs on the depot data volume. If you
- have only a single data volume, e.g. d: then set all the values to that volume.

2. Copy the SDP to the f:\sdp directory (let us call this %SDP%).
It is likely that Windows will have blocked the various scripts and files for security

o reasons. It is important to run the following command (in Powershell window as
Administrator)

dir -Path f:\sdp -Recurse | Unblock-File

8 © 2010-2020 Perforce Software, Inc.

Chapter 3. Installing the Perforce Server and the SDP - 9 of 51

3. Customize the following for your environment. It requires you to identify the master server and
all replicas that we need to setup for the SDP, including instance names, hostnames, etc. This
information is all in a single file:

%SDP%\Server\Windows\setup\sdp_master_config.ini

4. Download and install Python, e.g. from www.python.org. We use Python 2.7.x (latest) and 3.7.x
(latest). 64-bit version is fine. Typically we install to default dir, e.g. c:\python27. For initial
installation we only require base Python. For subsequent scripting you may wish to install
P4Python (e.g. using pip).

5. Other tools we find useful: Notepad++ and GOW (Gnu on Windows - Unix command line utilities
such as wc, head, tail). These are recommended but not strictly required.

6. Download to directory %SDP%\Server\Windows\setup the desired release of p4.exe and p4d.exe.
For example, for Helix Core for release 2020.1 on 64 bit Windows, use this URL:

http://ftp.perforce.com/perforce/r20.1/bin.ntx64

From that directory listing, select p4.exe and then p4d.exe to download each of those files. If you
are using 32 bit Windows (unusual these days), substitute bin.ntx86 for bin.ntx64 in the URL
above. The following works within Powershell

Invoke-WebRequest "http://ftp.perforce.com/perforce/r20.1/bin.ntx64/p4.exe"
-OutFile "p4.exe"
Invoke-WebRequest "http://ftp.perforce.com/perforce/r20.1/bin.ntx64/p4d.exe"
-QutFile "p4d.exe"

3.1.4. Running Configuration script

The create_env.py script, available in %SDP%\Server\Windows\setup, sets up the basic directory
structure used by the SDP. It creates .bat files to register the Perforce service as Windows services. It
parses and validates the sdp_master_config.ini file in the same directory.

You need to customize this sdp_master_config.ini file. It contains lots of comments as to how to set
the various configuration values.

The following shows a sample config after editing:

© 2010-2020 Perforce Software, Inc. 9

http://www.python.org

10 of 51 - Chapter 3. Installing the Perforce Server and the SDP

[DEFAULT]

SDP_P4SUPERUSER=perforce
SDP_PASUPERUSER_PASSWORD=SomeRandomPassword
ADMIN_PASS_FILENAME=adminpass.txt

mailfrom=perforce@example.com
maillist=p4ra@example.com
mailhost=mail.example.com
mailhostport=25

EMAIL_PASS_FILENAME=emailpass.txt
EMAIL_PASSWORD=

KEEPCKPS=10

KEEPLOGS=20
LIMIT_ONE_DAILY_CHECKPOINT=false
SDP_GLOBAL_ROOT=c:

Assuming output of ‘hostname' is this value, and we are using instance ‘1°
[1:perforce-svr-01]

SDP_SERVERID=Master

SDP_SERVICE_TYPE=standard

SDP_P4PORT_NUMBER=1666

Everything on D: drive

METADATA_ROOT=D:

DEPOTDATA_ROOT=D:

LOGDATA_ROOT=D:

REMOTE_DEPOTDATA_ROQT=

Review the contents of template_configure_new_server.bat file which defines the recommended
default configurable values for any server, and make any desired changes. This file will be parsed
and used to create instance specific configuration files.

After updating the configuration file, run create_env.py from the same directory.

o You must run this command from a CMD window which has administrator rights.

cd %SDP%\Server\Windows\setup
Edit and save changes:
notepad sdp_master_config.ini

Run the command to create the environment (by default it looks for the config file
sdp_master_config.ini but this can be changed with -c option):

10 © 2010-2020 Perforce Software, Inc.

Create_env.py

The output will look something like this:

Chapter 3. Installing the Perforce Server and the SDP - 11 of 51

D:\sdp\Server\Windows\setup>create_env.py

INFO: Found the following sections: ['1:EC2AMAZ-LJ68A41"]

INFO: Config file written: sdp_config.ini

INFO: The following directories/links would be created with the -y/--yes flag

INFO: Creating target dir 'c:\p4'
INFO: Creating target dir 'D:\p4\1'
INFO: Creating target dir 'D:\p4\1'

INFO: Creating link 'c:\p4\1' to 'D:\p4\1'

INFO: Creating target dir 'D:\p4\common'

INFO: Creating link 'c:\p4\common' to 'D:\p4\common'

INFO: Creating target dir 'D:\p4\config'

INFO: Creating link 'c:\p4\config' to 'D:\p4\config'
INFO: Creating target dir 'c:\p4\common\bin'

INFO: Creating target dir 'c:\p4\common\bin\triggers'
INFO: Creating target dir 'c:\p4\1\bin'

INFO: Creating target dir 'c:\p4\1\tmp'

INFO: Creating target dir 'c:\p4\1\depots'

INFO: Creating target dir 'c:\p4\1\checkpoints'

INFO: Creating target dir 'c:\p4\1\ssl'
INFO: Creating target dir 'D:\p4\1\root'

INFO: Creating link 'c:\p4\1\root' to 'D:\p4\1\root'

INFO: Creating target dir 'c:\p4\1\root\save'

INFO: Creating target dir 'D:\p4\1\offline_db'

INFO: Creating link 'c:\p4\1\offline_db"' to 'D:\p4\1\offline_db'

INFO: Creating target dir 'D:\p4\1\logs'

INFO: Creating link 'c:\p4\1\logs' to 'D:\p4\1\logs'

INFO: Copying 'D:\sdp\Server\Windows\p4\common\bin\create-filtered-edge-
checkpoint.ps1' to 'c:\p4\common\bin\create-filtered-edge-checkpoint.ps1’
INFO: Copying 'D:\sdp\Server\Windows\p4\common\bin\create-offline-db-from-
checkpoint.bat' to 'c:\p4\common\bin\create-offline-db-from-checkpoint.bat'
INFO: Copying 'D:\sdp\Server\Windows\p4\common\bin\create-offline-db-from-
checkpoint.ps1' to 'c:\p4\common\bin\create-offline-db-from-checkpoint.ps1’

INFO: Copying 'D:\sdp\Server\Windows\setup\p4.exe' to 'c:\p4\1\bin'

INFO: Copying 'D:\sdp\Server\Windows\setup\p4d.exe' to 'c:\p4\1\bin'

INFO: Copying 'D:\sdp\Server\Windows\setup\p4d.exe' to 'c:\p4\1\bin\p4ds.exe'
INFO: Copying 'D:\sdp\Server\Windows\setup\sdp_config.ini' to 'c:\p4\config'
INFO: Copying 'D:\sdp\Server\Windows\setup\Master_server.id' to

"c:\p4\1\root\server.id'

INFO: Creating instance bat file 'c:\p4\1\bin\daily-backup.bat'

INFO: Creating instance bat file 'c:\p4\1\bin\p4verify.bat'

INFO: Creating instance bat file 'c:\p4\1\bin\replica-status.bat'

INFO: Creating service configure commands on 'ec2amaz-1j68a4i' for instance '1' in

install_services_ec2amaz-1j68a41i.bat

© 2010-2020 Perforce Software, Inc. 11

12 of 51 - Chapter 3. Installing the Perforce Server and the SDP

The following commands have been created - but you are in report mode so no
directories have been created

install_services_ec2amaz-1j68a41i.bat

configure_Master.bat
You will also need to seed the replicas from a checkpoint and run the appropriate
commands on those machines
INFO: Running in reporting mode: use -y or --yes to perform actions.

If the output looks correct then re-run the script with -y parameter to actually perform the copying
of files and creation of directories and links.

create_env.py -y

3.1.5. sdp_config.ini

This file is written to c:\p4\common\bin. It will look something like this(note the value EC2AMAZ-
LJ68A4I is the output of the hostname command):

[1:EC2AMAZ-L]68A4I]
p4port=EC2AMAZ-L]68A41:1777
sdp_serverid=Master
sdp_p4serviceuser=
sdp_global_root=c:
sdp_p4superuser=perforce
admin_pass_filename=adminpass.txt
email_pass_filename=emailpass.txt
mailfrom=perforce@example.com
maillist=p4ra@example.com
mailhost=mail.example.com
mailhostport=25

python=None
remote_depotdata_root=
keepckps=10

keeplogs=20
limit_one_daily_checkpoint=false
remote_sdp_instance=

pdtarget=

The above are the values for a single master/commit server.

If you configure a replica then these fields should be set to appropriate values:

12 © 2010-2020 Perforce Software, Inc.

Chapter 3. Installing the Perforce Server and the SDP - 13 of 51
[1:EC2AMAZ-REPLICA]
sdp_p4serviceuser=svc_p4d_ha_aws

remote_depotdata_root=\\EC2AMAZ-L168A41\d$
remote_sdp_instance=1
pdtarget=EC2AMAZ-LJ68A41:1777

3.1.6. Installing service(s)

The above command will create a couple of files in that directory. The first is

install_services_<hostname>.bat, so on a machine where the hostname is svrp4master, it will be
install_services_svrp4master.bat

Validate the contents of this file and run it if it looks appropriate - this installs the service(s) with
appropriate parameters. Please note that it is specific to the hostname that you specified inside
sdp_master_config.ini - so it will only run on the correct host server. It should look something like:

D:\sdp\Server\Windows\setup>install_services_ec2amaz-1j68a4i.bat
D:\sdp\Server\Windows\setup>c:\p4\common\bin\instsrv.exe p4_1 "c:\p4\1\bin\p4s.exe"
The service was successfully added!

Make sure that you go into the Control Panel and use
the Services applet to change the Account Name and
Password that this newly installed service will use
for its Security Context.

D:\sdp\Server\Windows\setup>c:\p4\1\bin\p4.exe set -S p4_1 P4R0O0T=c:\p4\1\root
D:\sdp\Server\Windows\setup>c:\p4\1\bin\p4.exe set -S p4_1
P4JOURNAL=c:\p4\1\logs\journal

D:\sdp\Server\Windows\setup>c:\p4\1\bin\p4.exe set -S p4_1
D:\sdp\Server\Windows\setup>c:\p4\1\bin\p4.exe set -S p4_1
D:\sdp\Server\Windows\setup>c:\p4\1\bin\p4.exe set -S p4_1
P4L0G=c:\p4\1\logs\Master.log

ANAME=Master

P
P4PORT=1777

Note that if you have defined multiple instances in sdp_master_config.ini to run on this same
hostname, then they will all be installed by this .bat file.

3.1.7. Start the server to test

Having installed the service, we now test that it will start: c:\p4\common\bin\svcinst start -n
p4_<instance name>, e.g.

c:\p4\common\bin\svcinst start -n p4_1

© 2010-2020 Perforce Software, Inc. 13

14 of 51 - Chapter 3. Installing the Perforce Server and the SDP
Or

c:\p4\common\bin\svcinst start -n p4_Master

If the service fails to start, then examine the log file for the reason (e.g. missing license file) in
c:\p4\<instance>\logs.

Ensure the server is running (specify appropriate port):
p4 -p 1666 info

Use c:\p4\common\bin\svcinst stop -n p4_<instance> to stop the service if required.

3.1.8. Applying configurables to the server instance

For each instance defined in sdp_master_config.ini, a configuration .bat file will be created, called
configure_<instance>.bat, so for instance master, it will be configure_master.bat.

Review the contents of the file and make any desired changes.

You will only be able to run the .bat file if you have started the server instance as per previous
section.

If an instance is a replica (or similar), then you should apply the configurables to the master server
and then checkpoint it before seeding the replica - see the Distributing Perforce guide.

3.1.9. Configuring the server

To configure the server, perform the following steps:

1. Make sure your server is running (specify appropriate port below):
p4 -p 1666 info

2. Create your Perforce administrator account within the Perforce repository, using the user name
and password specified in sdp_master_config.ini.

3. Optional. To create a Perforce stream depot called PerforceSDP and load the SDP, issue the
following commands:

p4 depot -t stream -o PerforceSDP | p4 depot -i

p4 stream -t mainline -o //PerforceSDP/main | p4 stream -i

cd /d C:\sdp

p4 client -S //Perforce/main -o PerforceSDP_ws | p4 client -i
p4 -c PerforceSDP_ws reconcile

p4 -c PerforceSDP_ws submit -d "Added SDP."

14 © 2010-2020 Perforce Software, Inc.

Chapter 3. Installing the Perforce Server and the SDP - 15 of 51

4. Optional. To create a Perforce spec depot, issue the following commands:
p4 depot -t spec -o spec | p4 depot -i

Then add the following to the Protections table, near the bottom (about super user entries), to
hide specs which could have security implications:

list user * * -//spec/protect.p4s
list user * * -//spec/triggers.p4s

Then update specs in the depot with this command:
p4 admin updatespecdepot -a
5. Optional. To create an unload depot, issue the following command:
p4 depot -t unload -o unload | p4 depot -i

6. Optional. To delete the default Perforce depot named depot, issue the following command: p4
depot -d depot. Create one or more depots as required to store your files, following your site’s
directory naming conventions.

3.1.10. Verifying your server installation
To verify your installation, perform these steps:

1. Issue the p4 info command, after setting appropriate environment variables. If the server is
running, it will display details about its settings.

2. Create a client workspace and verify that it is archived in the spec depot and written to the
c:\p4\1\depots\specs\client (assuming instance 1) directory.

3. Add a file to the server and verify that the archive file gets created in the corresponding
directory under c:\p4\1\depots.

3.1.11. Scheduling maintenance scripts

In Windows 2012 or later you should use the Task Scheduler. We recommend that you create a
folder called Perforce at the top level in which to create your tasks (otherwise they can be hard to
find when you next look in Task scheduler!).

Note that the "schtasks" command can be useful from command line, or "taskschd.msc" to get the
control panel equivalent.

The recommendation is to run daily-backup.bat every day at say 2:00 am (or similar time).

© 2010-2020 Perforce Software, Inc. 15

16 of 51 - Chapter 3. Installing the Perforce Server and the SDP
Task Basics

() Create Task X

General Triggers Actions Conditions Settings

Mame: P4 Daily Backup

Location: %

Author: WIN-B7UQ3ETTNES\Robert Cowham

Description:

Security cptions

When running the task, use the following user account:
WIN-B7UQ3ETTNEI\Administrator Change User or Group...

(O Run only when user is logged on
® Run whether useris logged on or not
[] Do net store password. The task will only have access to local computer resources.

Run with highest privileges

[1 Hidden Configure for: | Windows Vista™, Windows Server™ 2008 V

Trigger screen

Set the time to run like this:

Mew Trigger X

Begin the task: | On a schedule w
Settings

) Onetime Start: | 9/14/2016 [E- | | 2:00:00 AM = | [Synchronize across time zones

) Daily
@ Weekly Recur every: weeks on:
O Monthiy Sunday Monday Tuesday Wednesday

Thursday Friday

Advanced settings

[] Delay task for up to (random delay): 1 hour

[] Repeat task every: 1 hour for a duration of: |1 day

[] Step task if it runs longer than: 3 days

L Expires 9/14/2017 1:37:40 AM Synchronize across time zones
Enabled

Cancel

Action
Program: c:\p4\master\bin\daily-backup.bat

Where master is your instance name.

16 © 2010-2020 Perforce Software, Inc.

Chapter 3. Installing the Perforce Server and the SDP - 17 of 51
3.1.12. Saving your configuration files in Perforce

It is sensible to create a Perforce workspace and to store the configuration files in Perforce.

Typically the depot root might be something like //perforce/sdp. If you have many machines, then
you might use //perforce/sdp/<machine> using either a physical or a logical name for the machine.

A typical workspace view (e.g. for workspace called p4admin.sdp and for instance master), might
be:

Root: c:\p4

View:
//perforce/sdp/p4/*1*/bin/... //pdadmin.sdp/*1*/bin/...
//perforce/sdp/p4/common/bin/... //p4admin.sdp/common/bin/...
//perforce/sdp/p4/config/... //pdadmin.sdp/config/...

You would have appropriate workspaces for each machine, and appropriate lines for each instance
on that machine.

3.1.13. Archiving configuration files

Now that the server is running properly, copy the following configuration files to the depotdata
volume for backup:

» The scheduler configuration.

* Cluster configuration scripts, failover scripts, and disk failover configuration files.

3.1.14. Configuring a New Instance on an existing machine

It is possible to add a new instance to an existing machine.
Edit the sdp_master_config.ini and add a new section for the new instance.

The run create_env.py, specifying to just create the new instance.

cd %SDP%\Server\Windows\setup

notepad sdp_master_config.ini

create_env.py -c sdp_master_config.ini --instance Replica2

If the output looks correct then re-run the script with -y parameter to actually perform the copying
of files and creation of directories and links.

© 2010-2020 Perforce Software, Inc. 17

18 of 51 - Chapter 3. Installing the Perforce Server and the SDP
3.1.15. Upgrading an existing (non SDP) Windows installation

The easiest way to upgrade a service instance is:

1. Create new sdp_master_config.ini file to describe the existing installations.
2. Run create_env.py to create the new environment
3. Run install_services_<hostname>.bat to create new services.
a. Stop existing services
b. Manually move the following files from their existing to new locations:
i db.* files
ii. license
iii. log file(s)
iv. journal
v. checkpoints and archived journals
c. Start new service and check it runs successfully
d. Adjust the depot root paths (with 2014.1 or greater use the configurable server.depot.root,

otherwise manually edit depot specs and install the appropriate trigger for new depot specs)

Simple reporting commands to compare before/after include:

p4 changes -m20 -1 -t > changes.txt
p4 depots > depots.txt
p4 verify -q //...@yyyy/mm/dd,#head (specifying a few days before the cutover)

3.1.16. Upgrading an older Windows SDP installation

Older versions of the Windows SDP (pre June 2014) stored configuration values for each instance in
a p4env.bat file within the p4\common\bat directory.

They also didn’t link all directories from c:\p4, but instead used drives such as E:, F: and G: and
paths on those drives.

The easiest way to upgrade (most of the work can be done without stopping the service) is:

1. Ensure that existing instance files are checked in to Perforce (instance\bin and common\bin files),
for example in workspace p4admin.sdp.orig (use a root directory of %DEPOTDATA% - see next
step).

2. Extract existing values from p4env.bat such as mailfrom, mailhost, mailto, and also METADATA,
LOGDATA and DEPOTDATA

3. Edit sdp_master_config.ini and set the appropriate values using extracted ones, and appropriate
instance specific values.

4. Set the values for METADATA_ROOT, DEPOTDATA_ROOT and LOGDATA_ROOT to the same (dummy) value,
e.g. c:\pdassets
18 © 2010-2020 Perforce Software, Inc.

10.

11.
12.

13.

Chapter 3. Installing the Perforce Server and the SDP - 19 of 51

Run 'create_env.py " to generate the new structure.

Manually edit c:\p4assets\p4\config\sdp_config.ini and set the ROOT values to the existing
values taken from step 2.

Using a different but similar workspace p4admin.sdp.new, which has a root directory of c:\p4,
run p4 sync -k, then do a p4 reconcile to identify all the changed files - this will include most of
the .bat files, but it shouldn’t include p4d.exe or p4s.exe as we are not updating these files.

Submit the new changes.

In workspace p4admin.sdp.orig, carefully check the updated files that need to be synced
(recommend you review diffs one by one), and then sync them.

Manually remove and recreate the links (using del and mklink /d) for directories under c:\p4 so
that they point to the existing directories on e:, f: or g: (the original DEPOTDATA).

Review existing configurables and adjust as appropriate.

Setup the scheduled tasks for daily/weekly backup and verify as appropriate. Validate that the
daily backup works (typically wait until the next day)

At an appropriate point, stop the existing service, adjust the service paths to use the new paths
starting from c:\p4.

3.1.17. Configuring protections, file types, monitoring and security

After the server is installed and configured, most sites will want to modify server permissions
(protections) and security settings. Other common configuration steps include modifying the file
type map and enabling process monitoring. To configure permissions, perform the following steps:

1
2.

To set up protections, issue the p4 protect command. The protections table is displayed.

Delete the following line:

write user * * //depot/...

Define protections for your server using groups. Perforce uses an inclusionary model. No access
is given by default, you must specifically grant access to users/groups in the protections table. It
is best for performance to grant users specific access to the areas of the depot that they need
rather than granting everyone open access, and then trying to remove access via exclusionary
mappings in the protect table even if that means you end up generating a larger protect table.

To set the server’s default file types, run the p4 typemap command and define your typemap to
override Perforce’s default behavior.
Add any file type entries that are specific to your site. Suggestions:
o For already-compressed file types (such as .zip, .gz, .avi, .gif), assign a file type of binary+Fl
to prevent the server from attempting to compress them again before storing them.

o For regular binary files, add binary+l to make so that only one person at a time can check
them out.

> A sample file is provided in $SDP/Server/config/typemap

© 2010-2020 Perforce Software, Inc. 19

20 of 51 - Chapter 3. Installing the Perforce Server and the SDP

5. For large, generated text files (e.g. postscript files), assign the text+C file type, to avoid causing
server memory issues.

Perforce provides most IT required password management practices internally. It
is recommend to use internal passwords over LDAP/AD to avoid exposing
LDAP/AD passwords to the Perforce admin via the auth trigger.

3.2. General SDP Usage

This section presents an overview of the SDP scripts and tools. Details about the specific scripts are
provided in later sections.

Most tools reside in c:\p4\common\bin. The directory c:\p4*<instance>*\bin contains scripts and
executables that are specific to a server instance, such as the p4.exe client. The scripts in
c:\p4*<instance>*\bin generally set the environment for an instance correctly, then invoke the
corresponding script in c:\p4\common\bin.

Run important administrative commands using the scripts in c:\p4*<instance>*\bin, when
available. Then, use the p4.exe executable located in c:\p4*<instance>*\bin.

Below are some usage examples for instance 1 or instance master.

Example Remarks

c:\p4\common\bin\live-checkpoint.ps1 1 Take a checkpoint of the live database on
instance 1

c:\p4\common\bin\daily-backup.ps1 master A daily checkpoint of the master instance.

20 © 2010-2020 Perforce Software, Inc.

Chapter 4. Backup, Replication, and Recovery - 21 of 51

Chapter 4. Backup, Replication, and
Recovery

Perforce servers maintain metadata and versioned files. The metadata contains all the information
about the files in the depots. Metadata resides in database (db.*) files in the server’s root directory
(P4ROOT). The versioned files contain the file changes that have been submitted to the server.
Versioned files reside on the depotdata volume.

This section assumes that you understand the basics of Perforce backup and recovery. For more
information, consult the Perforce System Administrator’s Guide and failover.

4.1. Typical Backup Procedure

The SDP’s maintenance scripts, run as cron tasks on Unix/Linux or as Windows scheduled tasks,
periodically back up the metadata. The weekly sequence is described below.

Seven nights a week, perform the following tasks.

1. Rotate/truncate the active journal.

2. Replay the journal to the offline database. (Refer to Figure 2: Volume Layout for more
information on the location of the live and offline databases.)

3. Create a checkpoint from the offline database.

4. Recreate the offline database from the last checkpoint.
Once a week, perform the following tasks.
1. Verify all depots.

This normal maintenance procedure puts the checkpoints (metadata snapshots) on the
depotdata volume, which contains the versioned files. Backing up the depotdata volume with a
normal backup utility like robocopy or rsync provides you with all the data necessary to
recreate the server.

To ensure that the backup does not interfere with the metadata backups (checkpoints),
coordinate backup of the depotdata volume using the SDP maintenance scripts.

The preceding maintenance procedure minimizes server downtime, because checkpoints are
created from offline or saved databases while the server is running.

With no additional configuration, the normal maintenance prevents loss of more
than one day’s metadata changes. To provide an optimal Recovery Point Objective
(RPO), the SDP provides additional tools for replication.

© 2010-2020 Perforce Software, Inc. 21

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/failover.html#Failover
http://en.wikipedia.org/wiki/Recovery_point_objective

22 of 51 - Chapter 4. Backup, Replication, and Recovery

4.2. Planning for HA and DR

The concepts for HA (High Availability) and DR (Disaster Recovery) are fairly similar - they are both
types of Helix Core replica.

When you have server specs with Services field set to commit-server, standard, or edge-server - see
deployment architectures you should consider your requirements for how to recover from a failure
to any such servers.

See also Replica types and use cases

The key issues are around ensuring that you have have appropriate values for the following
measures for your Helix Core installation:

* RTO - Recovery Time Objective - how long will it take you to recover to a backup?

* RPO - Recovery Point Objective - how much data are you prepared to risk losing if you have to
failover to a backup server?

We need to consider planned vs unplanned failover. Planned may be due to upgrading the core
Operating System or some other dependency in your infrastructure, or a similar activity.

Unplanned covers risks you are seeking to mitigate with failover:

* loss of a machine, or some machine related hardware failure (e.g. network)

loss of a VM cluster

* failure of storage

loss of a data center or machine room

. etc...
So, if your main commit-server fails, how fast should be you be able to be up and running again, and
how much data might you be prepared to lose? What is the potential disruption to your

organisation if the Helix Core repository is down? How many people would be impacted in some
way?

You also need to consider the costs of your mitigation strategies. For example, this can range from:

 taking a backup once per 24 hours and requiring maybe an hour or two to restore it. Thus you
might lose up to 24 hours of work for an unplanned failure, and require several hours to
restore.

* having a high availability replica which is a mirror of the server hardware and ready to take
over within minutes if required

Having a replica for HA or DR is likely to reduce your RPO and RTO to well under an hour (<10
minutes if properly prepared for) - at the cost of the resources to run such a replica, and the
management overhead to monitor it appropriately.

Typically we would define:

22 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://community.perforce.com/s/article/5434

Chapter 4. Backup, Replication, and Recovery - 23 of 51

* An HA replica is close to its upstream server, e.g. in the same Data Center - this minimizes the
latency for replication, and reduces RPO

* A DR replica is in a more remote location, so maybe risks being further behind in replication
(thus higher RPO), but mitigates against catastrophic loss of a data center or similar. Note that
"further behind" is still typically seconds for metadata, but can be minutes for submits with
many GB of files.

4.2.1. Further Resources

* High Reliability Solutions

4.2.2. Creating a Failover Replica for Commit or Edge Server

A commit server instance is the ultimate store for submitted data, and also for any workspace state
(WIP - work in progress) for users directly working with the commit server (part of the same "data
set")

An edge server instance maintains its own copy of workspace state (WIP). If you have people
connecting to an edge server, then any workspaces they create (and files they open for some action)
will be only stored on the edge server. Thus it is normally recommended to have an HA backup
server, so that users don’t lose their state in case of failover.

There is a concept of a "build edge" which is an edge server which only supports build farm users.
In this scenario it may be deemed acceptable to not have an HA backup server, since in the case of
failure of the edge, it can be re-seeded from the commit server. All build farm clients would be
recreated from scratch so there would be no problems.

4.2.3. What is a Failover Replica?

As of 2018.2 release, p4d supports a p4 failover command that performs a failover to a standby
replica (i.e. a replica with Services: field value set to standby or forwarding-standby). Such a replica
performs a journalcopy replication of metadata, with a local pull thread to update its db.* files.

See also: Configuring a Helix Core Standby.

4.2.4. Mandatory vs Non-mandatory Standbys
You can modify the server spec of a standby replica to make it mandatory.

When a standby server instance is configured as mandatory, the master/commit server will wait
until this server confirms it has processed journal data before allow that journal data to be released
to other replicas. This can simplify failover, since it provides a guarantee that no downstream
servers are ahead of the replica.

Thus downstream servers can simply be re-directed to point to the standby and will carry on
working without problems.

© 2010-2020 Perforce Software, Inc. 23

https://community.perforce.com/s/article/3166
https://community.perforce.com/s/article/16462

24 of 51 - Chapter 4. Backup, Replication, and Recovery

If a server which is marked as mandatory goes offline for any reason, the replication
to other replicas will stop replicating. In this scenario, the server spec of the

o replica can be changed to nomandatory, and then replication will immediately
resume (so long as the replication has not been offline for too long, typically
several days or weeks depending on the KEEPJNLS setting).

If set to nomandatory then there is no risk of delaying downstream replicas, however there is equally
no guarantee that they will be able to switch seamlessly over to the new server.

We recommend creating mandatory replica(s) if the server is local to its commit
o server, and also if you have good monitoring in place to quickly detect replication
lag or other issues.

To change a server spec to be mandatory or nomandatory, modify the server spec with a command like
p4 server p4d_ha_bos to edit the form, and then change the value in the Options: field to be as
desired, mandatory or nomandatory, and the save and exit the editor.

4.2.5. Server host naming conventions
This is recommended, but not a requirement for SDP scripts to implement failover.

* Use a name that does not indicate switchable roles, e.g. don’t indicate in the name whether a
host is a master/primary or backup, or edge server and its backup. This might otherwise lead to
confusion once you have performed a failover and the host name is no longer appropriate.

* Use names ending numeric designators, e.g. -01 or -05. The goal is to avoid being in a post-
failover situation where a machine with master or primary is actually the backup. Also, the
assumption is that host names will never need to change.

* While you don’t want switchable roles baked into the hostname, you can have static roles, e.g.
use p4d vs. p4p in the host name (as those generally don’t change). The p4d could be primary,
standby, edge, edge’s standby (switchable roles).

» Using a short geographic site is sometimes helpful/desirable. If used, use the same site tag used
in the ServerlD, e.g. aus.

» Using a short tag to indicate the major OS version is sometimes helpful/desirable, eg. c7 for
CentOS 7, or r8 for RHEL 8. This is based on the idea that when the major OS is upgraded, you
either move to new hardware, or change the host name (an exception to the rule above about
never changing the hostname). This option maybe overkill for many sites.

* End users should reference a DNS name that may include the site tag, but would exclude the
number, OS indicator, and server type (p4d/p4p/p4broker), replacing all that with just perforce or
optionally just p4. General idea is that users needn’t be bothered by under-the-covers tech of
whether something is a proxy or replica.

» For edge servers, it is advisable to include edge in both the host and DNS name, as users and
admins needs to be aware of the functional differences due to a server being an edge server.

Examples:

* p4d-aus-r7-03, a master in Austin on RHEL 7, pointed to by a DNS name like p4-aus.
24 © 2010-2020 Perforce Software, Inc.

Chapter 4. Backup, Replication, and Recovery - 25 of 51

* p4d-aus-03, a master in Austin (no indication of server OS), pointed to by a DNS name like p4-
aus.

* p4d-aus-r7-04, a standby replica in Austin on RHEL 7, not pointed to by a DNS until failover, at
which point it gets pointed to by p4-aus.

* p4p-syd-r8-05, a proxy in Sydney on RHEL 8, pointed to by a DNS name like p4-syd.

* p4d-syd-r8-04, a replica that replaced the proxy in Sydney, on RHEL 8, pointed to by a DNS name
like p4-syd (same as the proxy it replaced).

* p4d-edge-tok-s12-03, an edge in Tokyo running SuSE12, pointed to by a DNS name like p4edge-
tok.

* p4d-edge-tok-s12-04, a replica of an edge in Tokyo running SuSE12, not pointed to by a DNS
name until failover, at which point it gets pointed to by p4edge-tok.

FQDNs (fully qualified DNS names) of short DNS names used in these examples would also exist,
and would be based on the same short names.

4.2.6. Pre-requisites for Failover
These are vital as part of your planning.
* Obtain and install a license for your replica(s)

Your commit or standard server has a license file (tied to IP address), while your replicas do not
require one to function as replicas.

However, in order for a replica to function as a replacement for a commit or standard server, it
must have a suitable license installed.

This should be requested when the replica is first created. See the form:
https://www.perforce.com/support/duplicate-server-request

* Review your authentication mechanism (LDAP etc) - is the LDAP server contactable from the
replica machine (firewalls etc configured appropriately).
» Review all your triggers and how they are deployed - will they work on the failover host?

Is the right version of Perl/Python etc correctly installed and configured on the failover host
with all imported libraries?

TEST, TEST, TEST!!! It is important to test the above issues as part of your planning.
o For peace of mind you don’t want to be finding problems at the time of trying to
failover for real, which may be in the middle of the night!

4.3. Full One-Way Replication

Perforce supports a full one-way replication of data from a master server to a replica, including
versioned files. The p4 pull command is the replication mechanism, and a replica server can be
configured to know it is a replica and use the replication command. The p4 pull mechanism

© 2010-2020 Perforce Software, Inc. 25

https://www.perforce.com/support/duplicate-server-request
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/replication.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_pull.html#p4_pull

26 of 51 - Chapter 4. Backup, Replication, and Recovery

requires very little configuration and no additional scripting. As this replication mechanism is
simple and effective, we recommend it as the preferred replication technique. Replica servers can
also be configured to only contain metadata, which can be useful for reporting or offline
checkpointing purposes. See the Distributing Perforce Guide for details on setting up replica
servers.

If you wish to use the replica as a read-only server, you can use the P4Broker to direct read-only
commands to the replica or you can use a forwarding replica. The broker can do load balancing to a
pool of replicas if you need more than one replica to handle your load.

4.3.1. Replication Setup

To configure a replica server, first configure a machine identically to the master server (at least as
regards the link structure such as /p4, /p4/common/bin and /p4/instance/*), then install the SDP on it
to match the master server installation. Once the machine and SDP install is in place, you need to
configure the master server for replication.

Perforce supports many types of replicas suited to a variety of purposes, such as:

Real-time backup,

* Providing a disaster recovery solution,

Load distribution to enhance performance,

* Distributed development,

Dedicated resources for automated systems, such as build servers, and more.

We always recommend first setting up the replica as a read-only replica and ensuring that
everything is working. Once that is the case you can easily modify server specs and configurables to
change it to a forwarding replica, or an edge server etc.

4.4. Replication Setup Details

Note, it is required that you set PATICKETS for the service and for the users on the machine to a
common location for replication to work. To set this up, run the following on both the master and
the replica:

pd set -s PATICKETS=c:\p4\T\p4dtickets.txt
pd set -S p4_1 PATICKETS=c:\p4\1\p4tickets.txt

Once the machine and SDP install is in place, you need to configure the master server for
replication. We will assume the following for the setup:

The replica name will be p4d_ha_lon, the service user name is svc_rp4d_ha_lon, and the master
server’s name is master, and the metadata volume is e:, the depotdata volume is f:, and the logs
volume is g:. You will run the following commands on the master server:

26 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html

configure
configure
configure
configure
configure
configure
configure
configure
configure
confiqure
configure
configure
configure

set
set
set
set
set
set
set
set
set
set
set
set
set

Chapter 4. Backup, Replication, and Recovery - 27 of 51

PATICKETS=c:\p4\1\p4tickets.txt
p4d_ha_lon#P4PORT=1667
p4d_ha_lon#PATARGET=master:1667
p4d_ha_lon#journalPrefix=c:\p4\1\checkpoints\p4_1
p4d_ha_lon#server=3
"p4d_ha_lon#fstartup.1=pull -i 1"
"p4d_ha_lon#fstartup.2=pull -u -i 1"
"p4d_ha_lon#fstartup.3=pull -u -i 1"
"p4d_ha_lon#fstartup.4=pull -u -i 1"
"p4d_ha_lon#fstartup.5=pull -u -i 1"
"p4d_ha_lon#fdb.replication=readonly"
"p4d_ha_lon#lbr.replication=readonly"
p4d_ha_lon#servicelUser=svc_p4d_ha_lon

The following commands will also need to be run:

e p4 user -f svc_p4d_ha_lon (You need to add the Type: service field to the user form before
saving)

* p4 passwd svc_p4d_ha_lon (Set the service user’s password)

* p4 group ServicelUsers (Add the service user to the Users: section and set the Timeout: to
unlimited.)

* p4 protect (Give super rights to the group ServiceUsersto //+*)

Now that the settings are in the master server, you need to create a checkpoint to seed the replica.

Run:

c:\p4\common\bin\daily-backup.ps1 1

When the checkpoint finishes, copy the checkpoint plus the versioned files over to the replica
server. You can use xcopy or something like robocopy for this step.

xcopy c:\p4\1\checkpoints\p4_1.ckp.###.gz replica_f_drive:\p4\1\checkpoints

xcopy c:\p4\1\depots replica_f_drive:\p4\1\depots /S

(# is the checkpoint number created by the daily backup)

Once the copy finishes, go to the replica machine run the following:

c:\p4\1\bin\p4d -r c:\pd\1\root -jr -z c:\p4\1\checkpoints\p4_1.ckp.###.gz

c:\pA\1\bin\p4 -p master:1667 -u svc_p4d_ha_lon login (enter the service user's
password)
c:\p4\common\bin\svcinst start -n p4_1

© 2010-2020 Perforce Software, Inc. 27

28 of 51 - Chapter 4. Backup, Replication, and Recovery

Now, you check the log on the master server (c:\p4\1\logs\log) to look for the rmt-Journal entries
that show you the replication is running. If you see those entries, then you can make some changes
on the master server, and then go to the replica server and check to see that they changes were
replicated across. For example, you can submit a change to the master server, then go to the replica
server and check to see that the change was replicated over to the replica by running p4 describe
on the changelist against the replica server.

The final steps for setting up the replica server are to set up the task scheduler to run the replica
sync scripts. This has to be done via task scheduler running as a regular AD user so that the scripts
can access the network in order to get to the drives on the replica machine.

You need to configure a task to run c:\p4\common\bin\sync-replica.ps1 <instance> every day. The
task should be set up to run after the master server finishes running daily-backup.ps1. Be sure to
give it some buffer for the length of time it takes the master to run that script is likely to become
gradually longer over time.

4.5. Recovery Procedures

There are three scenarios that require you to recover server data:

Metadata Depotdata Action required

lost or corrupt intact Recover metadata as described
below

Intact lost or corrupt Call Perforce Support

lost or corrupt lost or corrupt Recover metadata as described
below.

Recover the depotdata volume
using your normal backup
utilities.

Restoring the metadata from a backup also optimizes the database files.

4.5.1. Recovering from a checkpoint and journal(s)

The checkpoint files are stored in the c:\p4\<instance>\checkpoints directory, and the most recent
checkpoint is named p4_<instance>.ckp.<number>.gz. Recreating up-to-date database files requires
the most recent checkpoint, from c:\p4\<instance>\checkpoints, and the journal file from
c:\p4\<instance>\logs.

To recover the server database manually, perform the following steps from the root directory of the
server (c:\p4\<instance>\root). In the examples below we assume the <instance> is 1.

1. Stop the Perforce Server by issuing the following command:

c:\p4A\1\bin\p4 admin stop

28 © 2010-2020 Perforce Software, Inc.

Chapter 4. Backup, Replication, and Recovery - 29 of 51

2. Delete the old database files in c:\p4\1\root\save directory (note there may not be any files
there as they will typically be cleared out after successful completion of the previous invocation
of the recovery process - see below).

3. Move the live database files (db.*) to the save directory.

4. Use the following command to restore from the most recent checkpoint.

c:\pA\1\bin\p4d -r c:\p4\1\root -jr -z

c:\p4\1\checkpoints\p4_1.ckp.<most recent #>.gz

5. To replay the transactions that occurred after the checkpoint was created, issue the following
command:

c:\p4\1\bin\p4d -r c:\p4\1\root -jr c:\p4\1\logs\journal

6. Restart your Perforce server.
If the Perforce service starts without errors, delete the old database files from c:\p4\1\root\save.

If problems are reported when you attempt to recover from the most recent checkpoint, try
recovering from the preceding checkpoint and journal. If you are successful, replay the subsequent
journal. If the journals are corrupted, contact Perforce Technical Support. For full details about
back up and recovery, refer to the Perforce System Administrator’s Guide.

4.5.2. Recovering from a tape backup

This section describes how to recover from a tape or other offline backup to a new server machine
if the server machine fails. The tape backup for the server is made from the depotdata volume. The
new server machine must have the same volume layout and user/group settings as the original
server. In other words, the new server must be as identical as possible to the server that failed.

To recover from a tape backup, perform the following steps.

1. Recover the depotdata volume from your backup tape.

2. As a super-user, reinstall and enable the Windows services that run the Perforce instance.
3. Find the last available checkpoint, under c:\p4\<instance>\checkpoints.
4

. Recover the latest checkpoint by running:

c:\p4\<instance>\bin\p4d_<instance> -r c:\p4\<instance>\root -jr -z _last_ckp_file_

5. Recover the checkpoint (as shown in the preceding step) into the offline_db directory rather
than the root directory.

© 2010-2020 Perforce Software, Inc. 29

mailto:support@perforce.com
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html

30 of 51 - Chapter 4. Backup, Replication, and Recovery
c:\p4\<instance>\bin\p4d_<instance> -r c:\p4\<instance>\offline_db -jr -z last_ckp_file
Reinstall the Perforce server license to the server root directory.

Start the Perforce service.

Verify that the server instance is running.

© ©® N o

Reinstall the server crontab or scheduled tasks.
10. Perform any other initial server machine configuration.

11. Verify the database and versioned files by running the p4verify script. Note that files using the
+k file type modifier might be reported as BAD! after being moved. Contact Perforce Technical
Support for assistance in determining if these files are actually corrupt.

4.5.3. Failover to a replicated standby machine

See SDP Failover Guide (PDF) or SDP Failover Guide (HTML) for detailed steps.

30 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/file.types.synopsis.modifiers.html
SDP_Failover_Guide.pdf
SDP_Failover_Guide.html

Chapter 5. Server Maintenance - 31 of 51

Chapter 5. Server Maintenance

This section describes typical maintenance tasks and best practices for administering server
machines. The directory c:\p4\sdp\Unsupported contains scripts for several common maintenance
tasks.

The user running the maintenance scripts must have administrative access to Perforce for most
activities. All of these scripts can be run from any client machine.

5.1. Server upgrades

Upgrading a server instance in the SDP frameworKk is a simple process involving a few steps.

* Download the new p4 and p4d executables from ftp.perforce.com and place them in
c:\p4\common\bin

* Run c:\p4\common\bin\upgrade.ps1 <instance>, e.g.

powershell -f c:\p4\common\bin\upgrade.ps1 1

a If upgrading a pre-2013.3 server, then this will require a checkpoint restore and
the script cannot be used. Contact Perforce Support if in doubt.

5.1.1. Database Modifications

Occasionally modifications are made to the Perforce database. For example, server upgrades and
some recovery procedures modify the database.

When upgrading the server, replaying a journal patch, or performing any activity that modifies the
db.* files, you must restart the offline checkpoint process so that the files in the offline_db directory
match the ones in the live server directory. The easiest way to restart the offline checkpoint process
is to run the live-checkpoint script after modifying the db.* files, as follows:

powershell -f C:\p4\common\bin\live-checkpoint.ps1 <instance>

E.g.
powershell -f C:\p4\common\bin\live-checkpoint.ps1 1

This script makes a new checkpoint of the modified database files in the live root directory, then
recovers that checkpoint to the offline_db directory so that both directories are in sync. This script
can also be used anytime to create a checkpoint of the live database.

This command must be run when an error occurs during offline checkpointing. It restarts the
offline checkpoint process from the live database files to bring the offline copy back in sync. If the

© 2010-2020 Perforce Software, Inc. 31

ftp://ftp.perforce.com/perforce

32 of 51 - Chapter 5. Server Maintenance

live checkpoint script fails, contact Perforce Consulting at consulting@perforce.com.

5.1.2. Unloading and Reloading labels

Archiving labels is a best practice for large installations, with hundreds of users and Perforce
checkpoints that are gigabytes in size. Smaller sites need not necessarily concern themselves with
archiving labels to maintain performance, though doing so will minimize database size if labels are
used extensively.

To use the p4 unload and p4 reload commands for archiving clients and labels, you must first create
an unload depot using the p4 depot command. Run:

p4 depot unload

Set the type of the depot to unload and save the form.

After the depot is created, you can use the following command to archive all the clients and labels
that have been accessed since the given date:

p4 unload -f -L -z -a -d <date>

For example, to unload all clients and labels that haven’t been accessed since Jan. 1, 2019, you
would run:

p4 unload -f -L -z -a -d 2019/01/01

Users can reload their own clients/labels using the reload command. They can run:
p4 reload -c <clientname>

or
p4 reload -1 <labelname>

As a super user, you can reload and unloaded item by adding the -f flag to the reload command as
follows:

p4 reload -f -c|1 <specname>

In addition, you can avoid having to unload/reload labels by creating a trigger to set the autoreload
option as the default on all new labels. That will cause the server to use the unload depot for storing
the labels rather than storing them in db.label. This helps with performance of the server by not
increasing the size of the database for label storage.

32 © 2010-2020 Perforce Software, Inc.

mailto:consulting@perforce.com

Chapter 5. Server Maintenance - 33 of 51

You can automate these tasks with $SDP/Maintenance/unload_clients.py = and
$SDP/Maintenance/unload_labels.py

5.1.3. Workspace management

The simplest option is to use create a template client workspace (usual name is template.client)
and then set configurable template.client to that name. This will mean that all new client
workspaces created after that time will have the same options and view, unless otherwise explicitly
updated.

p4 client template.client [edit and save]

p4 confiqgure set template.client=template.client

Alternatively the old fashioned way is to install a trigger from the Unsupported/Samples/triggers
folder.

The form-out trigger $SDP/Unsupported/Sample/triggers/SetWsOptions.py contains default
workspace options, such as leaveunchanged instead of submitunchanged.

To use the trigger, first copy it to /p4/common/bin/triggers

To enable the trigger, first modify the OPTIONS variable in the script, providing the set of desired
options. Then insert an entry in the trigger table like the following:

setwsopts form-out client "python /p4/common/bin/triggers/SetWsOptions.py %formfile%"

The form-save trigger $SDP/Server/common/p4/common/bin/triggers/PreventWsNonAscii.py
enforces the policy that no workspaces may contain non-ASCII characters.

To use the trigger, first copy it to /p4/common/bin/triggers

To enable the trigger, insert an entry in the trigger table like the following:

nowsascii form-save client "python /p4/common/bin/triggers/PreventWsNonAscii.py
%formfile%"

5.1.4. Removing empty changelists

To delete empty pending changelists, run python remove_empty_pending_changes.py.

© 2010-2020 Perforce Software, Inc. 33

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/scripting.triggers.basics.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_client.html#p4_client
http://www.perforce.com/perforce/doc.current/manuals/p4sag/06_scripting.html#1062348

34 of 51 - Chapter 6. Maximizing Server Performance
Chapter 6. Maximizing Server Performance

The following sections provide some guidelines for maximizing the performance of the Perforce
Server, using tools provided by the SDP. More information on this topic can be found in the
Knowledge Base.

6.1. Optimizing the database files

The Perforce Server’s database is composed of b-tree files. The server does not fully rebalance and
compress them during normal operation. To optimize the files, you must checkpoint and restore the
server. The weekly checkpoint script used as part of the normal server maintenance automates this
task.

To minimize the size of back up files and maximize server performance, minimize the size of the
db.have and db.label files. The scripts described in Unloading and Reloading labels, Deleting users,
and

6.2. Managing server load

6.2.1. Limiting large requests

To prevent large requests from overwhelming the server, you can limit the amount of data and
time allowed per query by setting the maxresults, maxscanrows and maxlocktime parameters to
the lowest setting that does not interfere with normal daily activities. As a good starting point, set
maxscanrows to maxresults * 3; set maxresults to slightly larger than the maximum number of files
the users need to be able to sync to do their work; and set maxlocktime to 30000 milliseconds. These
values must be adjusted up as the size of your server and the number of revisions of the files grow.
To simplify administration, assign limits to groups rather than individual users.

To prevent users from inadvertently accessing large numbers of files, define their client view to be
as narrow as possible, considering the requirements of their work. Similarly, limit users' access in
the protections table to the smallest number of directories that are required for them to do their
job.

Finally, keep triggers simple. Complex triggers increase load on the server.

6.2.2. Offloading remote syncs

For remote users who need to sync large numbers of files, Perforce offers a proxy server. P4P, the
Perforce Proxy, is run on a machine that is on the remote users' local network. The Perforce Proxy
caches file revisions, serving them to the remote users and diverting that load from the main
server.

P4P is included in the Windows installer.

P4P does not require special hardware because it doesn’t use much processing power, and it
doesn’t need to be backed up. If the P4P instance isn’t working, users can switch their port back to
the main server and continue V\mrking until the instance of P4P is fixed

34 © 2010-2020 Perforce Software, Inc.

https://community.perforce.com/s/article/2529
http://perforce.com/perforce/doc.current/manuals/p4sag/09_p4p.html#1056059

Chapter 6. Maximizing Server Performance - 35 of 51

6.3. P4V performance settings

At large sites with hundreds or thousands of simultaneous users, the P4V data retrieval settings can
help prevent P4V requests from impacting server performance. As of the 2010.1 release, P4V
settings that affect performance can be centrally managed for all users or specific groups of users,
using the JavaScript API (P4]sApi).

The SDP includes a sample P4V settings file, along with the P4JsApi centralsettings file that enables
it. These files are located in //Perforce/sdp/JsApi.

Follow these steps to provide P4V performance settings for your users.

1. Determine whether you want P4V settings common to all users, or different settings for
different groups. If the latter, make a unique copy of //Perforce/sdp/JsApi/p4vsettings.xml for
each group of users. For example, you may create //Perforce/sdp/JsApi/p4vsettings_dev.xml for
developers and //Perforce/sdp/JsApi/p4vsettings_qga.xml for QA.

2. Review and set the performance limits in //Perforce/sdp/JsApi/p4vsettings.xml, or in each copy
of this file. (The file contains suggested default values.) The available settings are:

a. The ServerRefresh interval in minutes, which defines how often P4V attempts to get updated
information from the server.

b. The MaxFiles that P4V will retrieve for one fetch command.
¢. The MaxFilePreviewSize in kilobytes.
d. The FetchCount, which affects the number of forms fetched for some operations.

3. If using common settings for all users, proceed with this step; otherwise proceed to the next
step. Install the centralsettings file by adding a line to the protections table like:

list group All.G centralsettings //Perforce/sdp/JsApi/centralsettings.js

(This line assumes that you have a group called All.G that represents all users.)

4. (Skip this step if using common settings for all users.) If using different settings for different
groups, create a copy of //Perforce/sdp/JsApi/centralsettings.js for each group of users. For
example, you may create //Perforce/sdp/JsApi/centralsettings_dev.js for developers and
//Perforce/sdp/JsApi/centralsettings_qa.js for QA. Modify the line that references p4vsettings.xml
to reference the copy for the group.

5. (Skip this step if using common settings for all users.) Install each copy of centralsettings.js in
the protections table. In our example with separate copies for developers and QA, we would use
lines like:

list group Dev.G centralsettings //Perforce/sdp/JsApi/centralsettings_dev.js
list group QA.G centralsettings //Perforce/sdp/JsApi/centralsettings_ga.js

6. Each P4V user must follow the instructions in the P4JsApi manual to enable P4V extensions.

© 2010-2020 Perforce Software, Inc. 35

http://www.perforce.com/perforce/doc.current/manuals/p4jsapi/index.html

36 of 51 - Chapter 6. Maximizing Server Performance

Of course, the P4JsApi provides many other valuable features. If you choose to use these features,
you can use the same centralsettings files for your groups to enable them. Refer to the P4JsApi
manual for details.

36 © 2010-2020 Perforce Software, Inc.

Chapter 7. Tools and Scripts - 37 of 51

Chapter 7. Tools and Scripts

This section describes the various scripts and files provided as part of the SDP package on
Windows.

Scripts are located typically in the following directory unless otherwise specified:
c:\p4\common\bin

The following sections describe the scripts in detail.

7.1. Standard scripts

The scripts are implemented in Powershell, and usually have a simple .bat wrapper script. Note
that for historical reasons there will often be 2 versions of the .bat which both call the same
underlying Powershell script. For example, one uses '-' and one '_' as separators:

daily-backup.bat
daily_backup.bat

Both are effectively identical and call the same Powershell script like this:
powershell -file c:\p4\common\bin\daily-backup.ps1 %1

In the sub-sections below we refer to the .ps1 scripts. Please assume the .bat calling wrappers are
present.

7.2. Core scripts

7.2.1. daily-backup.ps1

This script is configured to run seven days a week using the Windows scheduler. The script
truncates the journal, replays it into the offline_db directory, creates a new checkpoint from the
resulting database files, then recreates the offline_db directory from the new checkpoint.

This procedure rebalances and compresses the database files in the offline_db directory. These can
be rotated into the live database directory on an occasional (e.g. monthly) basis using Section 7.3.7,
“recreate-live-from-offline-db.ps1”.

© 2010-2020 Perforce Software, Inc. 37

../Server/Windows/p4/common/bin/daily-backup.ps1

38 of 51 - Chapter 7. Tools and Scripts
Usage

<#
.Synopsis
Daily_Backup.ps1 performs journal rotation to offline database and creates
offline checkpoint

.Description
Admin access is required.
Also recovers from the offline checkpoint to ensure that it is good, and that
offline
DB files are unfragmented.

.Parameter sdp-instance
The specified instance to backup

.Example
daily_backup.ps1 Master

.Example
daily_backup.ps1 1
>
7.2.2. pAverify.psl

This script verifies the integrity of the depot files. This script is run by Windows scheduler, usually
on a weekly basis, e.g. Saturday morning. It emails the resulting report - please check for any errors
contained.

o for larger repositories this can take many hours to run, and places some load on
the server. Run it at the weekends when this is less of a problem.

38 © 2010-2020 Perforce Software, Inc.

../Server/Windows/p4/common/bin/p4verify.ps1

Chapter 7. Tools and Scripts - 39 of 51
Usage

<#
.Synopsis
pdverify.ps1 performs p4d archive verification on all appropriate depots

.Description
Runs "p4 verify -qz //depot/..." as appropriate to the depot type.
For replicas it adds the "-t" flag to transfer missing revisions.
Sends an error message with errors if BAD! or MISSING! is found in the output.

.Parameter sdp-instance
The specified SDP instance to verify

.Example
pdverify.ps1 Master

.Example
pdverify.psl 1
>

7.3. Other scripts and tools

7.3.1. create-filtered-edge-checkpoint.ps1

This script creates a checkpoint from the offline_db files, filtered for use with an edge server. Note
restrictions below.

See also partner script Section 7.3.6, “recover-edge.ps1” which replays the checkpoint on the edge
server machine.

© 2010-2020 Perforce Software, Inc. 39

../Server/Windows/p4/common/bin/create-filtered-edge-checkpoint.ps1

40 of 51 - Chapter 7. Tools and Scripts
Usage

<#
.Synopsis
Creates a filtered edge checkpoint from a master offline database.
The resulting checkpoint can be copied to the remote edge server
and restored using recover-edge.ps1

.Description
Create filtered checkpoint using the server spec (output of
'p4 server -o', and in particular the fields RevisionDataFilter:
and ArchiveDataFilter: which specify filtering).

IMPORTANT NOTE:

Because this uses the offline database, you can not just edit an
existing server spec to change the filter and have it picked up by
this script.

After changing the server spec for the live server, you must ensure that the
metadata

changes are reflected in the offline_db - which is easy to do by

running daily-backup.ps1 as normal (this rotates the journal and

applies it to offline_db).

Alternatively you can wait until the following day to run this
script, by which time a scheduled daily backup should have run!

Output of this script:

A gzipped (filtered) checkpoint file, reflecting the name of the
current instance. E.g. if current instance is Master, then result
will be c:\p4\Master\checkpoints\p4_Master.ckp.filtered-edge.193.gz
where 193 1is the latest numbered checkpoint in that directory.

.Parameter SDPInstance
The specified instance to process, e.g. 1 or Master

.Parameter EdgeServer
The specified id of edge server (a server spec visible in output of

'p4 servers' command).

.Example
create-filtered-edge-checkpoint.ps1 Master Edge-server

#>

7.3.2. create-offline-db-from-checkpoint.ps1

This script recreates offline db from the latest checkpoint found.

40 © 2010-2020 Perforce Software, Inc.

../Server/Windows/p4/common/bin/create-offline-db-from-checkpoint.ps1

Chapter 7. Tools and Scripts - 41 of 51
Usage

<#
.Synopsis
Create-offline-db-from-checkpoint.ps1 recreates offline_db using latest
checkpoint found.

.Description

This script recreates offline_db files from the latest checkpoint. If it
fails, then

check to see if the most recent checkpoint in the c:\p4\<INSTANCE>\checkpoints
directory is

bad (ie doesn't look like the right size compared to the others), and if so,
delete it

and rerun this script. If the error you are getting is that the journal replay
failed,

then the only option is to run live-checkpoint.ps1 script (which locks
database while

it runs).

.Parameter sdp-instance
The specified instance to process

.Example
Create-offline-db-from-checkpoint.ps1 Master

.Example
Create-offline-db-from-checkpoint.ps1 1
#>
7.3.3. grep.exe

Windows version of Unix grep command. Useful for searching inside files.

There is a Windows equivalent which is findstr (although not as powerful).

7.3.4. gzip.exe

Windows version of Unix gzip command - useful for checkpoint (de)compression.

7.3.5. live-checkpoint.ps1

This script stops the server, creates a checkpoint from the live database files, recovers from that
checkpoint to rebalance and compress the files, then recovers the checkpoint in the offline_db
directory to ensure that the database files are optimized.

Run this script when creating the server and if an error occurs while replaying a journal during the
off-line checkpoint process.

© 2010-2020 Perforce Software, Inc. 41

../Server/Windows/p4/common/bin/live-checkpoint.ps1

42 of 51 - Chapter 7. Tools and Scripts
Usage

<#
.Synopsis
Live_checkpoint.ps1 checkpoints the live database and creates offline
checkpoint

.Description
Admin access is required.
This will lock the database for the duration which can be hours for large
repositories!

.Parameter sdp-instance
The specified instance to checkpoint

.Example
live_checkpoint.ps1 Master

.Example

live_checkpoint.ps1 1
>

7.3.6. recover-edge.psl

This script recreates an edge server from create-filtered-edge-checkpoint, maintaining local data
such as workspaces (in edge specific db.have table) plus the other 6+ edge tables.

Partner script to Section 7.3.1, “create-filtered-edge-checkpoint.ps1”

42 © 2010-2020 Perforce Software, Inc.

../Server/Windows/p4/common/bin/recover-edge.ps1

Chapter 7. Tools and Scripts - 43 of 51
Usage

<#
.Synopsis
Recovers an edge server from specified Master checkpoint (which may be
filtered)
Particularly intended for use with filtered edge servers, but handles an
unfiltered edge server too.

.Description
Recover the edge server from the latest commit server checkpoint, while
keeping
any local edge server specific state such as db.have/db.working etc.

The normal expectation is that you will use a checkpoint created by the
script create-filtered-edge-checkpoint.psi

If you want the edge server to be filtered, then you MUST use that script.
If you just use the latest Master/Commit server checkpoint as input, then
the edge will be assumed to be unfiltered - this script will still work.

NOTE:
This script will stop and restart the edge server while it is running - so
it will be unavailable for periods while this script is running.

This script also resets the offline_db directory for the edge server.

.Parameter SDPInstance
The specified instance to process

.Parameter CkpFile
The specified (master/commit server) checkpoint file to recover from
(assumed to be gzipped).

.Example
recover-edge.ps1 Edgel p4_1.ckp.filtered-edge.1234.9z

Will recover for SDP instance Edgel.

#>

7.3.7. recreate-live-from-offline-db.ps1

This script can be scheduled to run every few months - it used to be run weekly, but that is no
longer best practice since database files are not fragmented as they used to be. It will move the db.*
files from offline to live root (so requires stopping the service).

© 2010-2020 Perforce Software, Inc. 43

../Server/Windows/p4/common/bin/recreate-live-from-offline-db.ps1

44 of 51 - Chapter 7. Tools and Scripts
Usage

<#
.Synopsis
Recreate-live-from-offline-db.ps1 updates the offline database and then swaps
it over to
replace the live database.

.Description
Admin access is required.

.Parameter sdp-instance
The specified instance to process

.Example
Recreate-live-from-offline-db.ps1 Master

.Example
Recreate-live-from-offline-db.ps1 1
>

7.3.8. replica-status.psl

This script sends an email with the results of the latest p4 pull -1j. Useful for basic monitoring
services.

Usage

<#
.Synopsis
replica-status.ps1 emails the latest state of the replica status using "p4
pull -1j"

.Description
Normally set up to run once per day.

.Parameter sdp-instance
The specified instance to backup

.Example
replica-status.ps1 Master

.Example
replica-status.ps1 1
>

7.3.9. rotate-log-files.ps1

This script is intended to be run nightly on a replica which may not have any other scheduled tasks

44 © 2010-2020 Perforce Software, Inc.

../Server/Windows/p4/common/bin/replica-status.ps1
../Server/Windows/p4/common/bin/rotate-log-files.ps1

Chapter 7. Tools and Scripts - 45 of 51

running. It ensures that the log files are appropriately rotated and old logs (and journals) are
deleted according the settings of KEEP_CKPS in sdp_config.ini

Usage
<#
.Synopsis
rotate-log-files.ps1 rotates key log files for service.
.Description

Rotates all log files found and zips them.
Useful for replicas which may not otherwise have scheduled tasks set.
For use in Windows Task Scheduler.

.Parameter sdp-instance
The specified SDP instance to verify

.Example
rotate-log-files.ps1 Master

.Example
rotate-log-files.ps1 1
>

7.3.10. SDP-functions.ps1
This script is the main repository of all shared functions used by other scripts.

They each source the file and then call individual functions as required. This is not intended by be
called directly by the user - just sourced by other scripts.

E.g.

Source the SDP Functions shared between scripts

$SDPFunctionsPath = Split-Path -parent $MyInvocation.MyCommand.Path | Join-Path
-childpath "SDP-Functions.ps1"

. $SDPFunctionsPath

It understands how to parse config files, start/stop instances, rotate log files etc.

7.3.11. send-test-email.ps1

This script is useful for debugging the setup of the sending of emails by the various scripts.
It sends a test email using the values found in c:\p4\config\sdp_config.ini

If successful then it shows other script emails will work correctly.

See Section A.2, “Emails not being sent” in Appendix A if having problem:s.

© 2010-2020 Perforce Software, Inc. 45

../Server/Windows/p4/common/bin/SDP-functions.ps1
../Server/Windows/p4/common/bin/send-test-email.ps1

46 of 51 - Chapter 7. Tools and Scripts
7.3.12. svcinst.exe

This is used for the Windows service to:

* start

* stop

* create

* remove
It is vital that you should use this utility rather than net stop p4_1 or other net

o commands. This utility ensures that the service is shut down cleanly, and it will not
timeout.
Usage

C:\p4\common\bin> svcinst.exe
Perforce Service Manager Utility:
SVCINST action [-d] [-n name] [-e exe] [-3]
-d enables debug messages, (use as first flag)

actions - info, create, start, stop, remove
info
-n name Specify the name of the service.
create
-n name Specify the name of the service.
-e exe Specify the executable for the service, required.

-a The service is to be autostart on boot, optional.
start

-n name Specify the name of the service.
stop

-n name Specify the name of the service.
remove

-n name Specify the name of the service.
So example usage would be:

svecinst stop -n p4_1

7.3.13. sync-replica.ps1

This script copies checkpoint files from master to the current replica.

46 © 2010-2020 Perforce Software, Inc.

../Server/Windows/p4/common/bin/sync-replica.ps1

Usage

<#

Chapter 7. Tools and Scripts - 47 of 51

.Synopsis
sync-replica.ps1 copies checkpoint files from master to replica to ensure
that they are local in case of replica reseeding being required.
.Description

Admin access is required.
This script rebuilds the offline_db from the copied most recent checkpoint.

.Parameter sdp-instance

The specified instance to process

.Example

sync-replica.ps1 Master

.Example
sync-replica.ps1 1
>
7.3.14. upgrade.psi1

This script upgrades the p4d.exe and related files (including Windows service p4s.exe), performing
the appropriate -xu to upgraded the database.

Before running this script you should ensure the new versions of p4.exe and p4d.exe have been
downloaded into c:\p4\common\bin

© 2010-2020 Perforce Software, Inc. 47

../Server/Windows/p4/common/bin/upgrade.ps1

48 of 51 - Chapter 7. Tools and Scripts
Usage

<#
.Synopsis
upgrade.ps1 performs upgrades the specified Perforce SDP instance to a new
version of p4d

.Description
Rotates the journal, stops the live service, updates the executable,
updates the offline and root databases, and restarts the service.

REQUIRED: prior to running, download new p4d.exe to c:\p4\common\bin

This script is aware of p4d versions up to 20.1 (so recognised 19.71+ new
db.storage)

.Parameter sdp-instance
The specified SDP instance to upgrade

.Example
upgrade.ps1 Master

.Example

upgrade.ps1 1
>

48 © 2010-2020 Perforce Software, Inc.

Appendix A: Frequently Asked Questions - 49 of 51

Appendix A: Frequently Asked Questions

This appendix lists common questions and problems encountered by SDP users. Do not hesitate to
contact consulting@perforce.com if additional assistance is required.

A.1. Journal out of sequence

This error is encountered when the offline and live databases are no longer in sync, and will cause
the offline checkpoint process to fail. This error can be fixed by running the create-offline-db-from-
checkpoint (or if that doesn’t work then live-checkpoint script - which blocks live server), as
described in Server upgrades.

A.2. Emalils not being sent

The Powershell function send-email in Section 7.3.10, “SDP-functions.ps1” sends SDP emails.

A.2.1. Gmail Less Secure App Access

To send from Gmail, you may need to set the "Less Secure App Access" setting, which is configured
in the gmail account. While logged into the gmail account from which you want the SDP scripts to
send email, go to this URL: https://myaccount.google.com/lesssecureapps

That page should contain a slider button titled Allow less secure apps:. If the value is OFF, slide the
slider button to the right so that it indicates ON.

A.2.2. Implicit and Explicit Settings

Problems have been observed with some SMTP providers. For example on port 465 which is
implicit SSL. There are 2 possibilities:

 explicit SSL - this means that the client first connects to the server using an unsecure channel,
requests that conversations be moved to a secure channel, and then both server and client
switch to a secure connection and the rest of the communication is encrypted. Though this
sounds somewhat lengthy, it’s the standard procedure for setting up an SSL connection (see RFC
2228). Gmail handles explicit SSL without any difficulties, as do many other mail servers;
Gmail’s explicit SSL server runs on port 587.

* implicit SSL - In contrast, implicit SSL drops the SSL negotiation and jumps right into the SSL
connection to begin with. Often, this is done through a connection to a specific port that only
accepts secure connections. There is no official standard for this mode of communication,
though it’s widely implemented; Gmail also handles implicit SSL, this time on port 465.

A.2.3. Explicit SSL

If the server is explicit SSL then the script will just work, e.g. the relevant entries in Section 3.1.5,
“sdp_config.ini”:

© 2010-2020 Perforce Software, Inc. 49

mailto:consulting@perforce.com
https://myaccount.google.com/lesssecureapps

50 of 51 - Appendix A: Frequently Asked Questions

mailhost=smtp.gmail.com
mailhostport=587

A.2.4. Implicit SSL

The easiest solution for implicit SSL is to run a local copy of stunnel which configures a local port
and knows how to talk to the remote server (for example Rackspace, or Gmail).

The relevant section in the example Windows config file:

[gmail-smtp]

client = yes

accept = 127.0.0.1:25
connect = smtp.gmail.com:465
verifyChain = yes

CAfile = ca-certs.pem
checkHost = smtp.gmail.com
0CSPaia = yes

Using the above we can set the relevant entries in Section 3.1.5, “sdp_config.ini”:

mailhost=1ocalhost
mailhostport=25

Since stunnel will forward local port 25 to remote port 465.

50 © 2010-2020 Perforce Software, Inc.

https://www.stunnel.org/
https://www.stunnel.org/config_windows.html

Appendix B: SDP Package Contents and Planning - 51 of 51

Appendix B: SDP Package Contents and
Planning

B.1. Memory and CPU

Maximum performance is obtained if the server has enough memory to keep all of the database
files in memory. Make sure the server has enough memory to cache the db.rev database file and to
prevent the server from paging during user queries.

Below are some approximate guidelines for allocating memory.

* 1.5 kilobyte of RAM per file stored in the server.
* 32 MB of RAM per user.

Use the fastest processors available with the fastest available bus speed. Faster processors with a
lower number of cores provide better performance for Perforce. Quick bursts of computational
speed are more important to Perforce’s performance than the number of processors, but have a
minimum of two processors so that the offline checkpoint and back up processes do not interfere
with your Perforce server.

B.1.1. Monitoring SDP activities

The important SDP maintenance and backup scripts generate email notifications when they
complete.

For further monitoring, you can consider options such as:

* Making the SDP log files available via a password protected HTTP server.

* Directing the SDP notification emails to an automated system that interprets the logs.

© 2010-2020 Perforce Software, Inc. 51

	Perforce Helix Server Deployment Package (for Windows)
	Table of Contents
	Preface
	Chapter 1. Overview
	1.1. Windows SDP vs Unix SDP
	1.2. Downloading SDP

	Chapter 2. Configuring the Perforce Server
	2.1. Volume Layout and Hardware
	2.2. Instance Names

	Chapter 3. Installing the Perforce Server and the SDP
	3.1. Clean Installation
	3.1.1. Pre-requisites
	3.1.2. Configuring Powershell
	3.1.3. Initial setup
	3.1.4. Running Configuration script
	3.1.5. sdp_config.ini
	3.1.6. Installing service(s)
	3.1.7. Start the server to test
	3.1.8. Applying configurables to the server instance
	3.1.9. Configuring the server
	3.1.10. Verifying your server installation
	3.1.11. Scheduling maintenance scripts
	3.1.12. Saving your configuration files in Perforce
	3.1.13. Archiving configuration files
	3.1.14. Configuring a New Instance on an existing machine
	3.1.15. Upgrading an existing (non SDP) Windows installation
	3.1.16. Upgrading an older Windows SDP installation
	3.1.17. Configuring protections, file types, monitoring and security

	3.2. General SDP Usage

	Chapter 4. Backup, Replication, and Recovery
	4.1. Typical Backup Procedure
	4.2. Planning for HA and DR
	4.2.1. Further Resources
	4.2.2. Creating a Failover Replica for Commit or Edge Server
	4.2.3. What is a Failover Replica?
	4.2.4. Mandatory vs Non-mandatory Standbys
	4.2.5. Server host naming conventions
	4.2.6. Pre-requisites for Failover

	4.3. Full One-Way Replication
	4.3.1. Replication Setup

	4.4. Replication Setup Details
	4.5. Recovery Procedures
	4.5.1. Recovering from a checkpoint and journal(s)
	4.5.2. Recovering from a tape backup
	4.5.3. Failover to a replicated standby machine

	Chapter 5. Server Maintenance
	5.1. Server upgrades
	5.1.1. Database Modifications
	5.1.2. Unloading and Reloading labels
	5.1.3. Workspace management
	5.1.4. Removing empty changelists

	Chapter 6. Maximizing Server Performance
	6.1. Optimizing the database files
	6.2. Managing server load
	6.2.1. Limiting large requests
	6.2.2. Offloading remote syncs

	6.3. P4V performance settings

	Chapter 7. Tools and Scripts
	7.1. Standard scripts
	7.2. Core scripts
	7.2.1. daily-backup.ps1
	7.2.2. p4verify.ps1

	7.3. Other scripts and tools
	7.3.1. create-filtered-edge-checkpoint.ps1
	7.3.2. create-offline-db-from-checkpoint.ps1
	7.3.3. grep.exe
	7.3.4. gzip.exe
	7.3.5. live-checkpoint.ps1
	7.3.6. recover-edge.ps1
	7.3.7. recreate-live-from-offline-db.ps1
	7.3.8. replica-status.ps1
	7.3.9. rotate-log-files.ps1
	7.3.10. SDP-functions.ps1
	7.3.11. send-test-email.ps1
	7.3.12. svcinst.exe
	7.3.13. sync-replica.ps1
	7.3.14. upgrade.ps1

	Appendix A: Frequently Asked Questions
	A.1. Journal out of sequence
	A.2. Emails not being sent
	A.2.1. Gmail Less Secure App Access
	A.2.2. Implicit and Explicit Settings
	A.2.3. Explicit SSL
	A.2.4. Implicit SSL

	Appendix B: SDP Package Contents and Planning
	B.1. Memory and CPU
	B.1.1. Monitoring SDP activities

