p4 undo: let's try that again!

The 2016.2 server release sees the arrival of a very long-awaited feature: an "undo" command that rolls submitted changes back in one fell swoop.

#1414787 (Bug #1649) **

 A 'p4 undo' command has been added to simplify the process of

 backing out submitted changes. See 'p4 help undo'.
 undo -- Undo a range of revisions

 p4 undo [-n] [-c changelist#] file[revRange]

 'p4 undo' opens files in order to undo a set of previously submitted

 changes. The 'undone' changes remain a part of the history, but the

 new revisions submitted after 'p4 undo' will reverse their effect.

It has always been possible to undo submitted changes -- the process described in the original Tech Note 14 for backing out a change still works to this day, and later refinements like KB 3474 use the same basic workflow. The historical problem has been that although individual cases are simple enough, in order to have a general purpose solution that accounts for all the possible permutations (different revision actions, head vs non-head, etc) a fairly complex set of scripting is required. In addition, when you perform these actions to undo a change, there is no record in the metadata of what happened, apart from changelist descriptions indicating that this change was performed to undo an earlier change.

The new "p4 undo" command aims to make all of this easier. You provide it with a revision range, and it opens the affected file(s) in such a way as to undo the range you specified, with no extra scripting or guesswork on your part. In addition, records are kept in the metadata indicating which revisions were undone, so the impact of your "undo" operation can be read from the filelog entries.

As a somewhat extreme example of what the new "undo" command can do, here's a file that has been renamed twice and edited a few times along the way (all file content and change descriptions were auto-generated by the itest tool following a very simple script):

//stream/main/undo/C

... #3 change 50632 edit on 2016/09/13 by samwise@luey (text) 'Edit C at line 4.'

... #2 change 50631 edit on 2016/09/13 by samwise@luey (text) 'Edit C at line 3.'

... #1 change 50630 move/add on 2016/09/13 by samwise@luey (text) 'Move B to C.'

... ... moved from //stream/main/undo/B#1,#2

//stream/main/undo/B

... #2 change 50629 edit on 2016/09/13 by samwise@luey (text) 'Edit B at line 2.'

... ... moved into //stream/main/undo/C#1

... #1 change 50628 move/add on 2016/09/13 by samwise@luey (text) 'Move A to B.'

... ... moved from //stream/main/undo/A#1,#2

//stream/main/undo/A

... #2 change 50627 edit on 2016/09/13 by samwise@luey (text) 'Edit A at line 1.'

... ... moved into //stream/main/undo/B#1

... #1 change 50626 add on 2016/09/13 by samwise@luey (text) 'Add A with 10 lines.'

Suppose I want to undo changes 50627 through 50631. Doing this "correctly" means moving C back to A (the name it had prior to change 50627) and doing a merge that will reverse the effects of those changes (meaning I want to remove the edits from lines 1 thru 3, which are changes 50627, 50629, and 50631, but keep the edit at line 4 that was made in change 50632). Doing this in a script would be a major effort, but with "p4 undo" it works like this:

C:\test\local\dvcs\undo>p4 undo @50627,50631

//stream/main/undo/A#3 - opened for move/add

... moved from/undid //stream/main/undo/C#1,#2

... undid //stream/main/undo/B#1,#2

... undid //stream/main/undo/A#2

C:\test\local\dvcs\undo>p4 sync ...

//stream/main/undo/A#3 - is opened and not being changed

... //stream/main/undo/C - must resolve #3 before submitting

//stream/main/undo/C#2 - is opened for move/delete - not changed

C:\test\local\dvcs\undo>p4 resolve -am

c:\test\local\dvcs\undo\A - merging //stream/main/undo/C#3

Diff chunks: 3 yours + 1 theirs + 0 both + 0 conflicting

//samwise-dvcs-1441908758/undo/A - merge from //stream/main/undo/C

C:\test\local\dvcs\undo>p4 diff

==== //stream/main/undo/C#3 - c:\test\local\dvcs\undo\A ====

1c1

< 1: asdf

> 1:

3c3

< 2: asdf

> 2:

5c5

< 3: asdf

> 3:

As the "diff" output shows, the content from lines 1 thru 3 is being undone, and we're submitting this new revision as A (the filename from before the range being undone).

After submit, the undone revision looks like this:

//stream/main/undo/A

... #4 change 50633 move/add on 2016/09/13 by samwise@luey (text) 'undo'

... ... undid //stream/main/undo/A#2

... ... undid //stream/main/undo/B#1,#2

... ... undid //stream/main/undo/C#1,#2

... ... moved from //stream/main/undo/C#1,#3

C:\test\local\dvcs\undo>cat A

1:

1----

2:

2----

3:

3----

4: asdf

The exact changes that were undone are all recorded in the form of integration records, so when "p4 undo" is used to undo changes it's easy to determine after the fact exactly what happened.

Having this specificity in the metadata opens the door for us to do very clever things following an undo operation. For example, suppose we perform a merge:

//stream/main/undo/B

... #3 change 50638 integrate on 2016/09/13 by samwise@luey (text) 'Merge A into B.'

... ... merge from //stream/main/undo/A#2

... #2 change 50637 edit on 2016/09/13 by samwise@luey (text) 'Edit B at line 2.'

... #1 change 50635 branch on 2016/09/13 by samwise@luey (text) 'Branch A into B.'

... ... branch from //stream/main/undo/A#1

and we decide the merge was a bad idea and we want to undo it:

//stream/main/undo/B

... #4 change 50639 integrate on 2016/09/13 by samwise@luey (text) 'Undo B#3.'

... ... undid //stream/main/undo/B#3

As a companion to the "undo" command, 2016.2 includes an experimental undoc flag that tells "integrate" to disregard an "undone" revision as if it had never happened. Normally once a revision is integrated it is not revisited unless you use the "-f" flag, but with the undoc "dm.integ.undo" flag set, you can "undo" an integrate and then do it over again:

C:\test\local\dvcs\undo>p4 integ -n A B

A - all revision(s) already integrated.

C:\test\local\dvcs\undo>p4 configure set dm.integ.undo=1

For server 'any', configuration variable 'dm.integ.undo' set to '1'

C:\test\local\dvcs\undo>p4 integ -n A B

//stream/main/undo/B#4 - integrate from //stream/main/undo/A#2

If this seems like something you might find useful, I'd encourage you to experiment with it and let tech support know how it works for you -- it may make its way into a future release as default behavior if the feedback on it is sufficiently positive.

Keep watching this space for more exciting new features!
