PERFORCE

Version everything.

Advanced Enterprise
SH H Administration for Perforce

Lk__, @] ——]

Introduction PERFORCE

EN

* Introductions
* Class Schedule

* @QUI vs. CLI
* P4Admin Demonstrations

* About the Exercises

PERFORCE

Course Contents

EN

— Advanced Maintenance
— Offline Checkpoints

— Broker

— Replication — Introduction

— Replication — HA/DR, Build Farms, Forwarding Replicas
— Fully Distributed

— Security

— Advanced Tools

— Scripting

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

ARE
‘ N\ I' =
J @_,_/
Advanced Maintenance

H PERFORCE
To p I cs Version everything.

e

* Recover a Stored Spec Revision
* Lazy Copies
* Archive/Restore

PERFORCE

Spec Depot Sudinesailic
h

* Goal
Recover specs such as clients and protection table
Keep history of changes to specs
Identify user who changed a spec

* Implementation
Separate spec depot automatically maintained by Perforce Server
Specs are stored as form files, which can be printed or synced
* Grouped into directories by type, such as client or label

PERFORCE

Spec Depot Usage Serineveniiie
h

* Spec depot stores specs like clients and protection table (not change)
* Tracing of changes by a user

The form data below was edited by bruno
* Optional: controlling which specs are versioned
SpecMap:

//specs/. ..
-//specs/client/build ws_*

Recovering a Stored Spec Revision

SN

PERFORCE

Version everything.

* List revisions in the spec depot
//specs/client/bruno ws.p4s

. #4 default change
. #3 default change
. #2 default change
. #1 default change

edit on 2008/11/01
edit on 2008/11/01
edit on 2008/11/01
add on 2008/11/01

* Display content of revisions

//specs/client/bruno ws.p4s

* Replace spec with earlier version

//specs/client/bruno ws.p4s#3 |

EN

Branching and Lazy Copies

PERFORCE

Version everything.

* Files branched or copied only create metadata entry in the database

— Retain reference to original file location = lazy copy

/ Workspace \

2

/

Database

\

(1
\

\

>

main/file.txt

/ Depot storage \

rell/file.txt

\

/
J

- \ main/file.txt,v
P

\ J

Lazy Copies and Snap iioceile

Ny

//depot/Jam/REL2.0/src/jam.c

lbrFile //depot/Jam/MAIN/src/jam.c
lbrRev 1.30

lbrType text

lbrIsLazy 1

(undocumented)
//depot/Jam/REL2.0/src/jam.c

//depot/Jam/REL2.0/src/jam.c#l -
copy from //depot/Jam/MAIN/src/jam.c 1.30

10

After Snap

PERFORCE

Version everything.

EN

* Files in the depot storage are duplicated

* Useful when cleaning up depots with obliterate

/ Workspace \

2

/

Database

\

(1
\

\

>

main/file.txt

/ Depot storage \

‘>

rell/file.txt

\

J

>

\

main/file.txt,v

rell/file.txt,v

J

11

Archiving and Restoring fakfacerife

* Goal:
Free up space in active depots

Speed up backup and verify
Preserve history

Simple restore

* Implementation:
Separate archive depots (typically located on cheap storage)
Files can be archived and restored at individual revisions

12

Archiving and Restoring fakfacerife

* Binary files not branched can be archived
Requires at least one depot of type archive

Preserves history

archives //assets/...

* Restore files as needed

archives //assets/images/myimage.jpg#3

13

Verify Advanced Options iioceile

° -V (Use with extreme caution).

° -u (Not generally needed on new servers).

* Explain batch mode

* Strategies for big data:
Parallel verify depot by depot
Use replica (see advanced class)
verify #head,#head

14

Archiving — Listing and Purging Sineacite

Files in original depot are marked as archive
//assets/. ..

//assets/images/myimage.gif#l - archive change 865 (ubinary)
List files in archive depot
//archives/. ..

//archives/assets/images/myimage.gif#l

Purge unneeded archived files (cannot be undone)
archives //assets/...Q2012/01/01

15

Exercises PERFORCE

Lab Set E1: Advanced Maintenance

New commands in this chapter (samples):

* p4 archive
e p4 restore

e p4 snap (undoc)

16

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

ARE
Lk\— ‘r- =
l @—,/
Offline Checkpoints

17

H PERFORCE
To p I cs Version everything.

e

* Offline Checkpoints
— Usage
— Upgrades
— Switch offline_db/root

18

Offline Checkpoint fedinceile

* Goal
Checkpoint without any downtime
Easy and fast recovery
Optional: regular database restoration

Restored databases are smaller than original, but contain equivalent
data (Removes empty data pages and rebalances the b-tree indexes)

* Implementation
Separate offline database created from checkpoint
Regular updates through rotated journal

Offline database dumped into checkpoint

19

PERFORCE

Prep Offline Checkpoint — Create Seed Jecin el

=N

p4d -r [/p4/l/root —jc -Z /p4/1l/checkpoints/p4 1

/p4/1/checkpoints

D p4_1.ckp.100.8z D jnl.99

~— [p4/1/root ~\

Database

Live journal

A

\. J

20

PERFORCE

Prep Offline Checkpoint — Apply Seed Gt el

=N

p4d -r [/p4/l/offline db —jr -z /p4/l/checkpoints/p4 1.ckp.100.gz

—— [p4/1/checkpoints

D p4_1.ckp.100.8z D jnl.99

~— [p4/1/root N\ ~— /p4/1/offline_db ~\

Database .. Database
Live journal
11

% || 88

\. J . J/

21

Offline Checkpoint fedinceile

* Nightly:
Truncate journal on live database
/p4/1/root /p4/1/logs/journal /p4/1/checkpoints/p4 1

Restore journal to offline directory
/p4/1/o0ffline db /p4/1/checkpoints/p4 1.3jnl.100

Dump the offline database to make a new checkpoint
/p4/1/o0ffline db /p4/1/checkpoints/p4 1.ckp.101.gz

22

Offline Checkpoint Seineitie

Truncate journal) Restore journal) Dump checkpoint
=33 -Jjr -3d

—— [p4/1/checkpoints

D p4_1.ckp.100.gz D jnl.99 D jnl.100 D p4_1.ckp.101.gz

~— [p4/1/root N\ ~— /p4/1/offline_db ~\

Database .. Database
Live journal
11

% || 88

\. J . J/

23

Recreate Offline Database PERFORCE

* Recreate the offline database from the new checkpoint
/p4/1/offline db/db.*
/p4/1/o0ffline db /p4/1/checkpoints/p4 1l.ckp.101l.gz

24

Switch Offline Database/Root PERFORCE

* Stop the production server

* Rotate the journal

* Replay the journal to the offline_db

* Move /p4/1/root/db.* /p4/1/root/save/
* Move /p4/1/offline_db/db.* /p4/1/root/
* Restart the master server

* Dump a checkpoint from /p4/1/root/save

* Recreate the offline database from the new checkpoint

25

Exercises PERFORCE

* Lab Set E2: Offline Checkpoints

26

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

Lk\— = =
©
NJ@_/%_I_/ Broker

27

P4Broker PERFORCE

Intercepts all incoming Perforce commands

Command handling support:
Redirection
Blocking

Rewriting (undocumented)

Great for notifying users when the server is down for maintenance.

Sometimes used as part of HA/DR strategies to avoid DNS change delay.

28

P4Broker Use Cases PERFORCE

* Policy Customizations
different capabilities than triggers
* Traffic Redirection for Load Distribution
not “load balancing”
* Traffic Redirection for execution of automated failover operations

advanced/custom usage

29

PERFORCE
P e rfo rce B ro ke r Version everything.
P4 Client
/\ /\
N ~_
P4 Client PAD
\/ v
command: opened
{
P4 Client flags =-3;
action =reject;
message = "Not admin";
} 30

Redirection PERFORCE

SN

* Selective — The default setting

Redirection allowed, but after the first command in a session hits the default
server, all others in the same session use the default server and are not
redirected.

* Pedantic — All redirected commands are redirected
Can cause the GUI to not update the icons correctly.

31

Read Only Commands iioceile

SN

* Redirect read only commands to replica servers to offload the master server
* P4Broker can do load balancing

Use the name “random” for the target server in a redirected command
handler.

* http://kb.perforce.com/article/1354 -- Using P4Broker With Replica Servers

* (This particular use case can now be handled with a forwarding replica.)

32

Filter Scripts iioceile

* When the action for a command handler is “filter”:

The broker executes the program or script and performs the action returned
by the program.

* The broker invokes the filter program and passes in all the information about the
command via stdin.

Your filter program must read this data from stdin before performing any
additional processing.

* The filter program responds on stdout with one of the following:
action: PASS/REJECT/REDIRECT/RESPOND

message: Some message for the user

33

- Mechanics: P4Broker Setup fedinceile

* Define an operating server.

* Generate a preliminary broker configuration file.

* Adjust the broker configuration to your needs.

* Set broker config file location.

* Initiate as a Windows service or Unix/Linux daemon.
* Documentation:

Latest Release Broker Notes

Distributing Perforce Manual

34

Exercises PERFORCE

° Lab Set E2: P4Broker

35

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

ARE
‘ N I' =
J @_,_/
Replication - Introduction

36

. Why Replication? fakfacerife

* Disaster Recovery
* Offloading intense server traffic from:
Reports

Builds

* Forwarding Replica (aka Smart Proxy)

* Edge / Commit server architecture (distributed working)

37

Proxy (Review)

PERFORCE

Version everything.

EN

a

User 1

Fast
LAN

Proxy

User 2

Build Server

4

Versioned File
On-Demand
Cache

Slow
WAN

Versioned Files
(Full Set)

38

Perforce Replication - Implementation iioceile

* Server-to-Server replication
Asynchronous based on journal file
Supports both Metadata-only and Full Replication
No need for external scripts, complete solution

* Replica server runs in read-only mode

* Replicas must initially be seeded with a checkpoint (metadata).

Versioned files are required for full replication.

39

Read-Only (Standard) Replica for DR Seineitie

EN

User 1

User 2

Fast

LAN Replica

Build Server

Versioned
Files (Full Set)

WAN

paD | *—D
DB

) (DB

Master

S

Versioned
Files (Full Set)

40

Replication Architecture i

ull

journal

41

p4 pull

PERFORCE

Version everything.

N

Runs as a background task inside the replica

Command Effect

p4 pull Retrieve missing journal entries, then terminate
p4 pull -i <N> Continuously pull every <N> seconds

p4 pull —u Retrieve missing file revisions, then terminate
p4 pull —u -i <N> Continuously pull file revisions

p4 pull -1 List missing file revisions or errors

p4 pull -1 [-j | -s] Replica reporting

Runpull -1 from the command line against the replica to check status

42

How does ‘pull’ keep track? PERFORCE

Version everything.

SN

* state file
Text file normally located in the replica PAROOT directory
journal#/offset
Allows replication to be interrupted
Master server can rotate journal file

Configure journalPrefix if master uses journal prefix for checkpoints

* rdb.lbr database
Binary file located in the replica PAROOT directory

Contains information on missing archive revisions

43

Journal rotation and Prefix PERFORCE

SN

* Master
[-Z2] prefix

Do not use —z, use —Z (uppercase)

* Compresses checkpoint but not rotated journal file
If you use a prefix, use the same prefix for ‘p4 pull’

* Use ‘journalPrefix’ configurable (or pull -J)

* Replica
[prefix] [n]

Journal will be rotated in sync with the master

44

journalPrefix iioceile

* Specify journalPrefix on the master to
Simplify checkpoint and journal rotation

Avoid having to specify ‘p4 pull =J prefix’ in the replica(s)

* Specify journalPrefix in the replica to
Automatically rotate journal to correct location when master rotates
Help to prevent replica running out of disk space

Without journalPrefix, replica will rotate journal in PAROOT

45

Configuration iioceile

2N

* ‘p4 pull’ is designed to be a background process
Started from the replica server
One process for retrieving metadata
Several additional processes to retrieve archive data

* Use ‘p4 configure set’ for named servers
PANAME#variable=value
repl liistatefile=repll state

46

PERFORCE

Version everything.

Prepare in the Master

PANAME=Master

checkpoint

monitor=1

Repl l#monitor=2

Repl 1#P4TARGET=master:1666
Repl 1#P4PORT=repll:1666
Repl 1#P4L0OG=repll log

Repl 2#monitor=2

Repl 2#P4TARGET=master:1666
Repl 2#P4PORT=repl2:1999
Repl 2#P4L0G=repl2 log

restore

PANAME=Repl_1

monitor=1

Repl l#monitor=2

Repl 1#P4TARGET=master:1666
Repl 1#P4PORT=repll:1666
Repl 1#P4LOG=repll log

Repl 2#monitor=2

Repl 2#P4TARGET=master:1666
Repl 2#P4PORT=repl2:1999
Repl 2#P4L0OG=repl2 log

\/

47

PANAME determines which configuration is active

How to set configurations Seinemitie

EN

* Command line flags
* Configure set/cset
* Environment variables

* (On Windows) registry variables

48

Configuration parameters

PERFORCE

Version everything.

S

Parameter Sample Values

PAPORT 1666
PATARGET master:1666
db.replication readonly

|br.replication

readonly/ondemand

serviceUser replica_1
monitor 1

startup.1 pull =i 1[-) prefix]
startup.2 pull —u—il
startup.3 pull—u—i1l

49

Service user PERFORCE

SN

* Replication requires user of type service.
* The service user requires ‘super’ access.
* Add the user to a group (e.g. Automation.G) group with unlimited timeout.

* Onreplica machine login as the service user before starting replication
Define PATICKETS location for the replica

50

Server and serverid

PERFORCE

Version everything.

¢ servername

Creates or updates information
about a server

Currently optional
* except for build servers

Specifies information about a
server such as its type

Displays or sets the serverid

Information is stored in a small
text file server.id

Type Definition

standard Standard Server
replica Replica Server

broker P4Broker

proxy Perforce Proxy
forwarding-replica | Smart Proxy
build-server Build Server

PAAUTH Authentication Server
PACHANGE Change Server

51

Monitoring fakfacerife

. (on replica)
695 R service 72:22:23 pull -i 1
696 R service 72:22:23 pull -u -i 1
697 R service 72:22:23 pull -u -i 1

. (on master, with server=1..3)
rmt-Journal
rmt-FileFetch

52

Active Replication Monitoring e

EN

Run on master, check log on replica

Reports pending transfers

Option —t schedules content transfer of missing/damaged revision

53

PERFORCE

N Checkpointing a Replica Rein e

* Checkpoint against replica is deferred

The 'pull' command will perform the checkpoint at the next
rotation of the journal on the master.

* This keeps replica and master in sync
* Alternative to offline checkpoint
Create metadata-only replica
Rotate journal on master on regular basis

54

Commands on the replica it

2N

* Only read-only commands are allowed
'p4 sync -p', 'p4 print', but not 'p4 sync'

* Clients used against the replica must be created on the master server

Will be replicated across

* Timestamps do not get updated

55

Exercises

PERFORCE

Version everything.

Lab Set E3: Replication

New commands in this chapter:

p4

configure set P4ANAME#var=val
configure show allservers
pull

pull -1 [-j | -s]
journaldbchecksums

verify -t

56

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

ARE
‘ N i' =
J @_,_/
More Replication Options

57

Replicas for HA and DR e

EN

’ All Data
—>Metadata only

WAN

P4D
Master

] e

DBs

N7

Versioned Files on a
Filer (e.g. NFS)

/

Versioned Files

58

Build Farm Server PERFORCE

SN

* Goal
Provide efficient environment for (automated) build/test processes
Build servers have their own db.have table
Reduces load and storage requirements on the master server

* Implementation
Type: build-server
Needs server entry and serverid defined
Clients local to build server need to specify serverlID: field

59

Build Farm — Read-Only Replica

EN

PERFORCE

Version everything.

Build Server 1

Build Server 2

Build Server 3

)

|

Fast
LAN a
:\
— DBs

Replicated DBs

Versioned
Files (Full Set)

(P4DJ

L master

DBs.

Versioned
Files (Full Set)

plus local workspaces (db.have)

60

Configuring build workspaces Seineitie

EN

build-ws-9201
Client:build-ws-9201

ServerID: Replical
View:

‘x/—

61

Forwarding Replica

EN

PERFORCE

Version everything.

LAN a
P4 Client >
-
- DBs
P4 Client

Replicated DBs

Slow

Versioned
Files (Full Set)

DBs

WAN
P4D
]f (master)}

Versioned
Files (Full Set)

62

Forwarding replica = smart proxy Sttt

2N

* Advantages
Metadata is cached locally
Read operations much faster locally
Write commands allowed — but forwarded to main server

* Disadvantages
Backup/recovery of replica

63

Prepare in the Master onideit

Version everything.

e

p4 server Replical

ServerID: Replical

Name: Replical

Type: server

Services: forwarding-replica

-

p4 configure set Replical#irpl. forward.all=1

64

Replica filtering fakfacerife

* To exclude entire tables from a replica:

* Detailed Filtering:

Replical
ServerID: Replical

ClientDataFilter:
-//site2-ws-*

ArchiveDataFilter:
//....c
-//....mp4

IR

65

Exercises PERFORCE

Lab Set E5: Forwarding Replication

66

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

ARE
‘ N i' =
E~_"13 @,—’_/
Fully Distributed (>=2013.2)

67

PERFORCE

Edge/Commit Server Architecture et e

e

Changes and
other metadata

P4 Client

Commit

m

Q
«Q

o

P4 Client

98% Activity

X

tivity

Metadata from Commit
Local Workspace metadata
Archive files

68

Edge/Commit Server Architecture

PERFORCE

Version everything.

EN

2%
Activity

P4 Client

v

P4 Client

49% Activity 49% Activity

v

P4 Client

P4 Client

69

Results PERFORCE

=N

COMMON OPERATIONS WITH AND WITHOUT EDGE
(128MS LATENCY)

70 61

0 56.6

50

40

30

20 8.7 9.8

10 0.9 wmm 0.7 1.8 mm 0.2
0 — — I — —

Sync Revert Integrate Edit

B Direct M Edge

Perforce Lab Benchmarks 70

Edge/Commit Considerations Sineacite

2N

* Edge servers require backup/recovery
* Information is distributed — you may need to interrogate all edge servers

* Forwarding replicas are simpler and address many needs...

71

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

Lk\— = =
©
NJ@_/ED/_,_/ Security

72

Server Security fedinceile

2N

* Server security levels (0-3)
p4 configure set security=3
* Turn off auto user creation
p4 configure set dm.user.noautocreate=2
* Set changelists to restricted by default
p4 configure set defaultChangeType=restricted

73

Connection Protocols ERFOReE

EN

 TCP
Default protocol

* RSH
Starts up the server for each request
Useful for testing and inetd support

* SSL
SSL encrypted connection when using “ss

|,”

prefix

74

RSH connection PERFORCE

2N

* Starts up a server on client request
* No TCP/IP connection to server

Uses stdout/stdin bound to client (with -i option)
* Usage examples:

Sidetrack server (specify different log file)
Test environments (P4Python, P4Ruby, P4Perl)

75

PERFORCE

SSL Encryption o sl
. yp

* 2012.2+ release support SSL encryption
Perforce Server, Perforce Proxy, P4Broker

Requires 2012.2+ client (P4, P4V, ...)
* Consider implications with 3" party integrations
If enabled, all clients require SSL connection.
* Run two P4Ds to offer SSL and non-SSL (one with “ssl:”, one without)
* Client needs fingerprint in its PATRUST file

76

p 4 t ru St PERFORCE

Version everything.
LS

* Client-side command for handling fingerprints
* Uses PATRUST environment variable (default SHome/.p4trust)

Accept the fingerprint

Reject the fingerprint

Force overwriting of the fingerprint

List accepted fingerprints

Delete a fingerprint

77

SSL Setup Seineitie

N

* PA4SSLDIR -> directory with key and certificate
cd $P4ROOT
mkdir ssl # optionally create config.txt
chmod 700 ssl # drwx------
export P4SSLDIR=ssl
p4d -r . -Gc # key and certificate
p4dd -r . -p ssl1l:1667

* Client needs to accept fingerprint
p4 —-p ssl:pdserver:1667 trust -y

78

Phasing-in SSL encryption with P4Broker

PERFORCE

Version everything.

Use P4Broker

P4D runs with SSL encryption enabled

P4Broker itself runs unencrypted

Allows phasing-in of encrypted connections

unencrypted

o
>

R
N

P4 Client

encrypted
€ m— — —)

PAD

79

Exercises PERFORCE

Lab Set E6: Security
New commands in this chapter:

* p4d -Gc
* p4 trust

80

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

AEE
\— i- ,l
l @—,/
Advanced Tools

81

. Advanced Tools iioceile
* perfmerge
> perfsplit
* p4-migrate

* Checkpoint surgery

* Conversions
» ftp://ftp.perforce.com/perforce/tools

82

perfmerge iioceile

2N

* Goal
Merge two Perforce Servers into a single Perforce Server

* Implementation
Perfmerge tool reads both databases
Choice on change merging
* Append
* Intersperse and order in time
* Append with offset

83

PERFORCE

perfsplit St

* Goal
Extract data from a main server with its exact revision history

Split a Perforce Server into two separate Perforce Server

* Implementation
Perfsplit reads directly from an existing Perforce Server
It uses a splitmap to determine which files are split
* Same syntax as the label view map
Only creates metadata, depot files need to be copied separately

84

p4dmigrate iioceile

* Goal
Migrate a Perforce Server from a case-insensitive to a case-sensitive platform

* Implementation
Reads a checkpoint to find case inconsistencies
Generates a case-fix map
Use the map to correct the checkpoint
Once the checkpoint is case-consistent it can be used for migration
Tool can also be used to rename depot paths
Migration from case-sensitive to case-insensitive is not supported

85

N

Checkpoint/Journal Format

PERFORCE

Version everything.

Text file containing journal records
Each record has a type

Checkpoint only has @pv@ entries
Strings are surrounded by @ symbol
Each value record refers to

A database table

The table version

Record | Type

@pv@ | Putvalue =insert
@dv@ | Delete value = delete
@rv@ | Replace value = update
@vv@ | Verify value = select
@ex@ | commit

@mx@ | flush

@nx@ | Journal note

http://www.perforce.com/perforce/doc.current/schema/

86

Log Analysis and Reporting

2N

PERFORCE

Version everything.

Standard Log
Log Analyzer
* Upload your logs
* Download our tools
Track2SQL
Structured Logs
Performance monitoring using the log
Metrics with P4toDB (replication technology)
Discovering overall trends

87

Structured Log Seineitie

=N

Structured Logs Description

1 all All loggable events (commands, errors, audit, etc...)

2 commands Command events (command start, compute, and
end)

3 errors Error events (errors-failed, errors-fatal)

4 audit Audit events (audit, purge)

5 track Command tracking (track-usage, track-rpc, track-db)

6 user User events; one record every time a user runs p4
logappend.

7 events Server events (startup, shutdown, checkpoint,
journal rotation, etc.)

88

Structured Logs iioceile

SN

* Enable specific structured logs with:

p4 configure set serverlog.file.n=logtag.csv
p4 configure set serverlog.maxmb.n=1024

p4 configure set serverlog.retain.n=45

* Enabling all structured logging files can consume considerable space and impact
performance.

* Structured logs are automatically rotated on checkpoint, journal rotation,
exceeding size limit, or when ‘p4 logrotate’ is run.

89

Conclusion PERFORCE

2N

* Database schema is public
* There are tools that can use the checkpoint or the database directly

* Handle with care

* Ask Perforce support or consulting if you are not sure

90

Exercises PERFORCE

Lab Set E7: Structured Logs

New commands in this chapter (samples):
. serverlog.file.n=errors.csv
. serverlog.maxmb.n=30Mb

. serverlog.retain.n=45

91

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

Lk\— = =
@
NJ@_/ED/_,_/ Scripting

92

Preliminary Decisions e

* Uses of scripts
* Choosing the interface
* Setting Environment Variables

* User Authentication

93

Uses of scripts fedinceile

2N

* Reporting tools

* Daemons and recurring processes
* Wrappers for Perforce commands
* Triggers

* Workflow and policy enforcement
* P4V customization (P4JsAPI)

* P4Broker

* Legacy SCM data import

94

Typical workings of a script fedinceile

2N

* Data processing in batches
Retrieve information such as files or changes
Process the data in the script

Potentially update Perforce

* Form handling
Retrieve a form such as a client workspace
Modify the form in the script

Update the form in Perforce

95

Workflow and Policy enforcement FERFORCE

Version everything.

EN

* Triggers
Submit/Shelving triggers
Authentication triggers
Form triggers
Archive triggers

Fix triggers

* P4Broker

Block, redirect or modify commands

96

Choosing the interface iioceile

SN

* Wrap P4 command
Simple solution that will run everywhere
Batch scripting built into the OS and requires no installation
— Requires parsing of output
* APIs
Language-specific integration
Extendable

Performance (reduced connection overhead)

— Requires installation (and/or build/compilation)

97

. API’s Available for Scripting Seineitie
=
* Programming Languages * Derived APIs (C++ APl wrappers)
C++ P4Python
P4Java P4Perl
Perforce Objective-C P4Ruby
Perforce .NET PAPHP

http://www.perforce.com/product/components/apis

98

Wrapping the command line client P4 Sttt

2N

* Command line returns lines of text

-s 13
Change 13 by sknop@alita on 2010/03/02 12:58:51

Branching foo from bar.

Test branch only.

Affected files

//depot/tests/foo#l branch
99

Capture errors, warnings and messages Sttt

2N

* Use -s to precede each output line with “info” or “error”

info: //depot/foo#3 - updating /client/foo
error: Can't clobber writable file /client/foo

exit: 1

100

PERFORCE

N Tagging output: Command line and API Gt el

* Format output by using -ztag

.. client bruno_ws
. Update 1104271684
. Access 1104340062

. etc.

* Perforce APl based on tagged data output

101

Form handling: bypassing an editor iioceile

* Redirect to standard output

* Read from standard input

* Submit without invoking an editor

"Fixed off-by-one error."

* Example: Create a client workspace without invoking an editor

102

Setting the environment for scripts Sttt

2N

* Command line flags
server:1666 script user script ws

* PACONFIG (next slide)

* Environment and registry variables

* Recommendation:
Use PACONFIG
Set PACONFIG in the scripts to make sure it is set in the environment

This will keep scripts independent of Perforce Server and location

103

PACONFIG et

* PACONFIG points to a file name
=P4Config. txt

=/p4/scripts/.pdconfig

* File usually located in the workspace root or scripts folder

* File contains the Perforce variables
P4PORT=server:1666
P4CLIENT=script ws

P4A4USER=script user

104

User authentication for scripts it

2N

Works for all Perforce Server security levels

Works if Perforce is integrated with AD
Works if Perforce is integrated with SSO

* Either: Store password in local (hidden/restricted access) file

* Or: Use ever-lasting ticket (ideally with separate PATICKETS file)

105

N Use a group to extend session e

scripts
Group: scripts
MaxResults: 1000000
Maxscanrows: 5000000
MaxLockTime: 30000
Timeout: unlimited
Subgroups:
Owners:

bruno

Users:

script user

PATICKETS A

* PATICKETS points to a ticket file

* Important when scripts may be run as a different user (default value is home
directory which is different per user)

* This will provide safety from someone accidently logging out a script user
Beware of

* Invalidates all tickets for this user

107

Scripts and protection table it

2N

* Guard Server-local script users through protection table
* Prevents access from any other client machine

Protections:
super group scripts 127.0.0.1 //...

108

Spoof a user Seineitie

EN

* As super user only

Creates a local ticket (beware: overwrites PAPASSWD registry entry)

Does not prompt for password

Useful for import scripts, triggers, ...

109

Exercises PERFORCE

Lab Set E8: Basic command automation

110

PERFORCE

Version everything.

Advanced Enterprise
SH Administration for Perforce

ARE
‘ N T =
J @_,_/
Scripting — Language wrappers

Derived APIs

111

Derived APIs introduction iioceile
* P4Perl

* P4Python

* P4Ruby

* P4PHP

* Thin layer on top of the C++ API — language specific

* Faster and easier to use than command line wrappers
Same commands as if run from the command line ...
... but with built-in parsing

Compatible with newer versions of the server

112

Derived APIs PERFORCE

* Each API defines a P4 class

III

* Interface is “identical” for all four products

* Build from source code

* Released together with Perforce Server
* Get version string via ,
Rev. PAPYTHON/LINUX26X86 _64/2011.1/284414 (2011.1/284414 API) (2011/01/28).

113

Example (P4Python)

PERFORCE

Version everything.

from future import print function
import P4

p4 = P4.P4()

p4.port = "1666"

p4.connect ()

for user in p4.run("users"):

print ("Hello %s" % user["User'"])

Python 2/3 compatibility

Automatic if script exits

Hello Anna_Schmidt
Hello Aruna_Gupta
Hello bruno

Hello dai

Etc...

114

Using Language-specific output S emstin

EN

* Create Python dictionary object

* Create Ruby dictionary object

* Create PHP dictionary object

115

N Sample Python Script and p4 -G Output fedinceile

#!/usr/bin/env python
#Example script named readmarshal.py

import marshal, sys
try:
while True:
vars = marshal.load(sys.stdin)
print vars
except EOFError:
''" #note that these are two single-quotes

raj | readmarshal.py
{'Email': 'raj@pd4demo.com', 'Update': '2005/12/06 11:16:30', 'Reviewsl':
'//depot/dev/main/...', 'Reviews0': '//depot/www/...', 'FullName': 'Raj
Bai', 'User': 'raj', 'code': 'stat', 'Access': '2006/07/06 15:16:30'}

N Sample Ruby script and p4 -R output it

Example script named readruby.rb
f = IO0.popen("p4 -R user -o " + ARGV[O0])
user info = Marshal.load(f)

p user_ info

readruby.rb bruno

{"code"=>"stat", "User"=>"bruno",
"Email"=>"bruno@p4demo.com",

"FullName"=>"Bruno Batswan"}

117

PERFORCE

Installing and Invoking the API i aenilie.

* Distributed in source code
Needs P4API| (C++ interface) to compile
Follow the release notes to build and install
* Windows binaries on Perforce website
32/64 bit and language version dependent
* Python2.6,2.7,3.1-34
* Ruby1.8,1.9, 2.0
* Perl5.6-5.18

* Once installed, import the P4 module into your script (language specific)

118

P4 Object

PERFORCE

Version everything.

Needs to be created first

* Represents a connection to the server
method establishes connection

Connection stays open until

Central method is
Returns arrays of strings or dictionaries
Errors and Warnings become exceptions (if supported)

Environment can be defined via attributes
port, user, client ...

119

Environment settings fakfacerife

Derived APIs pick up connection parameters from the environment

Usual order of precedence applies:
Directly defined attributes

PACONFIG
Environment variables, registry, defaults
* Attribute (read only)

Most attributes can be overwritten

120

Attributes (Type String) e

Name Description

N

port P4APORT

user P4AUSER

client PACLIENT

charset PACHARSET

host P4HOST

cwd Current working directory

password PAPASSWD

ticket_file PATICKETS

prog The name of the application (monitor and log)
version The version of the application (monitor and log)

P4Perl: use SetXxx() and GetXxx(), respectively

121

Attributes (Type Integer)

PERFORCE

Version everything.

=N

Name Description

api_level Lock output format to specific client level

tagged Whether to use tagged output (explained later)
maxresults Overrides maxresults from group spec
maxscanrows Overrides maxscanrows from group spec
maxlocktime Overrides maxlocktime from group spec
exception_level When to throw exceptions (explained later)
server_level Server level (Read only)

debug Debug level for additional output from the script
track Enable tracking of commands

streams Whether to enable streams-specific output (2011.1)

P4Perl: SetApilLevel(), GetApilLevel()

122

Connecting to the Perforce Server S emstin

EN

Need to set PAPORT before connecting
Cannot be changed until disconnected

. establishes connection

Connected until script terminates or ...

¢ closes connection

123

Example (P4Perl)

-~ PERFORCE

Version everything.

use P4;

my $Sp4 = new P4;

Spd->SetPort("1666");
Sp4->Connect () or die ("connect");

for my Suser ($p4->Run("users")) {

print "Hello $user->{ 'User' }\n";

}
Sp4->Disconnect() ;

124

Example (P4Ruby) e

require "P4"

p4 = P4.new

p4.port = "1666"

p4.connect

p4.run("users") .each { |user|
puts "Hello #{user["User"]}"

}

p4.disconnect

125

Example (P4PHP) PERFORCE

Version everything.

<?php

Sp4 = new P4 ();

Spd->port = "1666";

Sp4->connect () ;

foreach ($p4->run("users") as Suser)

print "Hello {$user['User']}";
Sp4->disconnect() ;
?>

126

The Run(command, args) method iioceile

2N

* Argsis a list, not a single string
, hot
* Returns
Array of hash dictionaries (tagged mode)
Array of strings (untagged mode)

* Throws a P4Exception (Python/Ruby/PHP)
Perl has to check errors and warnings

127

Example: P4.run() command

PERFORCE

Version everything.

P4.run("users", "-a", "-I")

U

User

Fullname

antony

Anthony Alpha

Email

anthony@acme.com

Fullname

Bruno Batswan

Email

bruno@acme.com

Fullname

Zig Zichterman

Email

zig@acme.com

128

Error Handling

PERFORCE

Version everything.

PA.exception level determines severity:

Level Name Description
0 RAISE_NONE No exceptions thrown
1 RAISE_ERRORS Only errors are thrown
2 RAISE_ALL Errors and warnings are thrown

Default level is 2 (RAISE_ALL)

P4.errors, P4.warnings and P4.messages

— Attributes of type list (array)

129

Catching exceptions

PERFORCE

Version everything.

N

try: # Python
p4.run("obliterate", "foo")
except P4.P4Exception as e:

print(e)

begin # Ruby
p4.run("obliterate", "foo")
rescue P4Exception => e
p e
end

130

Error Handling and exception_level

PERFORCE

Version everything.

p4.exception level = P4.RAISE ALL
p4.run("sync")

* Exception [Warning]: 'File(s) up-to-date.’

p4.exception level = P4.RAISE ERRORS
p4.run ("sync")

print p4.warnings, p4.messages

* ['File(s) up-to-date.']

* [[Gen:17/Sev:2]: File(s) up-to-date.]

131

Error handling in P4Perl i

if ($p4->ErrorCount()) {
foreach my S$str ($pd->Errors()) {

print ("ERR: Error message: $str \n");

}
elsif ($pd4->WarningCount ()) {
foreach my $str ($p4->Warnings()) {
print ("WARN: Warning messages: $str \n");

132

PERFORCE

Tagged and Untagged mode Gt el

EN

[{'counter': 'change', 'value': '702'}]

['702"']

* Untagged mode is useful for a few commands

or to see differences

133

PERFORCE

Fixing the API level Guiin eiiife

* Client protocol changes for each release
* Server and clients can be updated independently

* Fix the API level if scripts need to rely on server output

* Needs to be set before first connection!

134

Generated and overloaded Run methods — JERFORCE

EN

* Dynamically generated Run methods
Python/Ruby: =>
Perl: =>

* Some of these methods are overloaded:

run_filelog() Returns DepotFile[]

run_login() Takes p4.password as input
run_password(old, new) Sets the password w/o prompting
run_print() Combines print chunks together
run_submit(), run_shelve() Can take change form

Original behaviour with p4.run("command")

135

Details on run_login and run_password

PERFORCE

Version everything.

S

p4

p4.

.password = '"MySecret"

run login() # uses p4.password

.input = "MySecret"

.run("login")

.run password ("MySecret", "Hidden")
.run password("", "FirstPassword")

.run password("OldPassword", "")

136

Special methods for form handling Seineitie

=N

Method Description

fetch_<form> Equivalent to run("<form>", "-0")[0]
save_<form> Equivalent to run("<form>", "-i"") with set input
parse_<form> Parse a text document and convert it into a hash dictionary

format_<form> Format a hash dictionary into a text document

delete_<form> Equivalent to run("<form>", "-d")

* Forms are of type P4.Spec
. Subclass of hash dictionary

* Special access methods for values

137

Form examples (P4Python)

-~ PERFORCE

Version everything.

cl
cl

p4

ch
ch

p4

= p4.fetch client("myws")

._options = \
cl["Options"] .replace ("normdir", "rmdir")
.save_client(cl)

= p4.fetch change()
._description = "My latest changes."

.run_submit (ch)

138

Parse Form examples (P4Python) Seineitie

=N

client = p4d.parse client(clientAsString)
client. options = myDefaultOptions # etc

clientAsString = p4.format client(client)

o This is useful for form triggers

139

Scripting examples Seineitie

EN

* General guidelines

* Submitting changes

* Maintenance (clients, labels)
* Review daemon

* Form manipulation

* Triggers

140

Write efficient scripts iioceile

* Minimize number of p4 commands
* Limit number of lines of data returned
* Narrow scope of commands
Refer to known workspace
Access small groups of depot files

* Use care when referencing labels

141

Minimize number of commands PERFORCE

* Access files in batches by
Change number or label
Dedicated workspace views

* Process files locally

* Update files in batches

142

Limit number of lines returned PERFORCE

* Reporting and other commands support option
clients, labels, branches, streams, changes, users, groups, files, filelog, ...

* Form reporting commands (clients, labels, branches) have a filter option
-e nameFilter
-E case-insensitive

143

Example: Submitting a change fakfacerife

2N

* Retrieve change form from the the server
* Set the description

* Optional: add jobs to complete

* Submit the change

* Optionally: process result
"SubmittedChange" in the submit result

144

2N

Code: Submitting a change

-~ PERFORCE

Version everything.

£

[

if p4.run opened(): # anything to submit
change = p4.fetch change()
change. description = "Script-submit"
change. jobs = ["job012345", "job000001"]

try:

result = p4.run submit (change)
except P4.P4Exception as e:

deal with exception here

process result

145

Example: Delete or unload old workspaces o

* Each form has an Access field
Last time this form was used (sync, edit, ...)

* Timestamp in seconds since epoch

* ldea:
List all client workspaces
Find workspaces with access older than a year

Delete or unload those workspaces

146

Code: Delete or unload old workspaces

PERFORCE

Version everything.

BN

from P4 import P4
from time import time # for current time
pd = P4()
p4.connect ()
for ¢ in p4.run clients():
age = time() - int(c["Access"])
if age > 86400 * 7 * 52: # 52 weeks
p4.delete client("-f", c["client"])
p4.run unload("-f", "-c", c["client"])

p4 .disconnect ()

147

Trigge rs PERFORCE

Version everything.

* Reminder: trigger types
Authentication triggers
Change triggers
Shelve triggers
Form triggers
Fix triggers
Archive triggers
* Triggers are executed on the server machine
Same user and permissions that started the Perforce Server

Need to consider connection parameters and user authentication

148

Trigger examples e

* Authentication trigger

* Submit triggers
Analyze description field
Check case trigger

* Form triggers

Default client workspace settings

* Archive trigger

149

Authentication trigger fakfacerife

2N

* auth_check trigger
* Verify password outside of Perforce (for example, LDAP)

* Example triggers are provided on website

* Provide %username% to user

* Password passed to trigger via stdin

* Trigger exits with 0 = success or 1 = failure

150

Trivial authentication trigger example B et

S

#!/bin/bash

USERNAME=$§1

PASSWORD=secret

read USERPASS # read from stdin

if ["SUSERPASS" = $PASSWORD]
then

exit O
fi

echo checkpass.sh: password S$USERPASS for $USERNAME is incorrect

exit 1

151

Change triggers iioceile

2N

* Most change triggers follow the same pattern:
Receive changelist number
Run p4 describe
Analyze description, file list and jobs
Content-trigger: analyze file content

Accept or reject change

152

Change trigger template iioceile

SN

* Example templates for Python and Ruby on public depot: P4Triggers.(py|rb)
* Change stored in a P4Change instance
* Subclass for your own trigger

Override setUp() and validate() methods

* Use cases:
Check Case Trigger
* Prevent case conflicts on case sensitive Perforce Servers
Check description or jobs
Protect code lines without modifying the protection table

153

Default workspace spec — form-out trigger o

2N

* Provide default settings for workspaces without using a template workspace
* ldea: use a form-out trigger for new workspaces

°* Problems:

How do you identify it is new workspace?

The form-out trigger provides a filename

154

Identify new workspace? i

clientName = sys.argv[1l]

filename = sys.argv[2]

pé4.client = clientName
p4 .connect ()
clientInfo = p4d.run_info() [0] ['clientName']
if clientInfo !'= '*unknown*':
sys.exit(0) # trigger succeeds w/o modification

p4 .disconnect ()

155

Convert file into spec and back e

clientAsString = READFILE (filename)

client = p4d.parse client(clientAsString)
client. options = myDefaultOptions # etc
clientAsString = p4.format client(client)

WRITEFILE (filename, clientAsString)

sys.exit (0)

156

Archive triggers fakfacerife

Required for new file type +X (2009.1 +)

Trigger of type “archive” with 3 arguments
%0p% - read/write/delete
%file% - name of archived file

%rev% - revision of archived file

Provides complete control over the way a file is stored or accessed, for example
Database storage
Offline storage on separate device

. avoids verifying revisions accessed via an archive trigger

157

Conclusion PERFORCE

2N

Choose the right scripting environment
Derived APIs more powerful

Set up the connection and user parameters
Either environment or directly provided

Think about authentication

Daemons and triggers

Script efficiently

158

The End

PERFORCE

Version everything.

S

All Perforce manuals and technical notes are available at
www.perforce.com.

Follow and participate with the Perforce Community and Forums at
www.perforce.com/community

Report problems and get technical help from support@perforce.com.

159

