
Document	ID:	LegacySCM-MigrationStrategies.docx	v1.4	(May	10,	2019)	

Perforce Software, Inc.

510.864.7400

consulting@perforce.com

www.perforce.com

Legacy SCM
Migration Strategies

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 i	

	

Table	of	Contents	
1 Introduction	...	1

2 Migration	Preparation	...	1

2.1 Review	Existing	Branching	Strategy	..	1

2.2 Perforce	Directory	Standard	(PDS)	for	Helix	Core	..	1

2.3 Release	Processes	and	the	PDS	..	2

2.4 Addressing	Intellectual	Property	Concerns	...	2

2.5 Training	..	3

2.6 Perforce	Transition	Team	..	3

3 Import	Strategies	...	3

3.1 Tips	–	Starting	Over	..	4

3.1.1 Starting	Over	-	Pros:	..	4

3.1.2 Starting	Over	-	Cons:	...	4

3.2 Detailed	History	Import	(DHI)	...	4

3.2.1 Pros:	...	5

3.2.2 Cons:	..	5

3.3 Baseline	&	Branch	Import	(BBI)	..	6

3.3.1 Pros:	...	8

3.3.2 Cons:	..	9

	

	

	

	

	 	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 1	

	

1 Introduction
This	document	provides	information	for	planning	a	migration	from	a	legacy	SCM	
system	to	Perforce	Helix	Core.	

We	discuss	preliminary	planning	topics	and	review	a	variety	of	history	import	
strategies.		In	particular,	a	lightweight	migration	strategy	known	as	the	baseline	&	
branch	import	strategy	(BBI)	is	explored	in	detail.		The	BBI	strategy	provides	an	
alternative	to	detailed	history	import	strategies,	which	can	be	complex	due	to	
architectural	and	conceptual	differences	between	Helix	Core	and	your	legacy	SCM	
system.	

Helix	Core	migration	projects	vary	greatly	in	scale	and	complexity.		Small,	simple	
environments	with	basic	migration	requirements	are	typically	migrated	in	about	
eight	business	days,	including	Helix	Core	server	setup	in	accordance	with	best	
practices,	branching	strategy	development,	legacy	SCM	data	migration,	and	training	
for	users	and	administrators.		Large,	complex	environments	may	perform	a	series	of	
migrations	taking	several	man-months	of	effort	that	occur	over	the	course	of	a	year	
or	more,	as	teams	migrate	at	times	convenient	for	them.	

This	document	is	not	intended	to	be	a	replacement	for	an	actual	assessment	of	your	
environment.		An	assessment	would	produce	a	tailored	migration	strategy,	with	
focus	on	those	factors	most	relevant	to	your	environment.	

2 Migration Preparation

2.1 Review Existing Branching Strategy
Early	in	migration	planning,	determine	whether	the	current	branching	strategy	used	
in	your	legacy	system,	if	any,	is	appropriate	to	use	going	forward	with	Helix	Core.		If	
not,	adjust	the	strategy	as	needed	first.		Creating	an	initial	branching	strategy	is	a	
best	practice	when	getting	started	in	Helix	Core	in	any	case.		This	is	especially	the	
case	in	a	migration	scenario	if	any	history	is	to	be	preserved.	

2.2 Perforce Directory Standard (PDS) for Helix Core
With	Perforce	Helix	Core’s	Inter-File™	branching	mechanism,	the	directory	
structure	and	branching	strategy	are	related.		A	well-designed	directory	structure	in	
Helix	Core	is	critical,	because	it:	

• helps	convey	branching	patterns,	
• helps	intuitively	map	change	propagation	paths	for	the	various	flows	of	

change	(e.g.	the	life	of	a	bug	discovered	in	maintenance,	or	the	life	of	a	new	
feature),	and	

• conveys	the	stage	in	the	life	cycle	of	any	particular	piece	of	code	
(experimental,	development,	tested,	formally	released).	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 2	

	

It	is	a	best	practice	to	establish	a	directory	structure	standard	to	establish	the	
directory	structure	and	corresponding	branching	strategy	in	Helix	Core.		This	is	true	
whether	you	are	migrating	from	another	SCM	system	or	starting	new	projects	in	
Helix	Core.	

A	template	for	developing	your	own	directory	structure	standard	is	available	for	
download	here.		You	can	participate	in	discussions	about	the	PDS	on	the	Perforce	
Forums	here.		Contact	Perforce	Consulting	(consulting@peforce.com)	for	further	
information.	

2.3 Release Processes and the PDS
The	directory	structure	in	Perforce	Helix	Core	can	be	thought	of	as	“low”	and	“high”	
levels.		Low	levels	represent	your	software	products	and	can	vary	for	each	software	
product.			High	levels	of	the	directory	structure	convey	branching	structure,	project	
management,	and	software	lifecycle	information.		A	well-designed	high-level	
directory	structure	is	intuitive	for	developers	and	lends	itself	well	to	project	
management	metrics,	policy	enforcement	by	branch	type,	and	automation	of	various	
kinds.	

Migration	to	Helix	Core	typically	involves	defining	a	directory	structure	standard	for	
each	product	imported,	and	in	some	cases	for	the	entire	organization.		A	directory	
structure	standard	encourages	consistency	in	release	processes	for	various	software	
products.		It	can	be	as	flexible	as	needed	to	account	for	the	different	release	
processes	and	branching	patterns	associated	with	various	software	products	in	
Helix	Core.	

For	example,	one	software	product	might	be	a	licensed	software	product,	the	release	
process	for	which	would	define	how	to	maintain	old	releases	and	deliver	patches.		A	
web-based	software	product	operated	in	your	own	data	center	would	follow	a	
different	release	process,	in	which	there	is	little	need	to	maintain	old	releases,	but	
which	must	support	rapid	updates.		Still	another	product	might	be	a	set	of	generic	
components	that	are	delivered	to	customers	and	then	heavily	customized,	perhaps	
by	your	own	professional	services	organization.	

Release	processes	for	different	software	products	may	also	vary	due	to	the	number	
of	contributors	and	the	degree	of	structure	of	QA	processes.		Software	products	can	
follow	the	same	release	process,	even	though	they	might	have	very	different	release	
schedules.	

The	low	levels	of	the	directory	structure	are	left	untouched	by	the	migration,	to	
minimize	the	difficulty	of	performing	the	migration	and	minimize	the	impact	of	the	
migration	to	your	environment	(e.g.	build	scripts,	release	processes	and	tools,	etc.)	

2.4 Addressing Intellectual Property Concerns
Maintaining	IP	provenance	(i.e.,	knowing	where	your	source	code	came	from,	
knowing	what	legal	rights	you	have	to	it)	can	be	a	priority	in	SCM	migration	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 3	

	

scenarios.		From	the	perspective	of	a	migration	process,	your	goal	should	be	to	
ensure	that	IP	provenance	is	not	negatively	affected	by	the	migration.		Your	
migration	processes	should	provide	a	clear	audit	trail	so	that	all	imported	files	can	
be	traced	back	to	the	original	legacy	repository.	

SCM	systems	inherently	store	valuable	intellectual	property.		If	sensitive	
information	is	being	migrated,	both	the	migration	process	and	the	resulting	Helix	
Core	environment	should	ensure	that	access	is	controlled	to	the	same	degree	as	it	
was	in	your	legacy	SCM	system.	

Migrations	provide	an	opportunity	review	access	control	policy.		In	some	cases,	
ensuring	strong	IP	protections	requires	extra	effort,	causing	people	to	wonder	if	
strong	access	controls	really	benefit	the	organization.		In	other	cases,	migrations	
expose	particularly	weak	access	controls,	and	Helix	Core’s	powerful	and	flexible	
access	control	capabilities	can	be	taken	advantage	of	to	provide	a	straightforward	
means	of	guarding	IP	with	relative	ease.	

2.5 Training
Training	for	Helix	Core	users	and	administrators	is	essential	to	help	a	migration	go	
smoothly,	and	to	help	get	the	most	from	Perforce	after	the	migration.		With	respect	
to	scheduling,	we	find	it	most	effective	if	training	for	the	bulk	of	users	occurs	ideally	
a	few	days	prior	to	the	cutover	to	Helix	Core.	

For	information	on	training	options	available	from	Perforce,	see:	
https://www.perforce.com/support/training	

2.6 Perforce Transition Team
We	recommend	establishing	a	transition	team.		This	core	group	may	include	
application	administrators,	system	administrators,	and	other	influential	users.		You	
might	consider	engaging	Perforce	Consulting	to	participate	in	your	transition	team.	

The	transition	team	defines	how	Helix	Core	will	be	used	in	your	organization,	how	it	
will	tie	into	your	various	business	processes	and	workflows,	and	how	it	will	be	
integrated	with	other	systems	such	as	Perforce	Hansoft.	

For	larger	migration	and	more	complex	migrations,	training	for	this	team	should	
occur	early	in	the	planning	process.		This	allows	best	practices	established	by	the	
team	to	evolve,	be	documented	and	proliferated	during	the	training	for	the	larger	
user	community,	which	occurs	later	in	the	migration	process.	

3 Import Strategies
There	are	three	approaches	for	importing	files	into:			

• Starting	over	(tips),	
• Detailed	History	Import	(DHI),	which	can	be	exhaustive	or	selective,	and	the	
• Baseline	&	Branch	Import	(BBI)	strategy.			

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 4	

	

Below	is	an	overview	of	the	strengths	and	limitations	of	each	import	strategy.	

3.1 Tips – Starting Over
This	isn't	really	a	conversion	strategy.		This	approach	is	to	get	the	“tips”	–	the	latest	
file	versions	from	your	legacy	version	control	tool,	and	simply	add	them	to	Helix	
Core,	without	any	history	at	all.	

Based	on	the	organization’s	directory	structure	standard,	a	high	level	directory	is	
identified	in	which	the	files	will	be	stored,	perhaps	something	like:	

	//Eng/Gizmo/MAIN/src	

Here,	“Eng”	is	for	Engineering,	Gizmo	is	a	product	name,	MAIN	indicates	files	in	the	
main	stream	of	development,	and	src	is	the	root	of	the	Low	Level	directory	tree.		The	
Low	Level	directory	tree	is	copied	verbatim	into	Helix	Core.	

The	Tips	approach	is	sometimes	appropriate	for	things	like	documentation	VOBs,	or	
VOBs	for	shelved	(but	not	terminated)	projects.		It	is	usually	not	appropriate	for	
source	code,	except	for	prototype	and	demo	code.	

Even	in	simple	Tips	migrations,	care	must	be	taken	to	ensure	that	file	types	are	
mapped	correctly.		Text,	binary,	and	Unicode	files	should	be	mapped	correctly,	and	
file	type	modifiers	are	applied,	such	as	‘+x’	for	executables,	‘+F’	for	compressed	
binary	formats	like	*.gz	or	*.mpg,	etc.	

3.1.1 Starting Over - Pros:
• It	is	easy.		You	need	only	define	target	directories	in	Helix	Core,	and	then	add	

the	files.	

• It	is	fast.	

3.1.2 Starting Over - Cons:
• No	historical	information	is	available	in	Helix	Core.	

• If	multiple	branches	are	imported,	Helix	Core	won’t	be	able	to	simplify	first-
time	merges	between	the	branches,	as	that	requires	knowing	the	historical	
relationship	among	the	branches.	

3.2 Detailed History Import (DHI)
This	is	the	logical	extreme	case	of	conversion.		The	goal	with	this	approach	is	to	
capture	as	much	legacy	SCM	information	as	practical,	so	that	comprehensive	
historical	research	can	be	done	in	the	new	system,	with	the	old	system	being	taken	
offline	entirely.	

Published	tools	exist	to	import	to	Perforce	Helix	Core	from	Git,	Subversion,	CVS,	
PVCS,	RCS,	Visual	Source	Safe.		Unpublished	DHI	tools	for	migrating	from	some	
other	legacy	systems	exist,	including	IBM	Rational	ClearCase™	--	contact	Perforce	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 5	

	

Consulting	for	details.		Consulting	has	been	involved	in	migrations	from	many	other	
tools.	

In	other	cases,	conversion	tools	can	be	developed	to	extract	legacy	SCM	data	and	
create	roughly	equivalent	Helix	Core	data.		Because	SCM	systems	vary	greatly	in	
architecture,	functionality,	and	what	data	they	store,	there	are	limits	on	exactly	what	
“detailed	history”	can	be	imported.		At	the	very	least,	contents	of	file	versions	at	
each	file	revision,	and	associated	metadata	are	preserved	including	userid	of	the	
submitter,	checkin	comments,	and	timestamp	of	checkin.		More	sophisticated	
approaches	may	also	capture	branching	and	integration	history,	track	renames,	etc.	

3.2.1 Pros:
• Comprehensive	historical	and	“code	forensics”	research	can	be	done	without	

the	benefit	of	the	old	system,	which	can	be	taken	offline	if	necessary.	

• Once	in	Helix	Core,	you	can	use	powerful	Helix	file	and	directory	diff	in	the	
P4V	(visual	client),	the	P4V	Revision	Graph,	and	P4V	Time	Lapse	view	to	see	
your	old	files	in	a	new	light.	

• Helix	Swarm	can	be	used	to	initiate	code	reviews	on	older	code	changes,	even	
those	made	years	ago	in	the	old	system.	

• There	is	increased	benefit	for	systems	integrated	with	version	control.		For	
example,	the	meaning	of	the	linkage	between	a	set	of	files	originally	modified	
in	your	legacy	SCM	and	an	issue	from	your	issue	tracking	system	can	be	
maintained.	

• Once	historical	data	is	in	Helix	Core,	it	will	gain	the	benefit	of	checksum	
verification	of	contents	of	all	revisions,	improving	IP	provenance.		Unlike	
Helix	Core,	most	legacy	SCM	systems	do	not	have	a	way	to	validate	the	
integrity	of	versioned	file	contents	or	metadata	using	checksums.		Corruption	
of	file	contents,	e.g.	due	to	disk	failures,	can	go	undetected1.	

3.2.2 Cons:
• Complexity	of	migrations	translates	into	potential	schedule	and	budget	risks	

if	snags	are	encountered.	

• Hardware	capacity	planning	is	impacted.		Any	SCM	system	with	say	7	years	
of	history	could	be	expected	to	require	more	hardware	(more	disk	space,	
more	RAM,	faster	CPUs	and	I/O	subsystems,	etc.)	than	one	with	no	history.		If	
you	do	a	detailed	import	of	7	years	of	history,	your	fresh	new	system	will	still	

																																																								
1	Often	corruption	of	older,	infrequently	used	file	versions	is	first	detected	when	
migrating	from	legacy	SCM	systems.		Such	scenarios	are	occasionally	encountered	
when	migrating	from	particularly	old	CVS,	Subversion,	and	ClearCase	repositories.	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 6	

	

have	7	years	of	history,	and	will	initially	require	as	much	hardware	as	if	it	
had	it	been	in	operation	for	7	years.	

• Detailed	history	imports	may	require	temporary	allocation	of	powerful	
hardware	to	support	the	migration	effort.		Import	tools	are	not	always	
efficient,	and	have	resource	needs	typically	much	greater	than	a	nominal	
operating	Helix	Core	server	would	require,	sometimes	requiring	massive	
amounts	of	temporary	disk	space	(e.g.	20x	greater	than	the	original	data).	

• Even	proven	detailed	history	import	tools	might	choke	on	your	data	set.		This	
might	be	true	if	the	data	set	is	unusually	large	or	contains	unusual	data	
patterns	or	even	data	corruption.	

• Detailed	history	imports	generate	significant	Helix	Core	metadata,	potentially	
excessive	amounts.	

3.3 Baseline & Branch Import (BBI)
The	baselines	&	branch	import	(BBI)	strategy	provides	a	lightweight	migration	
alternative	that	is	far	more	sophisticated	than	the	simple	Start	Over	approach,	yet	
without	the	technical	complexity,	schedule	and	budget	risks	involved	in	detailed	
history	imports.	

The	baseline	&	branch	import	process	is	a	generic	from-anything-to-Helix	Core	
process,	and	has	been	used	to	migrate	to	Perforce	Helix	Core	from	a	variety	of	SCM	
systems,	including	IBM	Rational	ClearCase®,	Borland	StarTeam®,	Merant	PVCS®,	
Subversion,	CVS,	Microsoft	Visual	Source	Safe,	Microsoft	TFS,	AccuRev,	Perforce	
Surround	SCM,	and	even	unsophisticated	SCM	“systems”	like	a	set	of	network	drives	
with	directories	named	to	indicate	releases.	

With	the	BBI	approach,	the	“interesting	history”	to	be	imported	is	described	in	the	
form	of	a	branch	diagram	that	shows	the	baselines	(snapshots	of	a	directory	
structure	at	a	point	in	time)	and	major	branching	operations.		For	example,	a	
diagram	like	the	following	might	represent	a	software	product:	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 7	

	

	

Figure	1:		Sample	Baseline	&	Branch	Diagram	

	

The	baselines	(blue	dots)	indicate	what	“interesting	versions”	are	to	be	imported.		
The	arrows	indicate	major	branching	operations	–	that	is,	branching	operations	that	
affect	an	entire	branch.			In	this	scenario,	a	2.0-Rel	branch	has	been	created,	and	four	
patches	were	created	on	that	branch.			As	of	the	time	of	cutover	to	Helix	Core,	only	
two	of	those	four	patches	have	been	merged	back	to	MAIN.			The	BBI	process	
imports	all	the	baselines,	records	the	fact	that	the	merges	of	two	patches	were	
completed	with	resulting	updates	to	MAIN,	and	tracks	the	two	unmerged	patches	
remaining	on	the	release	branch.		Once	in	Helix	Core,	its	powerful	integration	engine	
can	be	used	to	complete	those	merges.	

Importing	the	branching	operations	allows	Helix	Core	to	select	common	ancestors	
when	doing	merge	work,	thus	allowing	you	to	pick	up	where	you	left	off	with	
branching	activities,	after	the	cutover	to	Helix	Core.		The	BBI	process	imports	
branching	operations	at	a	high	level,	capturing	the	sum	of	merge	operations.		For	
example,	in	the	diagram	above,	the	arrow	representing	the	merge	of	p2	back	to	
MAIN	would	likely	have	occurred	as	a	series	merges	carried	out	by	several	
developers.		The	individual	file	merges	are	not	tracked,	but	the	sum	of	the	results	of	
the	merge	(file	adds,	edits,	and	deletes)	is	tracked.		The	imported	baseline	
represents	a	point	in	time	when	the	merge	of	p2	is	considered	complete.	

The	intent	is	to	bring	over	just	enough	branching	history	to	answer	key	questions,	
like	“What	did	Release	2.0	look	like?”,	“Where	was	this	file	branched	from?”	and	
“What	files	do	I	need	in	my	workspace	to	start	maintenance	work	on	Release	2.3?”		
The	BBI	approach	preserves	file	contents	at	key	points,	and	preserves	enough	
branching	history	so	that	cutover	to	Helix	Core	can	happen	at	any	point	in	the	
release	cycle,	rather	than	just	at	“convenient”	points	in	the	schedule	(which	tend	to	
be	hard	to	find).	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 8	

	

Thus,	after	conversion,	Helix	Core	would	show	history	of	your	software	product	in	
its	Revision	Graph	tool	that	would	essentially	be	similar	to	what	would	be	shown	
had	development	occurred	in	Helix	Core	to	begin	with.		Detailed	data	is	lost	–	you	
will	know	what	the	state	of	your	product	looked	like	at	Release	1.0	and	Release	2.0,	
for	example,	but	the	details	of	the	many	hundreds	or	thousands	of	checkins	between	
those	baselines	are	discarded,	such	as	the	userid,	date,	time,	checkin	comments,	and	
contents	of	each	incremental	change.	

Baseline	history	diagrams	are	essential	for	planning	a	BBI	migration.		Ideally,	
release	engineers	can	quickly	draw	a	branch	history	picture	that	captures	the	
desired	set	of	baselines	to	import	for	each	software	product	to	be	imported.		These	
diagrams	capture	the	intended	representation	of	history	in	Helix	Core.		In	some	
cases	liberties	may	be	taken	with	actual	history	to	simplify	the	representation	of	
files	as	imported	into	Helix	Core.	

If	it	is	not	the	case	that	diagrams	can	be	extracted	from	the	memory	of	human	
admins,	such	information	can	be	extracted	by	exploring	the	legacy	SCM	system.		
Once	the	baseline	history	diagram	is	drawn	and	vetted	by	key	people,	it	is	translated	
into	a	set	of	Helix	commands	that	replay	the	high-level	history	in	Helix	Core.		The	
first	baseline	will	appear	as	an	initial	addition	of	the	entire	product	directory	tree.		
Subsequent	baselines	result	in	Helix	changelists	that	show	only	the	changes	(files	
added,	deleted,	or	modified)	between	baselines.		Branching	operations	are	
translated	into	Helix	equivalents.			Merges	done	in	the	legacy	SCM	system	are	
recorded	in	such	a	way	that	Helix	Core	honors	the	results	of	the	merges	done	in	the	
original	system.	

If	detailed	historical	research	is	often	needed,	the	legacy	SCM	system	can	be	kept	
online	(perhaps	with	a	single	license).		It	is	a	good	idea	to	keep	the	legacy	SCM	
system	around	for	a	year	or	two	after	a	BBI	migration.	

3.3.1 Pros:
• A	migration	from	multiple	legacy	SCM	systems	used	by	different	teams	is	

straightforward,	with	each	team	going	to	Helix	Core	on	their	own	schedule	
and	without	unduly	impacting	others.		Because	the	BBI	approach	works	
against	a	live,	running	Helix	Core	server	(rather	than	generating	separate	
Helix	Core	server	instances	like	some	detailed	history	import	tools),	the	
project	planning	for	the	various	teams	does	not	require	coordination.		Each	
team	can	migrate	to	Helix	Core	without	impacting	those	already	using	Helix	
Core.	

• “Interesting”	history	is	available	in	Helix	Core.	Once	imported,	you	can	use	
powerful	file	and	directory	diff	tools	in	P4V	(the	visual	client),	the	P4V	
Revision	Graph,	and	P4V	Time	Lapse	view	to	see	your	old	files	in	a	new	light.		
Unlike	the	detailed	imports,	you	won’t	be	able	to	tell	exactly	who	changed	
what,	when,	and	why.		But	you	can	tell	what	how	the	software	product	
evolved	from	baseline	to	baseline.	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 9	

	

• The	BBI	process	is	fairly	straightforward	with	little	risk	of	technical	snags.	

• Compared	to	detailed	options,	this	approach	makes	the	data	migration	aspect	
particularly	easy,	because	all	the	historical	information	can	be	loaded	into	
Helix	at	any	point	in	time	prior	to	cutover.		Then,	on	the	day	of	cutover,	only	
the	baselines	representing	latest	state	of	development	on	active	branches	
need	to	be	brought	into	Helix,	as	all	historical	information	would	already	be	
imported.	

• BBI	runs	very	quickly,	so	throw-away	dry	runs	can	be	done	in	order	to	
develop	and	test	any	source	code	changes	that	may	need	to	be	done	as	part	of	
the	migration,	such	as	updates	to	build	scripts	or	makefiles.	

• The	amount	of	metadata	in	Helix	resulting	from	a	BBI	is	negligible;	it	does	
not	unduly	impact	performance	or	initial	capacity	planning.	

• You	have	the	opportunity	to	normalize	past	history	into	a	new	PDS,	which	
indicates	activities	such	as	creation	of	branches	in	a	consistent	manner.		In	
cases	where	branching	strategies	evolved	over	time	with	the	legacy	SCM	
system	(or	even	over	a	series	of	legacy	SCM	systems),	this	provides	a	chance	
to	simplify	historical	research	of	the	imported	baselines.		With	the	BBI	
approach,	it	can	be	made	so	that	common	concepts	such	as	“software	product	
X	went	to	production”	can	be	indicated	the	same	way	for	each	of	the	
imported	software	products.	

3.3.2 Cons:
• In	cases	where	files	were	renamed	or	directory	structures	reorganized	

between	releases,	the	historical	connection	between	the	files	in	the	old	name	
and	the	new	name	are	difficult	(but	possible)	to	capture.		For	example,	if	a	file	
Hello.c	in	v1.0	of	your	software	product	was	renamed	Greetings.c	in	
v1.1,	the	fact	that	Greetings.c	used	to	be	Hello.c	requires	analysis	of	
your	data	to	detect.		That	historical	linkage	of	the	renaming	is	often	forgone	
in	BBI	migrations.		With	additional	effort	to	identify	refactoring	events	and	
layout	baselines	in	such	a	way	that	from/to	information	is	identified,	
renaming	can	be	captured	properly,	as	opposed	to	simply	showing	a	delete	of	
one	file	and	an	add	of	another	without	the	connection	that	the	two	are	
related.		However,	detecting	and	handling	renames	with	a	BBI	import	
requires	substantial	effort,	and	is	often	impractical.	

• If	your	software	product	is	built	with	complex	component-based	
development	methodologies,	or	otherwise	has	complex	dependencies,	
getting	all	the	required	baselines	imported	to	be	referenced	can	be	a	complex	
challenge.	In	extreme	cases	where	arbitrary	versions	of	other	imported	
software	must	be	referenced,	a	BBI	approach	may	approach	or	surpass	the	
complexity	of	a	DHI	approach.	

	

Copyright	©	2008-2019,	Perforce	Software.		All	rights	reserved.	 10	

	

• If	detailed	history	research	must	be	done,	the	old	SCM	system	must	be	kept	
online	(perhaps	in	read-only	mode,	and	perhaps	with	minimal	“life	support”	
licensing	from	the	vendor).		Over	the	long	term,	the	ability	to	support	or	use	
old	systems	may	diminish	with	staff	turnover.	

	

