
P4Connection

NSPersistentStore

NSEntityDescription
NSPersistentStoreCoordinator

NSManagedObjectContext

NSPersistentStore

NSManagedObjectContext

P4ManagedObjectModel : 
NSManagedObjectModel

NSManagedObjectNSManagedObject

P4ManagedObject : 
NSManagedObject

Adds property "endpoint" 
which indicates what 

command to run on the server 
for this entity

NSEntityDescription
NSEntityDescription

Additional Data in 
the userInfo 
Dictionary for server 
operations.
"operations"
- fetch
- insert
- delete
- update
"route" the path in 
the server

overrides - 
save: - This is to update the server
executeFetchRequest:error: - This is to retrieve items from 
the server
Category Method:
localInstanceOfObject: - copies MO from another store into 
this one

Category method:
to<ServerRepresentation> (for 

sending up to server)
localInstanceInContext: (calls 

the context version of the 
method)

P4FetchRequest : NSFetchRequest
Adds additional data to talk to the server.
Additionally, a way to cancel the request 
and a block to execute when the request 

is finished.

Port

The context first connects to the server and retrieves info and all the spec definitions.
Then it uses the definitions to build an NSManagedObjectModel for all the specs.

P4SpecManager
Generates an NSEntityDescription for a type
Provides translation between a specs field and the numeric fields
Provides the numeric fields for the id of the spec
Used to retrieve a spec
Uses a connection to talk to the server

Client SpecManager

Sends fetch request 
and block for 

asynch callback

Later returns an 
additional fetch 
which includes the 
results of the first.

NSManagedObjectContext

Retrieves current 
list of objects

P4Connection

Fetch from server asynchronously

Returns list from server

Inserts/Updates 
new records

Retrieves current 
list of objects

P4ManagedObject

willAccessValueForKey:

primitive<Key>

[if the value needs to 
be refreshed]
Fetch the value from 
the server

[if there is a value]
Return super implementation

Fetch from server asynchronously
(first check to see if there isn't 
already a request)

Returns properties from server

Updates all properties with
willChangeValueForKey (for all different props)
setPrimitiveValue:forKey: (for all different props)
didChangeValueForKey: (for all different props)

What's the command for that property?

In this example, we use the property name: "client".
Two keys per property. 
- clientPeek
- client

When "clientPeek" is requested, it returns the primitive value of "client" and no server access occurs. 
We use primitiveKey:"client" because it will not invoke willAccessValueForKey: (which causes a server 
request). When "client" is requested, we return the value, but also start a request to the server to update 
the properties. When the request comes back, we emit key updates for "client" and "clientPeek".

In this way, the program can use KVO for the "client" property when it wants to trigger a server request 
and the "Peek" name to merely peek at the value without triggering a server request.

The non-peek versions of the property are what is saved to the store. The "peek" property names are 
transient.

When issuing a predicate to the model, you can specify the standard property names, but that might 
trigger a flurry of requests. You can also use a P4FetchRequest and include a server command-line and 
a block for completion. You might want to issue the fetch request with "peek" properties and the server 
command-line with real properties.

The implementation of the "peek" properties might be to update the Objective-C class at runtime but that 
might be difficult because we (might?) need to know the Class created for the entity. The other possible 
way is to use "valueForUndefinedKey:" to handle peek values.


	Canvas 1

