
1

Tricks and Tools…
A few things a build-guy picked
up along the path…

(There are notes included in the ‘notes pages’ here so that you can
have access to some of the things Jeff said during the talk. But if you
really want more verbiage, don’t forget the conference paper itself,
which is in MS-Word and also in PDF in the Perforce Conference
proceedings.)

This talk was done on 9/14/00 in San Francisco, at the Perforce User’s
Conference, by Jeff Bowles of Piccolo Engineering. You’re welcome to
use the materials and ideas in this talk for your own work, but if you use
it outright please give me credit – including my e-mail address
(“jab@pobox.com”). It might drum up business…

2

Introduction

? Presenting a few nuts-and-bolts
items that might be handy for
others.

? Jeff A. Bowles
Piccolo Engineering, Inc.

We’re presenting here a few simple items that anyone can implement
using Perforce – and some can be implemented using other S.C.M.
systems.

The upshot is that you don’t have to aim for a 12-month project for a
SCM integration, and people really never do. They start with something
simple, that grows as your needs and experience grow.

Here are some of those simple projects that start you along the path…

3

Topics of Discussion

? A versioning mechanism for Java
projects;

? An autobuild mechanism useful as
an example of a “p4 review”
daemon in real-life;

? A short discussion on “should I
check in my binaries?”.

We’ll cover three things:

• A Java build mechanism that makes
java –classpath yourproduct.jar yourproduct.PrintVersion

print out the version string (“label” or “changenum”) for your
product. If you deliver more than one Java archive file (“JAR file”)
you can version them independently.

•Several simple examples of “p4 review” (post-submit trigger)
scripts, including one for propogating changelist information to a
bug database and one for doing autobuilds.

•A discussion on “should I check in my binaries?”. (I try to be
even-handed enough that you cannot tell which side of the
argument I’m on. I was complimented by one person afterwards
who said “you’re for checking in binaries, right?” after the talk,
when – in fact – I’m against it.)

4

Versioning a build
The requirement:
you need to be able to know
what version of the product is
currently running.
The unspoken requirement:
you need to be able to identify
and recreate what is currently
running, or installed, or packaged
onto a disk.

This slide has a slight bit of animation:

•“The requirement…” appears first, then

•“The unspoken requirement” appears.

It reads straight from the slide.

5

Review of ‘mainline’
strategy for codelines

//depot/release1.0/…

125 133127 137129 138 141 142

//depot/main/…

123 128124 130126 132 135 144

//depot/release2.0/…
131 134 136 140 143

So “//depot/release1.0/…@138”
is an immutable designation of a source tree!

This is a straight-forward presentation of the first part of the Perforce
white paper located at

http://www.perforce.com/perforce/bestpractices.html

A summary is:

•You have a ‘main’ codeline.

•Release codelines are branched from that (or from a child of the
main).

•Bug fixes/patches are made in the release line and ALWAYS
integrated to their parent and its parent and so on, up to the
main. (The exception might be “I fixed something in release1.0
but we’ll do it differently in ‘main’ and ‘release2.0’.”)

•You try to avoid sibling/sibling merges when possible, to avoid
the “I fixed it in 1.0 and pushed it to 2.0, but forgot to include it
when we made a 3.0 codeline and now it’s broken again” issue.

I bring this model up to point out that

(codeline, change number)

Describes a source-set in an immutable way. (Assuming you pull down
and build the entire thing!)

6

Xyz.PrintVersion app

? Goal is to run
java –classpath xyz.jar xyz.PrintVersion

? Output is:
PrintVersion:
This is built from the release 1.0 codeline, up to change #138.
The build was run on August 27, 2001 at 12:23.12 AM on machine
jojo.xyz.com.
The compiler used was “ Symantec”.

For more information, you can use the command:
“p4 sync //depot/release1.0/ …@138 ”

to examine the files that build this release – it will bring those files into your
workspace.

Also, you can always use ‘p4 diff2’ to compare later revisions to this, using
the following:

“p4 diff2 file.java file.java@138”

So the goal is to have a Java program embedded into the Java archive
file (“JAR file”) that is a whole lot of “println” statements. Sample output
is above – note how verbose it’s allowed to be.

7

Versioning in Java

? Java source is compiled to .class
files, which are often stored in Java
archive files: JAR files.

? Multiple applications can live in a
JAR file.

? Xyz.jar is an example of such a
pathname.

? Constructing a small custom-app
named xyz.PrintVersion is helpful.

This reads straight from the slide.

8

Xyz.PrintVersion app

? Goal is to run
java –classpath xyz.jar xyz.PrintVersion

? Source [before string expansion]:
package xyz;
public class PrintVersion {

public static String version = “@vers@”;
public static String builddate = “@date@”;
public static string codeline = “@codeln@”;
public static void main(String args[]) {

System.out.println(“version = “ + version);
…

}
}

The stuff that’s substituted (“@vers@”) is something that is really easy
for the build tool “ant” to replace – you can always use ‘sed’ if you’re
using “make”.

For example, the “make” target I used to generate this looked like this:

generated_printversion:

$(MAKEPRINTVERSION) \

iafc/common/default/PrintVersion.template \

-o iafc/common/PrintVersion.java \

-v "$(VER)" -d "$(BUILDDATE)" \

-c "$(JAVAC)“

But a simpler one might be:

generated_printversion:

sed “s/@vers@/$(VER)/” \

< src/PrintVersion.template \

?src/PrintVersion.java

Then you’d make your compiles depend on “generated_printversion”.

9

Getting the data for
Xyz.PrintVersion

? Get change number from
“p4 changes –m1”

specifically, from
p4 changes –m1 -s submitted //depot/codeline/…

? Have make/ant replace a string in
xyz.PrintVersion with the change
number (or label name) during the
build:

make VER=“//depot/release1.0/…@138”

? If “VER” not provided, have make/ant
generate a version string that says

“not an official build!”

Read carefully the stuff about “p4 changes –s submitted” – you need to
make sure that you build what you think you have. The two models
are:

• Build and make a label from “#have”, e.g.
p4 labelsync –l labelname #have

• Make a list of the files (label, changenum) and then

1. Clear the client of any files (“p4 sync #none”)

2. Clear the client of any object/class/generated files (you
will use “rm” or “del /s” here.)

3. Sync to the list (label, changenum) and do the build.

I strongly recommend this second method – it guarantees that you built
what you thought you were supposed to. Fewer surprises.

10

Xyz.PrintVersion…

? Output can be quite verbose if you
like.

? Version/Date info can be stored in
“public data” so other apps have
access to it.

? “anything.jar” contains
“anything.PrintVersion” application.

? Exploits Java rules for how
apps/data is named.

This reads straight from the slide. We could’ve used JAR header utilities
to store the version information, but Java .class files are sometimes
delivered as non-archived trees (in which case no header exists) or
sometimes the .class files are delivered in .ZIP files.

11

Versioning in general…

? Use the language constructs
where possible. (We exploit
package name conventions here.)
We didn’t use “JAR” header
utilities, but could have.

? Use
“p4 changes –m1 –s submitted”
for the codeline you’re building.

? And that’s what you “p4 sync” to.
(Right?)

Reads straight from the slide.

12

13

Using “p4 review” for
fun and profit…

? “p4 review” and “p4 reviews”
? The normal structure of a

“p4 review” daemon
? An autobuild daemon that uses “p4

review”

Here we talk about pre-submit and post-submit triggers. This is a talk
about post-submit mechanisms, but I spend a bit of time reminding
people that:

•“Presubmit” triggers don’t affect data – they mustn’t, because if six (6)
triggers are to be run and the fourth (4th) fails, the first three think
everything is okay. What if they’d updated a database or done
something like sending e-mail saying a change was checked in? That
action would’ve been inappropriate because it failed the check-in after
all.

•“Post-submit triggers” actually aren’t run directly by the server – they’re
scripts that poll the server using “p4 review” and and do anything they
choose including submitting changes and the like.

14

“p4 review” & “p4 counters”
?“p4 review –t XXY” gives a list of all changes
[to current] since ‘counter XXY’ was updated.

? Starts at change #1
? Mainly used as post-submit trigger
? If counter isn’t updated, will produce identical

output each time it’s run
?“p4 counter XXY” prints its value;
?“p4 counter XXY 1126” says “I’ve looked at all
changes through #1126, for counter XXY”.

Brief explanation of “p4 review” and “p4 counter”.

15

“p4 review” output…
Examples of ‘p4 review’ output

p4 review -t notify:
“ Change 1126 jab <jab@jab.steiner> (jab)”
“ Change 1127 mike <mike@office>”

p4 reviews -c 1126:
“jab <jab@pobox.com> (Jeff A. Bowles)”
“jojo <jojo@best.com> (Example acct)”

p4 reviews -c 1127:
(nothing)

Reads from slide. “p4 reviews” uses the “p4 user” information (for each
user) to tell you who will get mail for each change.

16

The structure of a
“p4 review” script…

p4 review -t notify | cut -d’ ‘ -f2 | \
while read chgnum
do

echo Processing change #$chgnum
insert code to “do something” here…

p4 counter notify $chgnum
done

I repeat these words many times: “any post-submit ‘review’ script will
look like this program.”

Here’s the uber-script.

17

The structure of a
“update bugdb” script…

p4 review -t bugdb | cut -d’ ‘ -f2 | \
while read chgnum
do

echo Processing change #$chgnum
perl insert_into_bugdb.pl $chgnum
echo “inserted $chgnum info” > bugdb.log

p4 counter bugdb $chgnum
done

The same script with a slight customization: a different counter, a
different function.

18

The structure of a
“auto-integrate” script…

p4 review –t autointeg| cut -d’ ‘ -f2 | \
while read chg
do

echo Processing change #$chg
(need to) check if release1 files modified
p4 integ –b release1 –r //…@$chg,@$chg
p4 resolve –as
p4 change –o | …… | p4 submit -i
p4 counter autointeg $chg

done

Another different counter for a different function.

You could optimize a bit. For example,
FileList=`p4 files //depot/release1/…@$chgnum,@$chgnum`

[“$FileList” = “”] && continue
(this means “if no files modified in that changelist are part of the
//depot/release1/…, don’t bother auto-integrating this change.”)

19

The structure of a
“mail review” script…

p4 review -t mailnotify | cut -d' ' -f2 | \
while read chgnum
do

echo Processing change #$chgnum
reviewers=`p4 reviews -c $chgnum | \

sed 's/.*<\(.*\)>.*/\1/’ `
p4 describe -s $chgnum | \

Mail -s “change #$chgnum” $reviewers

p4 counter mailnotify $chgnum
done

And if you were writing your own mail notification mechanism, it would
be like this.

However, I wouldn’t bother – the Python one at the Perforce site is more
robust and very good.

20

The structure of a
“autobuild” script…

p4 review -t bldnotify | cut -d' ' -f2 | \
while read chgnum
do

echo Processing change #$chgnum
p4 sync //depot/main/…@$chgnum
make clean ; make > make.log 2>&1
if [$? –eq 0] ; then

p4 counter bldnotify $chgnum
else

cat make.log | \
Mail –s “Build of $chgnum fails” admin

fi
done

A few notes:

•You could optimize a bit. For example,
FileList=`p4 files //depot/main/…@$chgnum,@$chgnum`
[“$FileList” = “”] && continue

(this means “if no files modified in that changelist are part of the
//depot/main/…, don’t bother test-building this change.”)

•The “make clean” is optional. For this test, if you have good
dependencies in the make files (or jam or ant) it’s unnecessary.

•You can be as nasty as you want in the e-mail you generate.

•It’s possible to have two counters: last-tried and last-good-
compile. The model of the script doesn’t change too much to
accommodate that.

21

About
autobuilds…

?The overnight build mechanism
can start from the counter instead
of #head. (Guarantees success).
?You can “batch” the test
compiles, building “the most
recent change” instead of all.
?This mechanism assumes a fast
(5-8 minute) incremental build.
?Send “fail” mail to all of
development identifying culprit.

This reads straight from the slide.

22

23

Should I check in
binaries?
? This is a religious argument that

recurs frequently on perforce-user.
? There is no right answer.
? There is a wrong answer: “think

about it later.”

A very good bit of verbiage is in the paper for this – just go to the
proceedings for this discussion.

24

Requirements (List #1)

? The [official] release must be
reproducible at all times ….

? Developers should be able to create a
working environment;

? Forcing a developer to recompile
needed tools/libraries is acceptable.

25

Requirements (List #2)

? The [official] release must be recreatable at
all times …

? The release itself must be directly stage-able
(“make install”) from the files in the
repository.

? Developers should be able to create a
working environment (for themselves)
immediately;

? Compiling needed tools/libraries is
completely unacceptable.

26

Uhh, what was that, again?

don’t store binaries
because…

? Forcing a developer
to recompile
needed
tools/libraries is
acceptable.

store binaries
because…

? Compiling needed
tools/libraries is
completely
unacceptable.

27

If you don’t store binaries…

PRO
? This is a very

simple model.
? There is never a

question of whether
source in depot
matches the
corresponding
binary.

CON
? The time to rebuild to

create a release or patch
might be prohibitive.

? Developers need to
recompile to do basic
development.

? If the tools (compilers)
change in the build
environment, you have
to be aware of those
updates/changes prior
to making a patch.

28

If you store binaries…

PRO
? It’s fast to recreate

a build area for
building a patch.

? The developers will
love you.

CON
? “Man who has two

watches never knows
what time it is.”

? There’s a space cost on
the Perforce server –
you’re storing much
more.

? The “store one revision
only” filetype will
deliver a new content to
you without your
realizing it, when it’s
changed. (Misleading.)

29

So what to do?

? Think about where to spend the time
when it’s in short supply. Make patches
happen quickly.
? Archive build area,
? Or Store binaries.

? Plan to regress anything rebuilt as part of
a patch.
? This argues to create patch line before

deploying the release
? Track your compiler versions also,

because compilers can have bugs also!

30

Tricks and Tools…
A few things a build-guy picked
up along the path…

