Container-Based SCM
and Inter-File Branching

A Promising Model Meets
A Capable Technology

Laura Wingerd
Perforce Software

Overview

= Container-based software configuration management
— What is it?
— Why is it useful?

= Inter-File Branching
— What is it?
— How is it different from conventional file branching?

= Applying Inter-File Branching to container-based SCM

The complexity problem

« In the real world, nobody makes only one product
— A product is usually composed of many components
— Components are usually products themselves

= A product can be reused and customized for many targets
(customers, platforms, applications)

< Components x targets = many configurations to keep
track of

An analogy i

< Family car trip

— Parents have to know the needs of each child
and pack the car accordingly

— Parents have to keep track of where
everything is in the car

An analogy

= Bus trip for adults

— Each participant gets a trip description, packs aﬁ
accordingly, and shows up for the bus

— Participants make sure their luggage is on
board

%

— Tour guide makes sure
participants are on board i

w.ll!l 9

What is container-based SCM?

< |ndividual configuration items are g
“packed” into containers %

e Containers, not individual items, are tracked and
manipulated ==

W

Properties of SCM containers

< |tems are individually accessible and modifiable

e |tems can be moved between containers

= Containers can contain other containers

= A container’s state identifies the state of each of its items

= A change to an item changes the state of its container

e Containers have the same SCM behaviors as individual items

“Individual 1items” = “files”

< Files are the individual items of SCM

= Files have SCM behaviors that support:
— parallel development
— reproducibility
— defect resolution

SCM behaviors of files

= A file evolves as a sequence of versions

SCM behaviors of files

= A file evolves as a sequence of versions

« A file version identifies a known state of file content and
attributes

10

SCM behaviors of files

11

= A file evolves as a sequence of versions

« A file version identifies a known state of file content and
attributes

= Files have relative locations in a path hierarchy

=

Maaa.

CM behaviors of files

< File versions can be inspected, compared, labeled, and
branched

d el buidunap),

LIET 'mmpil=_oppend[FARS
L15T 'mmpile Mococh] FARIE
LI5T 'compule i FARSE ' poiac
LIET 'mmpule_cvd{ FAREE 'po
LIET 'mmpule indude] FARZE
LIET 'mmpul=_liag FARSE 'po
LIET 'mmpil= lom[FARIE
LIET 'mmpul= ol FARSE
LIET 'mmpul=_oof FARSE

* compile - compile parsed jam statements

void compile._builtins();

SCM behaviors of files

< File versions can be inspected, compared, labeled, and
branched

< Branched variants can evolve independently

\
|

13

SCM behaviors of files

< File versions can be inspected, compared, labeled, and
branched

< Branched variants can evolve independently

= File evolution can be traced through branches

14

SCM behaviors of files

15

void compile._builtins()
ompile - compile p4

compil (PARSE
void compile_builtins) REE *pa
LIST “compile_append(
LIST *compile_foreach(
LIST *compile_if(PARS
LIST *compile_eval(PA
LIST *compile_include(
LIST “compile_lis(PAR]
LIST *compile_Tocal(P
LIST *compile_null(PA
LIST *compile_on(PAR

_append(PARSE *p
fore

ompile. - compile parsed jam statements

vse, LOL *args).

oL *args),
o),

LisT +compile_rule(PA (1S ARSE *parse, LOL

LIST *compile_rules(PA
LIST *compile_set(PAR
LIST *compile_setcompl
LIST *compil_setexec(PA
LIST *compile_settings(

< Variant content can be compared and merged

(ST *compile_switch(PARSE *parse, LOL *args),
ST *compile_while(PARSE *parse, LOL *args);

* compileh - compile parsed jam staements,

void compile._builtins()
LIST *compile_append(PARSE *parse, LOL *args),
LisT ver LOL *args),

npile._foreach(PARSE *par

LIST *compile_include(PAR
LIST *compile_lis{ PARSE *parse, LOL *args);
LIST *compile_local(PARSE *parse, LOL
LIST *compile_null(PARSE *parse,
LIST *compile_on(PARSE *parse, L O
LIST *compile_rule(PARSE *parse;
LIST *compile_rules(
LIST *compile_set(PARSE *parse, LOL *args),
LIST *compile_setcomp(PARSE *parse, LOL *args)
LIST *compile_setexec(PARSE *parse, LOL *args)
LIST *compile_settings(PAR
ST *compile_switch(PARSE *parse, LOL *args):
*compile_while(PARSE *parse, LOL *args);

Components and streams

< Components and streams are types of SCM containers.
They support:

— parallel development
— reproducibility

— defect resolution

— reuse

— customization

— configurability

16

Components

< Components contain files grouped together for a
common function or use. For example:

— C++ source files that are compiled & linked together
Into an executable program

— Files that comprise a user manual (e.g. HTML files)

Program User manual
e

e o

s e

o B

-)

1 -

17

Components

< Components can contain other components. For example:

— An executable program component and a user manual
component can form a product component

Product

Program User manual
i g
) gt
) B
-)
1 -

18

Components

= Files can be modified within components
= Files and components can be rearranged

HEIE
alafalala
HEEE
et
Loooo ¢

19

Components

< Components evolve as a sequence of versions

< A new version of any file in a component constitutes a
new version of the component

= A component’s revision identifier identifies the version of
any file it contains

EH

i
Ly

L

r=1 r=2 r3r4

a[S[E[EE

20

Components

< Components have a history

< Components can be inspected, labeled, branched,
compared, and merged

g%ﬁ%ﬁ%

mmmm}
v iy
mmmm}

.

21

Streams

e Streams contain components managed together because
they’re passing through the same evolutionary stage.

"

22

Streams

23

Streams evolve as a sequence of versions

A new version of any file or component in a stream
constitutes a new version of the stream

A stream’s revision identifier identifies the version of any file

or component it contains

d, branched,

Streams ¢ INS d, lab com
e[RIS NS M SIE S o DS U A
and me i - B - B - e
BB BB BB B
D D D D
ril r2 r3 r4

A container-based SCM scenario

< Company: LHC (Large Hypothetical Corporation)
< Product: LFIN (Large Financial Application)
— Customer-specific variants (corporate logos, etc.)
— Locale-specific variants
= Customers:
— MonoBanque (Euro, French)
— BigBank (USD, English)

24

A container-based SCM scenario

< LFIN components:
— AS (web application server)
— Ul (user interface)
— OH (online help system)

« Ul subcomponents:
— WAF (general-purpose windowing app framework)
— LFIN-specific Ul logic
— Locale-specific modules
— Customer-specific graphics & skins

25

A container-based SCM scenario

< What the Ul division do:
— Get a WAF version from supplier’s stream
— Develop & configure LFIN Ul per specs
— Deliver a version of LFIN Ul to release manager

W
WAF supplier’s stream

Development
& configuration

2% Ul division’s LFIN stream

A container-based SCM scenario

= Release manager assembles, packages, tests, & delivers
LFIN for each customer

Release
manager gm

AS supplier’'s stream

e
)
ooy,
puunn
(W
0
V\

Ul supplier’s stream

OH supglier’s stream %%% /
w

RM delivery stream
27

What is Inter-File Branching?

< Compared to intra-file branching
= Side effect: aggregated file history

28

Traditional (intra-file) branching

« A branch is a version of a file
« File revision number identifies branch
e | abels can be used to name branches

[ww/ i ndex. htm 1.1

/ ww/ i ndex. html 1.2

/ ww/ i ndex. html 1.3

[www i ndex. htnl 1.3.1.1
dev. ;/\wwindex.htm 1.3.1.2
test =~ /wwiindex.htnd 1.3.1.2.1.1
new [ww/ i ndex. htm 1.1.1.1

29

Inter-File Branching

< Branched files are peers, not versions, of their originals
= Branched files have different names from originals
= Paths can be used to name branches

/wwtest. html 1
[new i ndex. htnml 1

[ww/ i ndex. htnml 1
[www/ | ndex. html 2
[ww/ i ndex. html 3

[dev/index. htnml 1
[dev/index. htnml 2

Inter-File Branching

< Branch and merge history stored in metadata
< Merging occurs between files, not within a file

/wwtest. html 1
[new i ndex. htnml 1

: [new i ndex. htm 2 oS
[www// i ndex. htm 1 /new i ndex. ht m 3(@6‘

[ww/ i ndex. htnml 2
/ ww/ i ndex. html 3 <
[ww/ i ndex. htnml 4

Q 6\2 A

/[dev/index.htm 1 _

[dev/index. htm 220
[dev/index. htm 3

« |Labels can be applied to any file revision
31

Aggregating file history

= Aggregating the history of files in a repository path yields
the history of the path itself
June 02 14:16

June 09 08: 22
June 13 11: 04

l l June 17 15:49
v v
Al (B (C] (D
/ mai n/ Xyz/ 1 o00.c 1 2 3 4
[mai n/ xyz/ bar.c 1 2

[mai n/ xyz/ ol a.c 1

32

Aggregating file history

= Every path level has its own history

s

/(mal
/mai

/mai

n/ abc/f2.c

n/abcifl.c
n/ abc/f3.c

| mal
/ mai
/ mai

n/ xyz/ f oo. c
n/ xyz/ bar. c
n/ xyz/ ol a. c

<€

1
1

NN

W W DN DN

June
June
June
June
June

02 14: 16
09 08: 22
13 11: 04
17 15:49
19 14: 31

So what?

< |nter-File Branching and aggregated file history bestow
desirable SCM behaviors to repository paths

= Repository paths make good streams and components
for container-based SCM

SCM behaviors of repository paths

= Entire hierarchies of files can be branched, compared,
and merged

= Every repository path has a history of reproducible states

= Repository paths can have branch and merge histories as
well as change histories

= A version of a repository path identifies the versions of
the lower-level paths and files it contains

=« Any change to a file creates a new version of the
repository paths it resides in

Repository paths as components

< Components may contain = Repository paths are
other components hierarchical

e [tems in a component must = Files and lower-level paths
be accessible are accessible in a repository
path

= |[tems in a component have < Files in a repository path have
relative locations relative locations

< Components have locations = Repository paths have
relative to each other locations relative to each

other
36

Repository paths as streams

= Streams contain = Paths designated for streams
components can have sub-paths designated
for components
« Components may be = Path hierarchies can be
created, modified, moved, created, modified, moved,
renamed within streams renamed within a repository
< Components may be < Files in a path hierarchy

branched from one stream can be branched from one
to another path to another

37

Back to LHC...

< | HC’s Ul division (UID) develop customized LFIN Ul
components

< UID’s LFIN development stream
//UID/LFIN/ . ..

= contains Ul components customized for each customer:
//UID/LFIN/UI -MonoBanque/ . ..
//UID/LFIN/UI-BigBank/. ..

Ul-MonoBanque UI-BiéBank
38 E a

Container history

A B CIDIE
[/U D LFI N U - MonoBanque/ ... * * x %
[TU D LFI N U -Bi gBank/ . .. * % *

= Component history

= Stream history

39

Taking delivery of components

e |LHC’s release management division (RM) assembles and
tests LFIN packages for customers

< RM'’s product packaging stream for LFIN:
//RM/LFIN/ . ..

= ...contains a component for each customer:
//RM/LFIN/MonoBanque/ . ..
//RM/LFIN/BigBank/. ..

Taking delivery of components

< RM branches released Ul components into its product
packaging stream

-

//UID/LFIz;g%fMQnoBanqueZ::P

//UID/LFI |-BigBank/.
//RM/LFIN/MonoBa
//RM/LFIN/BigBank

41

Taking delivery of components

< RM takes delivery of AS component -- same component
goes Iinto each customer package:

//RM/LFIN/MenoBanque/U

//RM/LF IN/MonoBanquéZAs/ ..

//RM/LFIN/BigBankyUl/. ..
//RM/LFIN/BigBan

42

Taking delivery of components

< RM takes delivery of LFIN online help components from
the Doc division, matching language to customer:

//D0OCD/LFIN-OH/FR/ .
//D0OCD/LFIN-OH/EN/ .

//RM/LFIN/BigBank

Inspecting containers

< Reviewing changes to BigBank package
p4 changes //RM/LFIN/BigBank/. ..

< Comparing AS components between customer packages
p4 diff2 //RM/LFIN/MonoBanque/AS/. ..
//RM/LFIN/BigBank/AS/ . ..

= Checking labels that have been applied
p4 labels //RM/LFIN/MonoBanque/. . Rr2. 1.conplete
p4 labels //RM/LFIN/BigBank/. .. R2. 1. pendi ng

Replacing Defective Components

< What the release manager does when tests fail:
— Reports component failures to suppliers
— Gets new component versions from suppliers
— Rebuilds & retests

Tracing component origins

//RM/LFIN/BigBank/Ul/ . ..

//UID/LFIN/UI-BigBank/. ..

//UID/WAF/ . ..

//WD/WAF/ . . .

Replacing components

//RM/LFIN/BigBank/Ul/ . ..

//UID/LFIN/UI-BigBank/. ..
mﬂ

//UID/WAF/ . ..
— e G e e ——l

//WD/WAF/ . ..
#M

47

Real-world complexities

< Changes to component composition
e Intermediate assembly & ancillary files
= Target platform variants

= Release numbering

Suggested practices

< Do SCM operations on containers, not individual files

= Replace bad components; don’t fix them in downstream
containers

= Use a uniform naming convention
— streams, components, labels

= Use labels to identify container versions or states, not as
containers themselves

49

In summary...

= Container-based SCM promises to simplify large-scale
software development by packing files into containers

= Repository paths work well as containers of files

= |nter-File Branching gives repository paths desirable SCM
behaviors

= Inter-File Branching is well suited for container-based SCM

