
Perforce Helix Core Server
Deployment Package (for UNIX/Linux)

Perforce Professional Services

Version v2023.1, 2023-08-07

Table of Contents
Preface. 1

1. Overview . 2

1.1. Using this Guide . 2

1.2. Getting the SDP . 2

1.3. Checking the SDP Version . 3

2. Setting up the SDP . 4

2.1. Terminology Definitions . 4

3. Pre-Requisites . 6

3.1. Volume Layout and Hardware . 6

4. Installing the SDP on Unix / Linux . 8

4.1. Automated Install . 8

4.2. Manual Install . 8

4.2.1. Manual Install Initial setup . 11

4.2.1.1. Use of SSL . 16

4.2.1.2. Configuration script mkdirs.cfg . 17

4.2.2. SDP Init Scripts . 18

4.2.2.1. Configuring systemd. 19

Configuring systemd for p4d . 19

Configuring systemd for p4p . 20

Configuring systemd for p4dtg . 20

Configuring systemd p4broker - multiple configs . 20

4.2.2.2. Enabling systemd under SELinux . 23

4.2.2.3. Configuring SysV Init Scripts . 24

4.2.3. Configuring Automatic Service Start on Boot . 24

4.2.3.1. Automatic Start for Systems using systemd . 25

4.2.3.2. For systems using the SysV init mechanism . 25

4.2.4. SDP Crontab Templates . 25

4.2.5. Completing Your Server Configuration . 25

4.2.6. Validating your SDP installation . 26

4.3. Local SDP Configuration . 27

4.3.1. Load Order . 28

4.4. Setting your login environment for convenience. 28

4.5. Configuring protections, file types, monitoring and security . 28

4.6. Operating system configuration . 29

4.6.1. Configuring email for notifications . 29

4.6.2. Swarm Email Configuration. 30

4.6.3. Configuring PagerDuty for notifications . 30

4.6.3.1. Prerequisites. 30

4.6.3.2. SDP Configuration . 30

4.6.3.3. Optional variables. 31

Example Additional Context Configuration . 31

4.6.4. Configuring AWS Simple Notification Service (SNS) for notifications 32

4.6.4.1. Prerequisites. 32

4.6.4.2. SDP Configuration . 32

4.6.4.3. Example IAM Policy . 32

4.7. Other server configurables . 33

4.8. Archiving configuration files. 33

4.9. Installing Swarm Triggers . 33

5. Backup, Replication, and Recovery . 36

5.1. Typical Backup Procedure . 36

5.2. Planning for HA and DR . 37

5.2.1. Further Resources. 38

5.2.2. Creating a Failover Replica for Commit or Edge Server . 38

5.2.3. What is a Failover Replica? . 38

5.2.4. Mandatory vs Non-mandatory Standbys . 39

5.2.5. Server host naming conventions . 40

5.3. Full One-Way Replication . 41

5.3.1. Replication Setup . 41

5.3.2. Replication Setup for Failover . 41

5.3.3. Pre-requisites for Failover . 41

5.3.4. Using mkrep.sh . 42

5.3.4.1. SiteTags.cfg . 48

5.3.4.2. Output of mkrep.sh. 49

5.3.5. Addition Replication Setup . 49

5.3.6. SDP Installation . 49

5.3.6.1. SSH Key Setup . 49

5.4. Recovery Procedures . 49

5.4.1. Recovering a master server from a checkpoint and journal(s) . 50

5.4.2. Recovering a replica from a checkpoint . 50

5.4.3. Recovering from a tape backup. 51

5.4.4. Failover to a replicated standby machine. 52

6. Upgrades. 53

6.1. Upgrade Order: SDP first, then Helix P4D. 53

6.2. SDP and P4D Version Compatibility . 53

6.3. Upgrading the SDP . 53

6.3.1. Sample SDP Upgrade Procedure . 54

6.3.2. SDP Legacy Upgrade Procedure . 54

6.4. Upgrading Helix Software with the SDP . 55

6.4.1. Get Latest Helix Binaries. 55

6.4.2. Upgrade Each Instance . 55

6.4.3. Global Topology Upgrades - Outer to Inner . 55

6.5. Database Modifications. 56

7. Maximizing Server Performance . 58

7.1. Ensure Transparent Huge Pages (THP) is turned off . 58

7.2. Putting server.locks directory into RAM. 59

7.3. Installing monitoring packages. 61

7.4. Optimizing the database files . 61

7.5. P4V Performance Settings . 62

7.6. Proactive Performance Maintenance . 62

7.6.1. Limiting large requests . 62

7.6.2. Offloading remote syncs . 62

8. Tools and Scripts. 63

8.1. General SDP Usage . 63

8.1.1. Linux . 63

8.1.2. Monitoring SDP activities . 64

8.2. Upgrade Scripts . 64

8.2.1. get_helix_binaries.sh . 64

8.2.2. upgrade.sh . 66

8.2.3. sdp_upgrade.sh . 75

8.3. Legacy Upgrade Scripts . 82

8.3.1. clear_depot_Map_fields.sh . 82

8.4. Core Scripts . 84

8.4.1. p4_vars . 84

8.4.2. p4_<instance>.vars . 84

8.4.3. p4master_run. 85

8.4.4. daily_checkpoint.sh . 85

8.4.5. recreate_offline_db.sh . 85

8.4.6. live_checkpoint.sh . 86

8.4.7. p4verify.sh . 86

8.4.8. p4login . 98

8.4.9. p4d_<instance>_init . 101

8.4.10. refresh_P4ROOT_from_offline_db.sh. 101

8.4.11. run_if_master.sh . 102

8.4.12. run_if_edge.sh . 102

8.4.13. run_if_replica.sh . 102

8.4.14. run_if_master/edge/replica.sh . 102

8.5. More Server Scripts . 102

8.5.1. p4.crontab. 102

8.5.2. verify_sdp.sh . 103

8.6. Other Scripts and Files . 106

8.6.1. backup_functions.sh . 106

8.6.2. broker_rotate.sh . 106

8.6.3. edge_dump.sh . 106

8.6.4. edge_vars . 106

8.6.5. edge_shelf_replicate.sh . 107

8.6.6. load_checkpoint.sh . 107

8.6.7. gen_default_broker_cfg.sh . 113

8.6.8. journal_watch.sh. 113

8.6.9. kill_idle.sh. 114

8.6.10. p4d_base . 114

8.6.11. p4broker_base . 114

8.6.12. p4ftpd_base . 114

8.6.13. p4p_base . 114

8.6.14. p4pcm.pl . 115

8.6.15. p4review.py . 115

8.6.16. p4review2.py . 115

8.6.17. proxy_rotate.sh . 116

8.6.18. p4sanity_check.sh. 116

8.6.19. p4dstate.sh . 117

8.6.20. ps_functions.sh . 117

8.6.21. pull.sh . 117

8.6.22. pull_test.sh . 118

8.6.23. purge_revisions.sh . 119

8.6.24. recover_edge.sh . 120

8.6.25. replica_cleanup.sh . 120

8.6.26. replica_status.sh . 121

8.6.27. request_replica_checkpoint.sh . 121

8.6.28. rotate_journal.sh. 121

8.6.29. submit.sh . 122

8.6.30. submit_test.sh . 123

8.6.31. sync_replica.sh . 123

8.6.32. templates directory . 123

8.6.33. update_limits.py . 124

9. Sample Procedures . 125

9.1. Installing Python3 and P4Python . 125

9.2. Installing CheckCaseTrigger.py. 126

9.3. Swarm JIRA Link . 127

9.4. Reseeding an Edge Server . 128

9.5. Edge Reseed Scenario . 128

9.5.1. Step 0: Preflight Checks . 129

9.5.2. Step 1: Create New Edge Seed Checkpoint . 129

9.5.3. Step 2: Transfer Edge Seed . 130

9.5.4. Step 3: Reseed the Edge . 130

Appendix A: SDP Package Contents and Planning . 132

A.1. Volume Layout and Server Planning . 132

A.1.1. Memory and CPU . 132

A.1.2. Directory Structure Configuration Script for Linux/Unix . 133

A.1.3. P4D versions and links . 134

A.1.4. Case Insensitive P4D on Unix . 135

Appendix B: The journalPrefix Standard . 137

B.1. SDP Scripts that set journalPrefix . 137

B.2. First Form of journalPrefix Value . 137

B.2.1. Detail on "Completely Unfiltered" . 137

B.3. Second Form of journalPrefix Value. 138

B.4. Scripts for Maintaining the offline_db . 138

B.5. SDP Structure and journalPrefix . 139

B.6. Replicas of Edge Servers. 139

B.7. Goals of the journalPrefix Standard . 140

Appendix C: Server Spec Naming Standard. 141

C.1. General Form . 141

C.1.1. Helix Server Tags . 141

C.1.2. Replica Type Tags . 141

C.1.2.1. Replication Notes . 142

C.1.3. Site Tags . 142

C.2. Example Server Specs . 143

C.3. Implications of Replication Filtering. 143

C.4. Other Replica Types. 143

C.5. The SDP mkrep.sh script. 143

Appendix D: Frequently Asked Questions . 144

D.1. How do I tell what version of the SDP I have? . 144

Appendix E: Troubleshooting Guide . 145

E.1. Daily_checkpoint.sh fails . 145

E.1.1. Last checkpoint not complete. Check the backup process or contact support. 145

E.2. Replication appears to be stalled . 145

E.2.1. Resolution. 146

E.2.2. Make Errors Visible . 147

E.2.3. Remove state file. 147

E.3. Archive pull queue appears to be stalled . 148

E.3.1. Resolutions. 148

E.3.1.1. Remove and re-queue . 148

E.3.1.2. Check for verify errors on the parent server. 149

E.4. Can’t login to edge server. 149

E.4.1. Resolution. 149

E.5. Updating offline_db for an edge server . 149

E.5.1. Resolution. 149

E.6. Journal out of sequence in checkpoint.log file . 150

E.7. Unexpected end of file in replica daily sync . 151

Appendix F: Starting and Stopping Services . 152

F.1. SDP Service Management with the systemd init mechanism . 152

F.1.1. Brokers and Proxies . 153

F.1.2. Root or sudo required with systemd . 153

F.2. SDP Service Management with SysV init mechanism . 153

Appendix G: Brokers in Stack Topology . 155

Appendix H: SDP Health Checks . 156

Preface
The Server Deployment Package (SDP) is the implementation of Perforce’s recommendations for
operating and managing a production Perforce Helix Core Version Control System. It is intended to
provide the Helix Core administration team with tools to help:

• Simplify Management

• Simplify Upgrades

• High Availability (HA)

• Disaster Recovery (DR)

• Fast and Safe Upgrades

• Production Focus

• Best Practice Configurables

• Optimal Performance, Data Safety, and Simplified Backup

This guide is intended to provide instructions of setting up the SDP to help provide users of Helix
Core with the above benefits.

This guide assumes some familiarity with Perforce and does not duplicate the basic information in
the Perforce user documentation. This document only relates to the Server Deployment Package
(SDP). All other Helix Core documentation can be found here: Perforce Support Documentation.

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document or the SDP to consulting@perforce.com.

Preface - 1 of 156

© 2010-2021 Perforce Software, Inc. 1

https://www.perforce.com/support/self-service-resources/documentation
mailto:consulting@perforce.com

Chapter 1. Overview
The SDP has four main components:

• Hardware and storage layout recommendations for Perforce.

• Scripts to automate critical maintenance activities.

• Scripts to aid the setup and management of replication (including failover for DR/HA).

• Scripts to assist with routine administration tasks.

Each of these components is covered, in detail, in this guide.

1.1. Using this Guide
Chapter 2, Setting up the SDP describes concepts, terminology and pre-requisites

Chapter 4, Installing the SDP on Unix / Linux consists of what you need to know to setup Helix Core
sever on a Unix platform.

Chapter 5, Backup, Replication, and Recovery gives information around the Backup, Restoration and
Replication of Helix Core, including some guidance on planning for HA (High Availability) and DR
(Disaster Recovery)

Chapter 6, Upgrades covers upgrades of p4d and related Helix Core executables.

Section 6.3, “Upgrading the SDP” covers upgrading the SDP itself.

Chapter 7, Maximizing Server Performance covers optimizations and proactive actions.

Chapter 8, Tools and Scripts covers all the scripts used within the SDP in detail.

Appendix A, SDP Package Contents and Planning describes the details of the SDP package.

Appendix B, The journalPrefix Standard describes the standard for setting the journalPrefix
configurable.

Appendix C, Server Spec Naming Standard describes the standard for naming 'server' specs created
with the p4 server command.

Appendix D, Frequently Asked Questions and Appendix E, Troubleshooting Guide are useful for other
questions.

Appendix F, Starting and Stopping Services gives on overview of starting and stopping services with
common init mechanisms, systemd and SysV.

1.2. Getting the SDP
The SDP is downloaded as a single zipped tar file the latest version can be found at:
https://swarm.workshop.perforce.com/projects/perforce-software-sdp/files/downloads

2 of 156 - Chapter 1. Overview

2 © 2010-2021 Perforce Software, Inc.

https://swarm.workshop.perforce.com/projects/perforce-software-sdp/files/downloads

The file to download containing the latest SDP is consistently named sdp.Unix.tgz. A copy of this file
also exists with a version-identifying name, e.g. sdp.Unix.2021.2.28649.tgz.

The direct download link to use with curl or wget is illustrated with this command:

curl -L -O https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/download/downloads/sdp.Unix.tgz

1.3. Checking the SDP Version
Once installed, the SDP Version file exists as /p4/sdp/Version. This is a simple text file that contains
the SDP version string. The version can be checked using a command like cat, as in this sample
command:

$ cat /p4/sdp/Version
Rev. SDP/MultiArch/2020.1/27955 (2021/08/13)

That string can be found in Change History section of the SDP Release Notes. This can be useful in
determining if your SDP is the latest available, and to see what features are included.

When an SDP tarball is extracted, the Version file appears in the top-level sdp directory.

Chapter 1. Overview - 3 of 156

© 2010-2021 Perforce Software, Inc. 3

ReleaseNotes.html

Chapter 2. Setting up the SDP
This section tells you how to configure the SDP to setup a new Helix Core server.

The SDP can be installed on multiple server machines, and each server machine can host one or
more Helix Core server instances. See Section 2.1, “Terminology Definitions” for detailed definition
of terms.

The SDP implements a standard logical directory structure which can be implemented flexibly on
one or many physical server machines.

Additional relevant information is available in the System Administrator Guide.

2.1. Terminology Definitions
• process - a running process with a process identifier (PID). It should normally be qualified as to

what type of process it is:

◦ p4d process - a running p4d process with it’s own copy of db.* files. P4D processes may be
of any one of the standard types, e.g. standard or commit-server, and any of the valid replica
types: standby, forwarding-replica, edge-server etc.

◦ p4p process – proxy instance talking to a single upstream p4d instance

◦ p4broker process – p4broker talking to a single upstream p4d instance

• Instance - a logically independent set of Helix Core data and metadata, represented by entities
such as changelist numbers and depot paths, and existing a storage device in the form of db.*
files (metadata) and versioned files (archive files). Thus, the instance is a reference to the logical
data set, with its set of users, files, changelists.

◦ The default SDP instance name is simply 1 (the digit 'one').

◦ Any alphanumeric name can be used. It is mainly of interest to administrators, not regular
users.

◦ Instance names are best kept short, as they are typed often in various admin operational
tasks.

◦ An instance has a well defined name, embedded in its P4ROOT value. If the P4ROOT is
/p4/ace/root, for example, ace is the instance name.

◦ An instance must operate with at least one p4d process on a master server machine. The
instance may also extend to many machines running additional p4d, p4broker, and p4p
processes. For the additional p4d processes, they can be replicas of various types, to include
standby, edge, and filtered forwarding replicas (to name a few).

◦ On all machines on which an instance is physically extended, including proxy, broker, and
replica machines, the instance exists as /p4/N, where N is the instance name.

◦ There can be more than one instance a machine.

• Server machine - this is a host machine (virtual or physical) with operating system and on
which any number of p4d or other processes may be running.

4 of 156 - Chapter 2. Setting up the SDP

4 © 2010-2021 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/Home-p4sag.html

• Server spec or server specification - is the entity managed using p4 server command (and the
companion p4 servers to list all of them).

• Server - this is a vague term. It needs to be fully qualified, and use on its own (unadorned)
depends on context. It may mean any one of:

◦ Server machine

◦ P4d process (this is usually the most common usage - tend to assume this unless otherwise
defined.)

◦ Any other type of instance!

Thus "p4d server" is unclear as to whether you are talking about a p4d process or a
server machine or a combination of both (since there may be a single instance on a
single machine, or many instances on a machine, etc). Make sure you understand
what is being referred to!

Chapter 2. Setting up the SDP - 5 of 156

© 2010-2021 Perforce Software, Inc. 5

Chapter 3. Pre-Requisites
1. The Helix Core binaries (p4d, p4, p4broker, p4p) have been downloaded (see Chapter 4,

Installing the SDP on Unix / Linux)

2. sudo access is required

3. System administrator available for configuration of drives / volumes (especially if on network
or SAN or similar)

4. Supported Linux version, currently these versions are fully supported - for other versions
please speak with Perforce Support.

◦ Ubuntu 18.04 LTS (bionic)

◦ Ubuntu 20.04 LTS (focal)

◦ Red Hat Enterprise Linux (RHEL) 7.x

◦ Red Hat Enterprise Linux (RHEL) 8.x

◦ CentOS 7

◦ CentOS 8 (not recommended for production; Rocky Linux replaces CentOS 8)

◦ Rocky Linux 8.x

◦ SUSE Linux Enterprise Server 12

3.1. Volume Layout and Hardware
As can be expected from a version control system, good disk (storage) management is key to
maximizing data integrity and performance. Perforce recommend using multiple physical volumes
for each p4d server instance. Using three or four volumes per instance reduces the chance of
hardware failure affecting more than one instance. When naming volumes and directories the SDP
assumes the "hx" prefix is used to indicate Helix volumes. Your own naming conventions/standards
can be used instead, though this is discouraged as it will create inconsistency with documentation.
For optimal performance on UNIX machines, the XFS file system is recommended, but not
mandated. The EXT4 filesystem is also considered proven and widely used.

• Depot data, archive files, scripts, and checkpoints: Use a large volume, with RAID 6 on its
own controller with a standard amount of cache or a SAN or NAS volume (NFS access is fine).

This volume is the only volume that must be backed up. The SDP backup scripts place the metadata
snapshots on this volume.

+ This volume is normally called /hxdepots.

• Perforce metadata (database files), 1 or 2 volumes: Use the fastest volume possible, ideally
SSD or RAID 1+0 on a dedicated controller with the maximum cache available on it. Typically a
single volume is used, /hxmetadata. In some sites with exceptionally large metadata, 2 volumes
are used for metadata, /hxmetadata and /hxmetadata2. Exceptionally large in this case means the
metadata size on disk is such that (2x(size of db.* files)+room for growth) approaches or exceeds
the storage capacity of the storage device used for metadata. That’s driven by how big

6 of 156 - Chapter 3. Pre-Requisites

6 © 2010-2021 Perforce Software, Inc.

/hxmetadata volume. So if you have a 16T storage volume and your total size of db.* files is
some ~7T or less (so ~14T total), that’s probably a reasonable cutoff for the definition of
"exceptionally large" in this context.

Do not run anti-virus tools or back up tools against the hxmetadata volume(s) or
hxlogs volume(s), because they can interfere with the operation of the Perforce
server executable.

• Journals and logs: a fast volume, ideally SSD or RAID 1+0 on its own controller with the
standard amount of cache on it. This volume is normally called /hxlogs and can optionally be
backed up.

If a separate logs volume is not available, put the logs on the /hxmetadata or /hxmetadata1
volume, as metadata and logs have similar performance needs that differ from /hxdepots.

Storing metadata and logs on the same volume is discouraged, since the
redundancy benefit of the P4JOURNAL (stored on /hxlogs) is greatly reduced if
P4JOURNAL is on the same volume as the metadata in the P4ROOT directory.

If multiple controllers are not available, put the /hxlogs and /hxdepots volumes on
the same controller.

On all SDP machines, a /p4 directory will exist containing a subdirectory for each instance, and
each instance named /p4. The volume layout is shown in Appendix A, SDP Package Contents and
Planning. This /p4 directory enables easy access to the different parts of the file system for each
instance.

For example:

• /p4/1/root contains the database files for instance 1

• /p4/1/logs contains the log files for instance 1

• /p4/1/bin contains the binaries and scripts for instance 1

• /p4/common/bin contains the binaries and scripts common to all instances

Chapter 3. Pre-Requisites - 7 of 156

© 2010-2021 Perforce Software, Inc. 7

Chapter 4. Installing the SDP on Unix / Linux

4.1. Automated Install
If you are doing a "green field" install, a first-time installation on a new machine that does not yet
have any Perforce Helix data, then the Helix Installer should be used.

4.2. Manual Install
The following documentation covers internal details of how the SDP can be deployed manually.
Many of the steps below are performed by the Helix Installer.

To install Perforce Helix Core server and the SDP, perform the steps laid out below:

• Set up a user account, file system, and configuration scripts.

• Run the configuration script.

• Start the p4d process and configure the required file structure for the SDP.

1. If it doesn’t already exist, create a group called perforce:

sudo groupadd perforce

2. Create a user called perforce and set the user’s home directory to /home/perforce on a local disk.
We recommend using a local rather than automounted home directory for the perforce OS user.
Using an automounted home directory introduces new failure modes for p4d, as well as
potential performance issues. A local directory on the local storage is recommend for the home
directory. (If the /home directory is always automounted, consider using something else, like
/usr/local/home/perforce in the example below):

sudo useradd -d /home/perforce -s /bin/bash -m perforce -g perforce

3. Allow the perforce user sudo access - Option 1 (full sudo)

sudo touch /etc/sudoers.d/perforce
sudo chmod 0600 /etc/sudoers.d/perforce
sudo echo "perforce ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/perforce
sudo chmod 0400 /etc/sudoers.d/perforce

4. Allow the perforce user sudo access - Option 2 (limited sudo)

sudo touch /etc/sudoers.d/perforce
sudo chmod 0600 /etc/sudoers.d/perforce
vi /etc/sudoers.d/perforce

8 of 156 - Chapter 4. Installing the SDP on Unix / Linux

8 © 2010-2021 Perforce Software, Inc.

https://swarm.workshop.perforce.com/projects/perforce_software-helix-installer

5. In the text editor, make the file look like this to give limited sudo, replacing EDTIME_HOSTNAME with
the current machine:

Cmnd_Alias P4_SVC = /usr/bin/systemctl start p4d_*, \
 /usr/bin/systemctl start p4d_*, \
 /usr/bin/systemctl stop p4d_*, \
 /usr/bin/systemctl restart p4d_*, \
 /usr/bin/systemctl status p4d_*, \
 /usr/bin/systemctl cat p4d_*, \
 /usr/bin/systemctl start p4dtg_*, \
 /usr/bin/systemctl stop p4dtg_*, \
 /usr/bin/systemctl restart p4dtg_*, \
 /usr/bin/systemctl status p4dtg_*, \
 /usr/bin/systemctl cat p4dtg_*, \
 /usr/bin/systemctl start p4broker_*, \
 /usr/bin/systemctl stop p4broker_*, \
 /usr/bin/systemctl restart p4broker_*, \
 /usr/bin/systemctl status p4broker_*, \
 /usr/bin/systemctl cat p4broker_*, \
 /usr/bin/systemctl start p4p_*, \
 /usr/bin/systemctl stop p4p_*, \
 /usr/bin/systemctl restart p4p_*, \
 /usr/bin/systemctl status p4p_*, \
 /usr/bin/systemctl cat p4p_*, \
 /usr/bin/systemctl start p4prometheus*, \
 /usr/bin/systemctl stop p4prometheus*, \
 /usr/bin/systemctl restart p4prometheus*, \
 /usr/bin/systemctl status p4prometheus*, \
 /usr/bin/systemctl cat p4prometheus*, \
 /usr/bin/setcap, \
 /usr/bin/getcap
perforce EDITME_HOSTNAME = (root) NOPASSWD: P4_SVC

6. Then lock down the file:

sudo chmod 0400 /etc/sudoers.d/perforce

7. Create or mount the OS server file system volumes (per layout in previous section)

◦ /hxdepots

◦ /hxlogs

and either:

◦ /hxmetadata

or

◦ /hxmetadata1

Chapter 4. Installing the SDP on Unix / Linux - 9 of 156

© 2010-2021 Perforce Software, Inc. 9

◦ /hxmetadata2

8. These directories should be owned by: perforce:perforce

sudo chown -R perforce:perforce /hx*

9. (Optional) if you have different root directories, or are putting all files into one mounted
filesystem (only recommended for small repositories), then do something like the following:

Option 1, all under a single directory /data:

cd /data
mkdir hxmetadata hxlogs hxdepots
sudo chown -R perforce:perforce /data/hx*
cd /
ln -s /data/hx* .
sudo chown -h perforce:perforce /hx*

Option 2, different mounted root folders, e.g. /P4metadata, /P4logs, /P4depots:

sudo chown -R perforce:perforce /P4metadata /P4logs /P4depots
ln -s /P4metadata /hxmetadata
ln -s /P4logs /hxlogs
ln -s /P4depots /hxdepots
sudo chown -h perforce:perforce /hx*

10. Extract the SDP tarball.

cd /hxdepots
tar -xzf /WhereYouDownloaded/sdp.Unix.tgz

11. Set environment variable SDP.

export SDP=/hxdepots/sdp

12. Make the entire $SDP (/hxdepots/sdp) directory writable by perforce:perforce with this
command:

chmod -R +w $SDP

13. Download the appropriate p4, p4d and p4broker binaries for your release and platform:

cd /hxdepots/sdp/helix_binaries

10 of 156 - Chapter 4. Installing the SDP on Unix / Linux

10 © 2010-2021 Perforce Software, Inc.

./get_helix_binaries.sh

If you want to specify a particular release, use the -r option as in this example specifying the
r20.2 release:

cd /hxdepots/sdp/helix_binaries
./get_helix_binaries.sh -r r20.2

4.2.1. Manual Install Initial setup

The next steps highlight the setup and configuration of a new Helix Core instance using the
mkdirs.sh script included in the SDP.

Usage

USAGE for mkdirs.sh v4.9.1:

mkdirs.sh <instance> [-s <ServerID>] [-t <ServerType>] [-tp <TargetPort>] [-lp
<ListenPort>] [-I <svc>[,<svc2>]] [-MDD /bigdisk] [-MLG /jnl] [-MDB1 /db1] [-MDB2
/db2] [-f] [-p] [-test [-clean]] [-n] [-L <log>] [-d|-D]

or

mkdirs.sh [-h|-man]

DESCRIPTION:

== Overview ==

This script initializes an SDP instance on a single machine.

This script is intended to support two scenarios:

* First time SDP installation on a given machine.
* Adding new SDP instances (separate Helix Core data sets) to an existing
 SDP installation on a given machine.

And SDP instance is a single Helix Core data set, with its own unique
set of one set of users, changelist numbers, jobs, labels, versioned
files, etc. An organization may run a single instance or multiple
instances.

This is intended to be run either as root or as the operating system
user account (OSUSER) that p4d is configured to run as, typically
'perforce'. It should be run as root for the initial install.
Subsequent additions of new instances do not require root.

== Directory Structure ==

Chapter 4. Installing the SDP on Unix / Linux - 11 of 156

© 2010-2021 Perforce Software, Inc. 11

If an initial install as done by a user other than root, various
directories must exist and be writable and owned by 'perforce' before starting:

* /p4
* /hxdepots
* /hxlogs
* /hxmetadata

The directories starting with '/hx' are configurable.

This script creates an init script in the /p4/N/bin directory.

== Crontab ==

Crontabs are generated for all server types except p4broker.

After running this script, set up the crontab based on templates
generated as /p4/common/etc/cron.d. For convenience, a sample crontab
is generated for the current machine as /p4/p4.crontab.<SDPInstance>
(or /p4/p4.crontab.<SDPInstance>.new if the former name exists).

These files should be copied or merged into any existing files named
with this convention:

/p4/common/etc/cron.d/crontab.<osuser>.<host>

where <osuser> is the user that services run as (typically 'perforce'),
and <host> is the short hostname (as returned by a 'hostname -s' command).

REQUIRED PARAMETERS:
 <instance>
 Specify the SDP instance name to add. This is a reference to the Perforce
 Helix Core data set.

OPTIONS:
 -s <ServerID>
 Specify the ServerID, overriding the REPLICA_ID setting in the configuration
 file.

 -S <TargetServerID>
 Specify the ServerID of the P4TARGET of the server being installed.
 Use this only when setting up an HA replica of an edge server.

 -t <ServerType>
 Specify the server type, overriding the SERVER_TYPE setting in the config
 file. Valid values are:
 * p4d_master - A master/commit server.
 * p4d_replica - A replica with all metadata from the master (not
 filtered in any way).
 * p4d_filtered_replica - A filtered replica or filtered forwarding

12 of 156 - Chapter 4. Installing the SDP on Unix / Linux

12 © 2010-2021 Perforce Software, Inc.

 replica.
 * p4d_edge - An edge server.
 * p4d_edge_replica - Replica of an edge server. If used,
 '-S <TargetServerID>' is required.
 * p4broker - An SDP host running only a standalone p4broker, with no p4d.
 * p4proxy - An SDP host running only a standalone p4p with no p4d.

 -tp <TargetPort>
 Specify the target port. Use only if ServerType is p4proxy and p4broker.

 -lp <ListenPort>
 Specify the listen port. Use only if ServerType is p4proxy and p4broker.

 -I [<svc>[,<svc2>]]
 Specify additional init scripts to be added to /p4/<instance>/bin
 for the instance.

 By default, the p4p service is installed only if '-t p4proxy' is
 specified, and p4dtg is never installed by default. Valid values
 to specify are 'p4p' and 'dtg' (for the P4DTG init script).

 If services are not installed by default, they can be added later
 using templates in /p4/common/etc/init.d. Also, templates for
 systemd service files are supplied in /p4/common/etc/systemd/system.

 -MDD /bigdisk
 -MLG /jnl
 -MDB1 /db1
 -MDB2 /db2
 Specify the '-M*' to specify mount points, overriding DD/LG/DB1/DB2
 settings in the config file. Sample:

 -MDD /bigdisk -MLG /jnl -MDB1 /fast

 If -MDB2 is not specified, it is set the the same value as -MDB1 if
 that is set, or else it defaults to the same default value as DB1.

 -f Specify -f 'fast mode' to skip chown/chmod commands on depot files.
 This should only be used when you are certain the ownership and
 permissions are correct, and if you have large amounts of existing
 data for which the chown/chmod of the directory tree would be
 slow.

 -p Specify '-p' to halt processing after preflight checks are complete,
 and before actual processing starts. By default, processing starts
 immediately upon successful completion of preflight checks.

 -L <log>
 Specify the path to a log file, or the special value 'off' to disable
 logging. By default, all output (stdout and stderr) goes to this file
 in the current directory:

Chapter 4. Installing the SDP on Unix / Linux - 13 of 156

© 2010-2021 Perforce Software, Inc. 13

 mkdirs.<instance>.<datestamp>.log

 NOTE: This script is self-logging. That is, output displayed on the
 screen is simultaneously captured in the log file. Do not run this
 script with redirection operators like '> log' or '2>&1', and do not
 use 'tee'.

DEBUGGING OPTIONS:
 -test
 Specify '-test' to execute a simulated install to /tmp/p4 as the install
 root (rather than /p4), and with the mount point directories specified in
 the configuration file prefixed with /tmp/hxmounts, defaulting to:
 * /tmp/hxmounts/hxdepots
 * /tmp/hxmounts/hxlogs
 * /tmp/hxmounts/hxmetadata

 -clean
 Specify '-clean' with '-test' to clean up from prior test installs,
 which will result in removal of files/folders installed under /tmp/hxmounts
 and /tmp/p4.

 Do not specify '-clean' if you want to test a series of installs.

 -n No-Op. In No-Op mode, no actions that affect data or structures are
 taken. Instead, commands that would be run are displayed. This is
 an alternative to -test. Unlike '-p' which stops after the preflight
 checks, with '-n' more processing logic can be exercised, with greater
 detail about what commands that would be executed without '-n'.

 -d Increase verbosity for debugging.

 -D Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message

FILES:
 The mkdirs.sh script uses a configuration file for many settings. A
 sample file, mkdirs.cfg, is included with the SDP. After determining
 your SDP instance name (e.g. '1' or 'abc'), create a configuration
 file for it named mkdirs.<N>.cfg, replacing 'N' with your instance.

 Running 'mkdirs.sh N' will load configuration settings from mkdirs.N.cfg.

UPGRADING SDP:
 This script can be useful in testing and upgrading to new versions of
 the SDP, when the '-test' flag is used.

EXAMPLES:

14 of 156 - Chapter 4. Installing the SDP on Unix / Linux

14 © 2010-2021 Perforce Software, Inc.

 Example 1: Setup of first instance

 Setup of the first instance on a machine using the default instance name,
 '1', executed after using sudo to become root:
 $ sudo su -
 $ cd /hxdepots/sdp/Server/Unix/setup
 $ vi mkdirs.cfg

 # Adjust settings as desired, e.g P4PORT, P4BROKERPORT, etc.

 $./mkdirs.sh 1

 A log will be generated, mkdirs.1.<timestamp>.log

 Example 2: Setup of additional instance named 'abc'.

 Setup a second instance on the machine, which will be a separate Helix
 Core instance with its own P4ROOT, its own set of users and
 changelists, and its own license file (copied from the master instance).

 Note that while the first run of mkdirs.sh on a given machine should be
 done as root, but subsequent instance additions should be done as the
 'perforce' user (or whatever operating system user accounts Perforce
 Helix services run as).

 $ sudo su - perforce
 $ cd /hxdepots/sdp/Server/Unix/setup
 $ cp -p mkdirs.cfg mkdirs.abc.cfg
 $ vi mkdirs.abc.cfg

 # Adjust settings in mkdirs.abc.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.

 $./mkdirs.sh abc

 A log will be generated, mkdirs.abc.<timestamp>.log

 Example 3: Setup of additional instance named 'alpha' to run a standalone p4p:

 $./mkdirs.sh alpha -t p4proxy

 Example 4: Setup of a stand instance named '1' to run a standalone p4broker:

 $./mkdirs.sh 1 -t p4broker

If you use a "name" for the instance (not an integer) you MUST modify the P4PORT
variable in the mkdirs.instance.cfg file.

The instance name must map to the name of the cfg file or the default file will be
used with potentially unexpected results.

Chapter 4. Installing the SDP on Unix / Linux - 15 of 156

© 2010-2021 Perforce Software, Inc. 15

Examples:

• mkdirs.sh 1 requires mkdirs.1.cfg

• mkdirs.sh ion requires mkdirs.ion.cfg

3. Put the Perforce license file for the p4d server instance into /p4/1/root

if you have multiple instances and have been provided with port-specific licenses
by Perforce, the appropriate license file must be stored in the appropriate
/p4/<instance>/root folder.

 the license file must be renamed to simply the name license.

Your Helix Core instance is now setup, but not running. The next steps detail how to make the Helix
Core p4d instance a system service.

You are then free to start up the p4d instance as documented in Appendix F, Starting and Stopping
Services.

Please note that if you have configured SSL, then refer to Section 4.2.1.1, “Use of SSL”.

4.2.1.1. Use of SSL

As documented in the comments in mkdirs.cfg, if you are planning to use SSL you need to set the
value of:

SSL_PREFIX=ssl:

Then you need to put certificates in /p4/ssl after the SDP install or you can generate a self signed
certificate as follows:

Edit /p4/ssl/config.txt to put in the info for your company. Then run:

/p4/common/bin/p4master_run <instance> /p4/<instance>/bin/p4d_<instance> -Gc

For example using instance 1:

/p4/common/bin/p4master_run 1 /p4/1/bin/p4d_1 -Gc

In order to validate that SSL is working correctly:

source /p4/common/bin/p4_vars 1

Check that P4TRUST is appropriately set in the output of:

16 of 156 - Chapter 4. Installing the SDP on Unix / Linux

16 © 2010-2021 Perforce Software, Inc.

p4 set

Update the P4TRUST values:

p4 trust -y
p4 -p ssl:$HOSTNAME:1666 trust -y # Assuming correct port
p4 -p $P4MASTERPORT trust -y

Check the stored P4TRUST values:

p4 trust -l

You need to have an entry for the above for both loopback (127.0.0.1 and the IP address of current
machine)

Check you are not prompted for trust:

p4 login
p4 info

4.2.1.2. Configuration script mkdirs.cfg

The mkdirs.sh script executed above resides in $SDP/Server/Unix/setup. It sets up the basic directory
structure used by the SDP. Carefully review the config file mkdirs.instance.cfg for this script before
running it, and adjust the values of the variables as required. The important parameters are:

Parameter Description

DB1 Name of the hxmetadata1 volume (can be same
as DB2)

DB2 Name of the hxmetadata2 volume (can be same
as DB1)

DD Name of the hxdepots volume

LG Name of the hxlogs volume

CN Volume for /p4/common

SDP Path to SDP distribution file tree

SHAREDDATA TRUE or FALSE - whether sharing the /hxdepots
volume with a replica - normally this is FALSE

ADMINUSER P4USER value of a Perforce super user that
operates SDP scripts, typically perforce or
p4admin.

Chapter 4. Installing the SDP on Unix / Linux - 17 of 156

© 2010-2021 Perforce Software, Inc. 17

Parameter Description

OSUSER Operating system user that will run the Perforce
instance, typically perforce.

OSGROUP Operating system group that OSUSER belongs to,
typically perforce.

CASE_SENSITIVE Indicates if p4d server instance has special case
sensitivity settings

SSL_PREFIX Set if SSL is required so either "ssl:" or blank for
no SSL

P4ADMINPASS

P4SERVICEPASS

Password to use for Perforce superuser account
- can be edited later in
/p4/common/config/.p4password.p4_1.admin

Service User’s password for replication - can be
edited later - same dir as above.

P4MASTERHOST Fully qualified DNS name of the Perforce master
server machine for this instance. If this p4d
instance is an HA for an edge server this should
refer to the DNS of the edge server machine.
Otherwise replicas should refer to the commit-
server machine.

For a detailed description of this config file it is fully documented with in-file comments, or see

4.2.2. SDP Init Scripts

The SDP includes templates for initialization scripts ("init scripts") that provide basic service start
/stop/status functionality for a variety of Perforce server products, including:

• p4d

• p4broker

• p4p

• p4dtg

During initialization for an SDP instance, the SDP mkdirs.sh script creates a set of initialization
scripts based on the templates, and writes them in the instance-specific bin folder (the "Instance
Bin" directory), /p4/N/bin. For example, the /p4/1/bin folder for instance 1 might contain any of the
following:

p4d_1_init
p4broker_1_init
p4p_1_init
p4dtg_1_init

18 of 156 - Chapter 4. Installing the SDP on Unix / Linux

18 © 2010-2021 Perforce Software, Inc.

The set of *_init files in the Instance Bin directory defines which services (p4d, p4broker, p4p,
and/or p4dtg) are active for the given instance on the current machine. A common configuration is
to run both p4d and p4broker together, or only run a p4p on a machine. Unused init scripts must be
removed from the Instance Bin dir. For example, if a p4p is not needed for instance 1 on the current
machine, then /p4/1/bin/p4p_1_init should be removed.

For example, the init script for starting p4d for instance 1 is /p4/1/bin/p4d_1_init. All init scripts
accept at least start, stop, and status arguments. How the init scripts are called depends on
whether your operating system uses the systemd or older SysV init mechanism. This is detailed in
sections specific to each init mechanism below.

Templates for the init scripts are stored in:

/p4/common/etc/init.d

4.2.2.1. Configuring systemd

Configuring systemd for p4d

RHEL/CentOS 7 or 8, SuSE 12, Ubuntu (>= v16.04), Amazon Linux 2, and other Linux distributions
utilize systemd / systemctl as the mechanism for controlling services, replacing the earlier SysV
init process. Templates for systemd *.service files are included in the SDP distribution in
$SDP/Server/Unix/p4/common/etc/systemd/system.

Note that using systemd is strongly recommended on systems that support it, for safety reasons.
However, enabling services to start automatically on boot is optional.

To configure p4d for systemd, run these commands as the root user:

I=1

Replace the 1 on the right side of the = with your SDP instance name, e.g. xyz if your P4ROOT is
/p4/xyz/root. Then:

cd /etc/systemd/system
sed -e "s:__INSTANCE__:$I:g" -e "s:__OSUSER__:perforce:g"
$SDP/Server/Unix/p4/common/etc/systemd/system/p4d_N.service.t > p4d_${I}.service
chmod 644 p4d_${I}.service
systemctl daemon-reload

If you are configuring p4d for more than one instance, repeat the I= command with each instance
name on the right side of the =, and then repeat the block of commands above.

Once configured, the following are sample management commands to start, stop, and status the
service. These following commands are typically run as the perforce OSUSER using sudo where
needed:

Chapter 4. Installing the SDP on Unix / Linux - 19 of 156

© 2010-2021 Perforce Software, Inc. 19

systemctl cat p4d_1
systemctl status p4d_1
sudo systemctl start p4d_1
sudo systemctl stop p4d_1

if running with SELinux in enforcing mode, see Section 4.2.2.2, “Enabling systemd
under SELinux”

Systemd Required if Configured

If you are using systemd and you have configured services as above, then you can no longer
run the *_init scripts directly for normal service start/stop, though they can still be used for
status. The sudo systemctl commands must be used for start/stop. Attempting to run the
underlying scripts directly will result in an error message if systemd is configured. This is for
safety: systemd’s concept of service status (up or down) is only reliable when systemd starts
and stops the service itself. The SDP init scripts require the systemd mechanism (using the
systemctl command) to be used if it is configured. This ensures that services will gracefully
stop the service on reboot (which would otherwise present a risk of data corruption for p4d
on reboot).

The SDP requires systemd to be used if it is configured, and we strongly recommend using
system on systems that use it. We recommend this to eliminate the risk of corruption on
reboot, and also for consistency of operations. However, the SDP does not require systemd to
be used. The SDP uses systemctl cat of the service name (e.g. p4d_1) to determine if systemd is
configured for any given service.

Configuring systemd for p4p

Configuring p4p for systemd is identical to the configuration the for p4d, except that you would
replace p4d with p4p in the sample commands above for configuring p4d.

Note SELinux fix (Section 4.2.2.2, “Enabling systemd under SELinux”) may be
similarly required.

Configuring systemd for p4dtg

Configuring p4dtg for systemd is identical to the configuration the for p4d, except that you would
replace p4d with p4dtg in the sample commands above for configuring p4d.

Note SELinux fix (Section 4.2.2.2, “Enabling systemd under SELinux”) may be
similarly required.

Configuring systemd p4broker - multiple configs

Configuring p4broker for systemd can be similar to configuration the for p4d, but there are extra
options as you may choose to run multiple broker configurations. For example, you may have:

20 of 156 - Chapter 4. Installing the SDP on Unix / Linux

20 © 2010-2021 Perforce Software, Inc.

• a default p4broker configuration that runs when the service is live,

• a "Down for Maintenance" (DFM) broker used in place of the default broker during
maintenance to help lock out users broadcasting a friendly message like "Perforce is offline for
scheduled maintenance."

• SSL broker config enabling an SSL-encrypted connection to a server that might not yet require
SSL encryption for all users.

The service name for the default broker configuration is always p4broker_N, where N is the instance
name, e.g. p4broker_1 for instance 1. This uses the default broker config file,
/p4/common/config/p4_1.broker.cfg.

Host Specific Broker Config

For circumstances where host-specific broker configuration is required, the default broker
will use a /p4/common/config/p4_N.broker.<short-hostname>.cfg if it exists, where <short-
hostname> is whatever is returned by the command hostname -s. The logic in the broker init
script will favor the host-specific config if found, otherwise it will use the standard broker
config.

When alternate broker configurations are used, each alternate configuration file must have a
separate systemd unit file associated with managing that configuration. The service file must
specify a configuration tag name, such as 'dfm' or 'ssl'. That tag name is used to identify both the
broker config file and the systemd unit file for that broker. If the broker config is intended to run
concurrently with the default broker config, it must listen on a different port number than the one
specified in the default broker config. If it is only intended to run in place of the standard config, as
with a 'dfm' config, then it should listen on the same port number as the default broker if a default
broker is used, or else the same port as the p4d server if brokers are used only for dfm. The systemd
service for a broker intended to run only during maintenance should not be enabled, and thus only
manually started/stopped as part of maintenance procedures.

If maintenance procedures involve a reboot of a server machine, you may also
want to disable all services during maintenance and re-enable them afterward.

For example, say you want a default broker, a DFM broker, and an SSL broker for instance 1. The
default and SSL brokers will run continuously, and the DFM broker only during scheduled
maintenance. The following broker config files would be needed in /p4/common/config:

• p4_1.broker.cfg - default broker, targets p4d on port 1999, listens on port 1666

• p4_1.broker.ssl.cfg - SSL broker, targets p4d on port 1999, listens on port 1667

• p4_1.broker.dfm.cfg - DFM broker, targets p4d on port 1999 , listens on port 1666.

Then, create a systemd *.service file that references each config. For the default broker, use the
template just as with p4d above. Do the following as the root user:

I=1

Chapter 4. Installing the SDP on Unix / Linux - 21 of 156

© 2010-2021 Perforce Software, Inc. 21

Replace the 1 on the right side of the = with your SDP instance name, e.g. xyz if your P4ROOT is
/p4/xyz/root. Then:

cd /etc/systemd/system
sed -e "s:__INSTANCE__:$I:g" -e "s:__OSUSER__:perforce:g"
$SDP/Server/Unix/p4/common/etc/systemd/system/p4broker_N.service.t >
p4broker_$I.service
chmod 644 p4broker_$I.service
systemctl daemon-reload

Once configured, the following are sample management commands to start, stop, and status the
service. These following commands are typically run as the perforce OSUSER using sudo where
needed:

systemctl cat p4broker_1
systemctl status p4broker_1
sudo systemctl start p4broker_1
sudo systemctl stop p4broker_1

For the non-default broker configs for the SSL and DFM brokers, start by copying the default broker
config to a new *.service file with _ssl or _dfm inserted into the name, like so:

cd /etc/systemd/system
cp p4broker_1.service p4broker_1_dfm.service
cp p4broker_1.service p4broker_1_ssl.service

Next, modify the p4broker_1_dfm.service file and p4broker_1_ssl.service files with a text editor,
making the following edits:

• Find the string that says using default broker config, and change the word default to dfm or ssl
as appropriate, so it reads something like using dfm broker config.

• Change the ExecStart and ExecStop definitions by appending the dfm or ssl tag. For example,
change these two lines:

ExecStart=/p4/1/bin/p4broker_1_init start
ExecStop=/p4/1/bin/p4broker_1_init stop

to look like this for the dfm broker:

ExecStart=/p4/1/bin/p4broker_1_init start dfm
ExecStop=/p4/1/bin/p4broker_1_init stop dfm

After any modifications to systemd *.services files are made, reload them into with:

22 of 156 - Chapter 4. Installing the SDP on Unix / Linux

22 © 2010-2021 Perforce Software, Inc.

systemctl daemon-reload

At this point, the services p4broker_1, p4broker_1_dfm, and p4broker_1_ssl can be started and stopped
normally.

Finally, enable those services you want to start on boot. In our example here, we will enable the
default and ssl broker services to start on boot, but not the DFM broker:

systemctl enable p4broker_1
systemctl enable p4broker_1_ssl

You must be aware of which configurations listen on the same port, and not try to runs those
configurations concurrently. In this case, ensure the default and dfm brokers don’t run at the same
time. So, for example, you might start a maintenance window with:

sudo systemctl stop p4broker_1 p4d_1
sudo systemctl start p4broker_1_dfm

and end maintenance in the opposite order:

sudo systemctl stop p4broker_1_dfm
sudo systemctl start p4broker_1 p4d_1

Details may vary depending on what is occurring during maintenance.

Note SELinux fix (Section 4.2.2.2, “Enabling systemd under SELinux”) may be
similarly required.

4.2.2.2. Enabling systemd under SELinux

If you have SELinux in Enforcing mode, then you may get an error message when you try and start
the service:

$ systemctl start p4d_1
$ systemctl status p4d_1
:
 Active: failed
Process: 1234 ExecStart=/p4/1/bin/p4d_1_init start (code=exited, status=203/EXEC)
:

$ journalctl -u p4d_1 --no-pager | tail
:
... p4d_1.service: Failed to execute command: Permission denied
... p4d_1.service: Failed at step EXEC spawning p4d_1_init: Permission denied

Chapter 4. Installing the SDP on Unix / Linux - 23 of 156

© 2010-2021 Perforce Software, Inc. 23

This can be easily fixed (as root):

semanage fcontext -a -t bin_t /p4/1/bin/p4d_1_init
restorecon -vF /p4/1/bin/p4d_1_init

If not already installed then yum install policycoreutils-python-utils gets you the
basic commands mentioned above - you don’t need the full setools which comes
with a GUI!

Then try again:

systemctl start p4d_1
systemctl status p4d_1

The status command should show Active: active

For troubleshooting SELinux, we recommend the setroubleshoot utility

Look for denied in /var/log/audit.log and then ls -alZ <file> for any file that
triggered the denied message and go from there.

4.2.2.3. Configuring SysV Init Scripts

To configure services for an instance on systems using the SysV init mechanism, run these
commands as the root user: Repeat this step for all instance init scripts you wish to configure as
system services.

cd /etc/init.d
ln -s /p4/1/bin/p4d_1_init
chkconfig --add p4d_1_init

With that done, you can start/stop/status the service as root by running commands like:

service p4d_1_init status
service p4d_1_init start
service p4d_1_init stop

On SysV systems, you can also run the underlying init scripts directly as either the root or perforce
user. If run as root, the script becomes perforce immediately, so that no processing occurs as root.

4.2.3. Configuring Automatic Service Start on Boot

You may want to configure your server machine such that the Helix Core Server for any given
instance (and/or Proxy and/or Broker) will start automatically when the machine boots.

24 of 156 - Chapter 4. Installing the SDP on Unix / Linux

24 © 2010-2021 Perforce Software, Inc.

https://www.serverlab.ca/tutorials/linux/administration-linux/troubleshooting-selinux-centos-red-hat/

This is done using Systemd or Init scripts as covered below.

4.2.3.1. Automatic Start for Systems using systemd

Once systemd services are configured, you can enable the service to start on boot with a command
like this, run a s root:

systemctl enable p4d_1

The enable command configures the services to start automatically when the machine reboots, but
does not immediately start the service. Enabling services is optional; you can start and stop the
services manually regardless of whether it is enabled for automatic start on boot.

4.2.3.2. For systems using the SysV init mechanism

Once SysV services are configured, you can enable the service to start on boot with a command like
this, run as root:

chkconfig p4d_1_init on

4.2.4. SDP Crontab Templates

The SDP includes basic crontab templates for master, replica, and edge servers in:

/p4/common/etc/cron.d

These define schedules for routine checkpoint operations, replica status checks, and email reviews.

4.2.5. Completing Your Server Configuration

1. Ensure that the admin user configured above has the correct password defined in
/p4/common/config/.p4passwd.p4_1.admin, and then run the p4login1 script (which calls the p4
login command using the .p4passwd.p4_1.admin file).

2. For new server instances, run this script, which sets several recommended configurables:

cd /p4/sdp/Server/setup/configure_new_server.sh 1

For existing servers, examine this file, and manually apply the p4 configure command to set
configurables on your Perforce server instance.

Initialize the perforce user’s crontab with one of these commands:

crontab /p4/p4.crontab

Chapter 4. Installing the SDP on Unix / Linux - 25 of 156

© 2010-2021 Perforce Software, Inc. 25

and customize execution times for the commands within the crontab files to suite the specific
installation.

The SDP uses wrapper scripts in the crontab: run_if_master.sh, run_if_edge.sh, run_if_replica.sh.
We suggest you ensure these are working as desired, e.g.

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

The above should output yes if you are on the master (commit) machine (or replica/edge as
appropriate), but otherwise nothing. Any issues with the above indicate incorrect values for
$MASTER_ID, or for other values within /p4/common/config/p4_1.vars (assuming instance 1). You can
debug this with:

bash -xv /p4/common/bin/run_if_master.sh 1 echo yes

If in doubt contact support.

4.2.6. Validating your SDP installation

Source your SDP environment variables and check that they look appropriate - for <instance> 1:

source /p4/common/bin/p4_vars 1

The output of p4 set should be something like:

P4CONFIG=/p4/1/.p4config (config 'noconfig')
P4ENVIRO=/dev/null/.p4enviro
P4JOURNAL=/p4/1/logs/journal
P4LOG=/p4/1/logs/log
P4PCACHE=/p4/1/cache
P4PORT=ssl:1666
P4ROOT=/p4/1/root
P4SSLDIR=/p4/ssl
P4TICKETS=/p4/1/.p4tickets
P4TRUST=/p4/1/.p4trust
P4USER=perforce

There is a script /p4/common/bin/verify_sdp.sh. Run this specifying the <instance> id, e.g.

/p4/common/bin/verify_sdp.sh 1

The output should be something like:

26 of 156 - Chapter 4. Installing the SDP on Unix / Linux

26 © 2010-2021 Perforce Software, Inc.

verify_sdp.sh v5.6.1 Starting SDP verification on host helixcorevm1 at Fri 2020-08-14
17:02:45 UTC with this command line:
/p4/common/bin/verify_sdp.sh 1

If you have any questions about the output from this script, contact support-helix-
core@perforce.com.
--
Doing preflight sanity checks.
Preflight Check: Ensuring these utils are in PATH: date ls grep awk id head tail
Verified: Essential tools are in the PATH.
Preflight Check: cd /p4/common/bin
Verified: cd works to: /p4/common/bin
Preflight Check: Checking current user owns /p4/common/bin
Verified: Current user [perforce] owns /p4/common/bin
Preflight Check: Checking /p4 and /p4/<instance> are local dirs.
Verified: P4HOME has expected value: /p4/1
Verified: This P4HOME path is not a symlink: /p4/1
Verified: cd to /p4 OK.
Verified: Dir /p4 is a local dir.
Verified: cd to /p4/1 OK.
Verified: P4HOME dir /p4/1 is a local dir.

Finishing with:

Verifications completed, with 0 errors and 0 warnings detected in 57 checks.

If it mentions something like:

Verifications completed, with 2 errors and 1 warnings detected in 57 checks.

then review the details. If in doubt contact Perforce Support: support-helix-core@perforce.com

4.3. Local SDP Configuration
There are many scenarios where you may need to override a default value that the SDP provides.
These changes must be done in specific locations so that your changes persist across SDP upgrades.
There are two different scopes of configuration to be aware of and two locations you can place your
configuration in:

Location Scope Description

/p4/common/site/config/$P4SER
VER.vars.local

SDP Instance Specific Single configuration file that is
scoped to a single SDP Instance

Chapter 4. Installing the SDP on Unix / Linux - 27 of 156

© 2010-2021 Perforce Software, Inc. 27

mailto:support-helix-core@perforce.com

Location Scope Description

/p4/common/site/config/$P4SER
VER.vars.local.d/*

SDP Instance Specific Directory of configuration files
that are scoped to a single SDP
Instance

/p4/common/site/config/p4_vars.
local

SDP Wide Single configuration file that is
scoped to all SDP Instances

/p4/common/site/config/p4_vars.
local.d/*

SDP Wide Directory of configuration files
that are scoped to all SDP
Instances

4.3.1. Load Order

1. /p4/common/bin/p4_vars

2. /p4/common/site/config/p4_vars.local

3. /p4/common/site/config/p4_vars.local.d/*

4. /p4/common/config/$P4SERVER.vars

5. /p4/common/site/config/$P4SERVER.vars.local.d/*

4.4. Setting your login environment for convenience
Consider adding this to your .bashrc for the perforce user as a convenience for when you login:

echo "source /p4/common/bin/p4_vars 1" >> ~/.bashrc

Obviously if you have multiple instances on the same machine you might want to setup an alias or
two to quickly switch between them.

4.5. Configuring protections, file types, monitoring and
security
After the server instance is installed and configured, either with the Helix Installer or a manual
installation, most sites will want to modify server permissions ("Protections") and security settings.
Other common configuration steps include modifying the file type map and enabling process
monitoring. To configure permissions, perform the following steps:

1. To set up protections, issue the p4 protect command. The protections table is displayed.

2. Delete the following line:

write user * * //depot/...

3. Define protections for your repository using groups. Perforce uses an inclusionary model. No
access is given by default, you must specifically grant access to users/groups in the protections

28 of 156 - Chapter 4. Installing the SDP on Unix / Linux

28 © 2010-2021 Perforce Software, Inc.

table. It is best for performance to grant users specific access to the areas of the depot that they
need rather than granting everyone open access, and then trying to remove access via
exclusionary mappings in the protect table even if that means you end up generating a larger
protect table.

4. To set the default file types, run the p4 typemap command and define typemap entries to
override Perforce’s default behavior.

5. Add any file type entries that are specific to your site. Suggestions:

◦ For already-compressed file types (such as .zip, .gz, .avi, .gif), assign a file type of
binary+Fl to prevent p4d from attempting to compress them again before storing them.

◦ For regular binary files, add binary+l to make so that only one person at a time can check
them out.

A sample file is provided in $SDP/Server/config/typemap

If you are doing things like games development with Unreal Engine or Unity, then there are specific
recommended typemap to add in KB articles: Search the Knowledge Base

1. To make your changelists default to restricted (for high security environments):

p4 configure set defaultChangeType=restricted

4.6. Operating system configuration
Check Chapter 7, Maximizing Server Performance for detailed recommendations.

4.6.1. Configuring email for notifications

Use Postfix - which Integrates easily with Gmail, Office365 etc just search for postfix and the email
provider. Examples:

• https://www.howtoforge.com/tutorial/configure-postfix-to-use-gmail-as-a-mail-relay/

• https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-
app-password

• https://www.middlewareinventory.com/blog/postfix-relay-office-365/#
3_Office_365_SMTP_relay_Discussed_in_this_Post

Please note that for Gmail:

• You must turn on 2FA for the account which is trying to create an app password

• The organization must allow 2FA (2-Step Verification) - this is normally turned off in Google
Workspace (formerly known as G Suite).

Testing of email once configured:

echo "Test email" | mail -s "Test email subject" user@example.com

Chapter 4. Installing the SDP on Unix / Linux - 29 of 156

© 2010-2021 Perforce Software, Inc. 29

https://community.perforce.com/s/
https://www.howtoforge.com/tutorial/configure-postfix-to-use-gmail-as-a-mail-relay/
https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-app-password
https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-app-password
https://www.middlewareinventory.com/blog/postfix-relay-office-365/#3_Office_365_SMTP_relay_Discussed_in_this_Post
https://www.middlewareinventory.com/blog/postfix-relay-office-365/#3_Office_365_SMTP_relay_Discussed_in_this_Post

If there are problems sending email, then this may find the problem:

grep postfix /var/log/*
cat /var/log/maillog

4.6.2. Swarm Email Configuration

The advantage of installing Postfix is that it is easily testable from the command line as above.

The Swarm configuration then becomes editing config.php as below (optional sender address) and
restarting Swarm in the normal way (resetting its cache first):

 // this block should be a peer of 'p4'
 'mail' => array(
 // 'sender' => 'swarm@my.domain', // defaults to 'notifications@hostname'
 'transport' => array(
 'name' => 'localhost', // name of SMTP host
 'host' => 'localhost', // host/IP of SMTP host
),
),
),

Restarting Swarm (on CentOS):

cd /opt/perforce/swarm/data
rm cache/*cache.php
systemctl restart httpd

4.6.3. Configuring PagerDuty for notifications

The default behavior of the SDP is to use email for delivering alerts and log files. This section details
replacing email with PagerDuty.

4.6.3.1. Prerequisites

• PagerDuty Account

• PagerDuty Service where SDP/Helix Core incidents will be created

• Events API V2 Integration added to PagerDuty Service, this will produce an Integration Key
which will be used later

• Install PagerDuty CLI

4.6.3.2. SDP Configuration

The following can be added to /p4/common/site/config/p4_vars.local to configure the SDP to use
PagerDuty:

30 of 156 - Chapter 4. Installing the SDP on Unix / Linux

30 © 2010-2021 Perforce Software, Inc.

https://www.pagerduty.com/
https://www.pagerduty.com/
https://support.pagerduty.com/docs/service-directory
https://github.com/martindstone/pagerduty-cli/wiki/PagerDuty-CLI-User-Guide#installation-and-getting-started

set this environment variable to the Integration Key that was created when adding
the
Events API V2 Integration to your PagerDuty Service
export PAGERDUTY_ROUTING_KEY="2ac2....e5c3"

4.6.3.3. Optional variables

The SDP will automatically set the Title of the PagerDuty Incident based on the exception that
occurred. The SDP will also include the log file from the exception (example: checkpoint log,
p4verify log, etc).

If you have multiple Helix Core servers it will be helpful to include some additional context with
the incident so you know which server the alert is coming from.

The following environment variable can optionally be used to add additional context to the
PagerDuty Incident:

export PAGERDUTY_CUSTOM_FIELD=""

Example Additional Context Configuration

The following snippet will create environment variables in p4_vars.local that will provide
additional context in each PagerDuty Incident:

curl -s -H Metadata:true --noproxy "*" "http://169.254.169.254/metadata/instance?api-
version=2021-02-01" > /tmp/azure_metadata
cat <<-EOF >> /p4/common/site/config/p4_vars.local
export PAGERDUTY_ROUTING_KEY="2ac2....e5c3"
export VM_ID="$(jq -r '.compute.vmId' /tmp/azure_metdata)"
export REGION="$(jq -r '.compute.location' /tmp/azure_metdata)"
export AZURE_SUBSCRIPTION_ID="$(jq -r '.compute.subscriptionId' /tmp/azure_metdata)"
export PAGERDUTY_CUSTOM_FIELD=\$(cat <<-END
###
Azure Subscription: \$AZURE_SUBSCRIPTION_ID
Region: \$REGION
Azure VM ID: \$VM_ID
###
END
)
EOF

The following context will be added as a field on the PagerDuty Incident:

###
Azure Subscription: f306878d-d321-4731-4cd3-f3afafbbd3ac
Region: eastus
Azure VM ID: 5ee13bfe-8a0c-486f-ae08-c43e44255d15

Chapter 4. Installing the SDP on Unix / Linux - 31 of 156

© 2010-2021 Perforce Software, Inc. 31

###

4.6.4. Configuring AWS Simple Notification Service (SNS) for notifications

The default behavior of the SDP is to use email for delivering alerts and log files. This section details
replacing email with AWS SNS.

4.6.4.1. Prerequisites

• AWS CLI installed

• Authorization for publish to a AWS SNS topic

4.6.4.2. SDP Configuration

The following can be added to /p4/common/config/p4_1.vars to configure the SDP to use SNS:

SNS Alert Configurations
Two methods of authentication are supported: key pair (on prem, azure, etc) and IAM
role (AWS deployment)
In the case of IAM role the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment
variables must not be set, not even empty strings

To test SNS delivery use the following command: aws sns publish --topic-arn
$SNS_ALERT_TOPIC_ARN --subject test --message "this is a test"

export AWS_ACCESS_KEY_ID=""
export AWS_SECRET_ACCESS_KEY=""

export AWS_DEFAULT_REGION="us-east-1"
export SNS_ALERT_TOPIC_ARN="arn:aws:sns:us-east-1:541621974560:Perforce-Notifications-
SnsTopic-1FIRH0KEAXTU"

4.6.4.3. Example IAM Policy

The following is an example policy that could be used for either an IAM Role or an IAM user with
key/secret:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-1:541621974560:Perforce-Notifications-*",
 "Effect": "Allow"

32 of 156 - Chapter 4. Installing the SDP on Unix / Linux

32 © 2010-2021 Perforce Software, Inc.

 }
]
}

4.7. Other server configurables
There are various configurables that you should consider setting for your server instance.

Some suggestions are in the file: $SDP/Server/setup/configure_new_server.sh

Review the contents and either apply individual settings manually, or edit the file and apply the
newly edited version. If you have any questions, please see the configurables section in Command
Reference Guide appendix (get the right version for your server!). You can also contact support
regarding questions.

4.8. Archiving configuration files
Now that the server instance is running properly, copy the following configuration files to the
hxdepots volume for backup:

• Any init scripts used in /etc/init.d or any systemd scripts to /etc/systemd/system

• A copy of the crontab file, obtained using crontab -l.

• Any other relevant configuration scripts, such as cluster configuration scripts, failover scripts,
or disk failover configuration files.

4.9. Installing Swarm Triggers
On the commit server (NOT the Swarm machine), get it setup to connect to the Perforce package
repo (if not already done). See: https://www.perforce.com/perforce-packages

Install the trigger package, e.g.:

• yum install helix-swarm-triggers (if Red Hat family, i.e. RHEL, Rocky Linux, CentOS, Amazon
Linux).

• apt install helix-swarm-triggers (for Ubuntu)

Then (for SDP environments for ease):

sudo chown -R perforce:perforce /opt/perforce/etc

Then install the triggers on the p4d server. Something like:

vi /opt/perforce/etc/swarm-triggers.conf

Make it look something like (in SDP env):

Chapter 4. Installing the SDP on Unix / Linux - 33 of 156

© 2010-2021 Perforce Software, Inc. 33

https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html
https://www.perforce.com/perforce-packages

SWARM_HOST='https://swarm.p4.p4bsw.com'
SWARM_TOKEN='MY-UUID-STYLE-TOKEN'
ADMIN_USER='swarm'
ADMIN_TICKET_FILE='/p4/1/.p4tickets'
P4_PORT='ssl:1666'
P4='/p4/1/bin/p4_1'
EXEMPT_FILE_COUNT=0
EXEMPT_EXTENSIONS=''
VERIFY_SSL=1
TIMEOUT=30
IGNORE_TIMEOUT=1
IGNORE_NOSERVER=1

Then test that config file:

chmod +x /p4/sdp/Unsupported/setup/swarm_triggers_test.sh
/p4/sdp/Unsupported/setup/swarm_triggers_test.sh

Get that to be happy. May require iteration of the conf file, trigger install, etc.

Then install triggers on the server.

cd /p4/1/tmp
p4 triggers -o > temp_file.txt

/opt/perforce/swarm-triggers/bin/swarm-trigger.pl -o >> tmp_file.txt

vi tmp_file.txt # Clean up formatting, make it syntactically correct.

p4 triggers -i < temp_file.txt
p4 triggers -o # Make sure it's there.

Then test!

mkdir /p4/1/tmp/swarm_test
cd /p4/1/tmp/swarm_test

export P4CONFIG=.p4config
echo P4CLIENT=swarm_test.$(hostname -s)>>.p4config

Make a workspace, map View to some location where we can edit harmlessly,
or use a stream like //sandbox/main
p4 client

p4 add chg.txt

The important thing is '#review' which trigger will process

34 of 156 - Chapter 4. Installing the SDP on Unix / Linux

34 © 2010-2021 Perforce Software, Inc.

p4 change -o | sed 's:<enter description here>:#review' > chg.txt
p4 change -i < chg.txt

p4 shelve -c CL # Use CL listed in output from prior command
p4 describe -s CL # if #review gets replace by something like #review-12345, you're
Done!

Chapter 4. Installing the SDP on Unix / Linux - 35 of 156

© 2010-2021 Perforce Software, Inc. 35

Chapter 5. Backup, Replication, and
Recovery
Perforce server instances maintain metadata and versioned files. The metadata contains all the
information about the files in the depots. Metadata resides in database (db.*) files in the server
instance’s root directory (P4ROOT). The versioned files contain the file changes that have been
submitted to the repository. Versioned files reside on the hxdepots volume.

This section assumes that you understand the basics of Perforce backup and recovery. For more
information, consult the Perforce System Administrator’s Guide and failover.

5.1. Typical Backup Procedure
The SDP’s maintenance scripts, run as cron tasks, periodically back up the metadata. The weekly
sequence is described below.

Seven nights a week, perform the following tasks:

1. Truncate the active journal.

2. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

3. Create a checkpoint from the offline database.

4. Recreate the offline database from the last checkpoint.

Once a week, perform the following tasks:

1. Verify all depot files.

Once every few months, perform the following tasks:

1. Stop the live server instance.

2. Truncate the active journal.

3. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

4. Archive the live database.

5. Move the offline database to the live database directory.

6. Start the live server instance.

7. Create a new checkpoint from the archive of the live database.

8. Recreate the offline database from the last checkpoint.

9. Verify all depots.

This normal maintenance procedure puts the checkpoints (metadata snapshots) on the hxdepots
volume, which contains the versioned files. Backing up the hxdepots volume with a normal backup
utility like rsync preserves the critical assets necessary for recovery.

36 of 156 - Chapter 5. Backup, Replication, and Recovery

36 © 2010-2021 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/failover.html#Failover

To ensure that the backup does not interfere with the metadata backups (checkpoints), coordinate
backup of the hxdepots volume using the SDP maintenance scripts.

The preceding maintenance procedure minimizes service outage, because checkpoints are created
from offline or saved databases while the live p4d server process is running on the live databases
in P4ROOT.

With no additional configuration, the normal maintenance prevents loss of more
than one day’s metadata changes. To provide an optimal Recovery Point Objective
(RPO), the SDP provides additional tools for replication.

5.2. Planning for HA and DR
The concepts for HA (High Availability) and DR (Disaster Recovery) are fairly similar - they are both
types of Helix Core replica.

When you have server specs with Services field set to commit-server, standard, or edge-server - see
deployment architectures you should consider your requirements for how to recover from a failure
to any such servers.

See also Replica types and use cases

The key issues are around ensuring that you have have appropriate values for the following
measures for your Helix Core installation:

• RTO - Recovery Time Objective - how long will it take you to recover to a backup?

• RPO - Recovery Point Objective - how much data are you prepared to risk losing if you have to
failover to a backup server?

We need to consider planned vs unplanned failover. Planned may be due to upgrading the core
Operating System or some other dependency in your infrastructure, or a similar activity.

Unplanned covers risks you are seeking to mitigate with failover:

• loss of a machine, or some machine related hardware failure (e.g. network)

• loss of a VM cluster

• failure of storage

• loss of a data center or machine room

• etc…

So, if your main commit-server fails, how fast should be you be able to be up and running again, and
how much data might you be prepared to lose? What is the potential disruption to your
organization if the Helix Core repository is down? How many people would be impacted in some
way?

You also need to consider the costs of your mitigation strategies. For example, this can range from:

• taking a backup once per 24 hours and requiring maybe an hour or two to restore it. Thus you

Chapter 5. Backup, Replication, and Recovery - 37 of 156

© 2010-2021 Perforce Software, Inc. 37

http://en.wikipedia.org/wiki/Recovery_point_objective
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://community.perforce.com/s/article/5434

might lose up to 24 hours of work for an unplanned failure, and require several hours to
restore.

• having a high availability replica which is a mirror of the server hardware and ready to take
over within minutes if required

Having a replica for HA or DR is likely to reduce your RPO and RTO to well under an hour (<10
minutes if properly prepared for) - at the cost of the resources to run such a replica, and the
management overhead to monitor it appropriately.

Typically we would define:

• An HA replica is close to its upstream server, e.g. in the same Data Center - this minimizes the
latency for replication, and reduces RPO

• A DR replica is in a more remote location, so maybe risks being further behind in replication
(thus higher RPO), but mitigates against catastrophic loss of a data center or similar. Note that
"further behind" is still typically seconds for metadata, but can be minutes for submits with
many GB of files.

5.2.1. Further Resources

• High Reliability Solutions

5.2.2. Creating a Failover Replica for Commit or Edge Server

A commit server instance is the ultimate store for submitted data, and also for any workspace state
(WIP - work in progress) for users directly working with the commit server (part of the same "data
set")

An edge server instance maintains its own copy of workspace state (WIP). If you have people
connecting to an edge server, then any workspaces they create (and files they open for some action)
will be only stored on the edge server. Thus it is normally recommended to have an HA backup
server, so that users don’t lose their state in case of failover.

There is a concept of a "build edge" which is an edge server which only supports build farm users.
In this scenario it may be deemed acceptable to not have an HA backup server, since in the case of
failure of the edge, it can be re-seeded from the commit server. All build farm clients would be
recreated from scratch so there would be no problems.

5.2.3. What is a Failover Replica?

A Failover is the hand off of the role of a master/primary/commit server from a primary server
machine to a standby replica (typically on a different server machine). As part of failover
processing the secondary/backup is promoted to become the new master/primary/commit server.

As of 2018.2 release, p4d supports a p4 failover command that performs a failover to a standby
replica (i.e. a replica with Services: field value set to standby or forwarding-standby). Such a replica
performs a journalcopy replication of metadata, with a local pull thread to update its db.* files.
After the failover is complete, traffic must be redirected to the server machine where newly
promoted standby server operates, e.g. with a DNS change (possibly automated with a post-failover

38 of 156 - Chapter 5. Backup, Replication, and Recovery

38 © 2010-2021 Perforce Software, Inc.

https://community.perforce.com/s/article/3166

trigger).

See also: Configuring a Helix Core Standby.

On Linux the SDP script mkrep.sh greatly simplifies the process of setting up a replica suitable for
use with the p4 failover command. See: Section 5.3.4, “Using mkrep.sh”.

5.2.4. Mandatory vs Non-mandatory Standbys

You can modify the Options: field of the server spec of a standby or forwarding-standby replica to
make it mandatory. This setting affects the mechanics of how failover works.

When a standby server instance is configured as mandatory, the master/commit server will wait
until this server confirms it has processed journal data before allowing that journal data to be
released to other replicas. This can simplify failover if the master server is unavailable to
participate in the failover, since it provides a guarantee that no downstream servers are ahead of
the replica.

This guarantee is important, as it ensures downstream servers can simply be re-directed to point to
the standby after the master server has failed over to its standby, and will carry on working
without problems or need for human intervention on the servers.

Failovers in which the master does not participate are generally referred to as unscheduled or
reactive, and are generally done in response to an unexpected situation. Failovers in which the
master server is alive and well at the start of processing, and in which the master server
participates in the failover, are referred to as scheduled or planned.

If a server which is marked as mandatory goes offline for any reason, the replication
to other replicas will stop replicating. In this scenario, the server spec of the
replica can be changed to nomandatory, and then replication will immediately
resume, so long as the replication has not been offline for so long that the master
server has removed numbered journals that would be needed to catch up
(typically several days or weeks depending on the KEEPJNLS setting). If this
happens, the p4d server logs of all impacted servers will clearly indicate the root
cause, so long p4d versions are 2019.2 or later.

If set to nomandatory then there is no risk of delaying downstream replicas, however there is no
guarantee that they will be able to switch seamlessly over to the new server in event of an
unscheduled failover.

We recommend creating mandatory standby replica(s) if the server is local to its
commit server. We also recommend active monitoring in place to quickly detect
replication lag or other issues.

To change a server spec to be mandatory or nomandatory, modify the server spec with a command like
p4 server p4d_ha_bos to edit the form, and then change the value in the Options: field to be as
desired, mandatory or nomandatory, and the save and exit the editor.

Chapter 5. Backup, Replication, and Recovery - 39 of 156

© 2010-2021 Perforce Software, Inc. 39

https://community.perforce.com/s/article/16462

5.2.5. Server host naming conventions

This is recommended, but not a requirement for SDP scripts to implement failover.

• Use a name that does not indicate switchable roles, e.g. don’t indicate in the name whether a
host is a master/primary or backup, or edge server and its backup. This might otherwise lead to
confusion once you have performed a failover and the host name is no longer appropriate.

• Use names ending numeric designators, e.g. -01 or -05. The goal is to avoid being in a post-
failover situation where a machine with master or primary is actually the backup. Also, the
assumption is that host names will never need to change.

• While you don’t want switchable roles baked into the hostname, you can have static roles, e.g.
use p4d vs. p4p in the host name (as those generally don’t change). The p4d could be primary,
standby, edge, edge’s standby (switchable roles).

• Using a short geographic site is sometimes helpful/desirable. If used, use the same site tag used
in the ServerID, e.g. aus.

Valid site tags should be listed in: /p4/common/config/SiteTags.cfg - see Section 5.3.4.1,
“SiteTags.cfg”

• Using a short tag to indicate the major OS version is sometimes helpful/desirable, eg. c7 for
CentOS 7, or r8 for RHEL 8. This is based on the idea that when the major OS is upgraded, you
either move to new hardware, or change the host name (an exception to the rule above about
never changing the hostname). This option maybe overkill for many sites.

• End users should reference a DNS name that may include the site tag, but would exclude the
number, OS indicator, and server type (p4d/p4p/p4broker), replacing all that with just perforce or
optionally just p4. General idea is that users needn’t be bothered by under-the-covers tech of
whether something is a proxy or replica.

• For edge servers, it is advisable to include edge in both the host and DNS name, as users and
admins needs to be aware of the functional differences due to a server being an edge server.

Examples:

• p4d-aus-r7-03, a master in Austin on RHEL 7, pointed to by a DNS name like p4-aus.

• p4d-aus-03, a master in Austin (no indication of server OS), pointed to by a DNS name like p4-
aus.

• p4d-aus-r7-04, a standby replica in Austin on RHEL 7, not pointed to by a DNS until failover, at
which point it gets pointed to by p4-aus.

• p4p-syd-r8-05, a proxy in Sydney on RHEL 8, pointed to by a DNS name like p4-syd.

• p4d-syd-r8-04, a replica that replaced the proxy in Sydney, on RHEL 8, pointed to by a DNS name
like p4-syd (same as the proxy it replaced).

• p4d-edge-tok-s12-03, an edge in Tokyo running SuSE12, pointed to by a DNS name like p4edge-
tok.

• p4d-edge-tok-s12-04, a replica of an edge in Tokyo running SuSE12, not pointed to by a DNS
name until failover, at which point it gets pointed to by p4edge-tok.

40 of 156 - Chapter 5. Backup, Replication, and Recovery

40 © 2010-2021 Perforce Software, Inc.

FQDNs (fully qualified DNS names) of short DNS names used in these examples would also exist,
and would be based on the same short names.

5.3. Full One-Way Replication
Perforce supports a full one-way replication of data from a master server to a replica, including
versioned files. The p4 pull command is the replication mechanism, and a replica server can be
configured to know it is a replica and use the replication command. The p4 pull mechanism
requires very little configuration and no additional scripting. As this replication mechanism is
simple and effective, we recommend it as the preferred replication technique. Replica servers can
also be configured to only contain metadata, which can be useful for reporting or offline
checkpointing purposes. See the Distributing Perforce Guide for details on setting up replica
servers.

If you wish to use the replica as a read-only server, you can use the P4Broker to direct read-only
commands to the replica or you can use a forwarding replica. The broker can do load balancing to a
pool of replicas if you need more than one replica to handle your load.

5.3.1. Replication Setup

To configure a replica server, first configure a machine identically to the master server (at least as
regards the link structure such as /p4, /p4/common/bin and /p4/instance/*), then install the SDP on it
to match the master server installation. Once the machine and SDP install is in place, you need to
configure the master server for replication.

Perforce supports many types of replicas suited to a variety of purposes, such as:

• Real-time backup,

• Providing a disaster recovery solution,

• Load distribution to enhance performance,

• Distributed development,

• Dedicated resources for automated systems, such as build servers, and more.

We always recommend first setting up the replica as a read-only replica and ensuring that
everything is working. Once that is the case you can easily modify server specs and configurables to
change it to a forwarding replica, or an edge server etc.

5.3.2. Replication Setup for Failover

This is just a special case of replication, but implementing Section 5.2.3, “What is a Failover
Replica?”

Please note the section below Section 5.3.4, “Using mkrep.sh” which implements many details.

5.3.3. Pre-requisites for Failover

These are vital as part of your planning.

Chapter 5. Backup, Replication, and Recovery - 41 of 156

© 2010-2021 Perforce Software, Inc. 41

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/replication.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_pull.html#p4_pull
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html

• Obtain and install a license for your replica(s)

Your commit or standard server has a license file (tied to IP address), while your replicas do not
require one to function as replicas.

However, in order for a replica to function as a replacement for a commit or standard server, it
must have a suitable license installed.

This should be requested when the replica is first created. See the form:
https://www.perforce.com/support/duplicate-server-request

• Review your authentication mechanism (LDAP etc) - is the LDAP server contactable from the
replica machine (firewalls etc configured appropriately).

• Review all your triggers and how they are deployed - will they work on the failover host?

Is the right version of Perl/Python etc correctly installed and configured on the failover host
with all imported libraries?

TEST, TEST, TEST!!! It is important to test the above issues as part of your planning.
For peace of mind you don’t want to be finding problems at the time of trying to
failover for real, which may be in the middle of the night!

On Linux:

• Review the configuration of options such as Section 7.1, “Ensure Transparent Huge Pages (THP)
is turned off” and also Section 7.2, “Putting server.locks directory into RAM” are correctly
configured for your HA server machine - otherwise you risk reduced performance after
failover.

5.3.4. Using mkrep.sh

The SDP mkrep.sh script should be used to expand your Helix Topology, e.g. adding replicas and
edge servers.

When creating server machines to be used as Helix servers, the server machines
should be named following a well-designed host naming convention. The SDP has
no dependency on the convention used, and so any existing local naming
convention can be applied. The SDP includes a suggested naming convention in
Section 5.2.5, “Server host naming conventions”

Usage

USAGE for mkrep.sh v3.1.3:

mkrep.sh -t <Type> -s <Site_Tag> -r <Replica_Host> [-f <From_ServerID>] [-os] [-p] [-N
<N>] [-i <SDP_Instance>] [-L <log>] [-v<n>] [-n] [-D]

or

42 of 156 - Chapter 5. Backup, Replication, and Recovery

42 © 2010-2021 Perforce Software, Inc.

https://www.perforce.com/support/duplicate-server-request

mkrep.sh [-h|-man|-V]

DESCRIPTION:
 This script simplifies the task of creating Helix Core replicas and
 edge servers, and helps ensure they are setup with best practices.

 This script executes as two phases. In Phase 1, this script does all
 the metadata configuration to be executed on the master server that
 must be baked into a seed checkpoint for creating the replica/edge.
 This essentially captures the planning for a new replica, and can be
 done before the physical infrastructure (e.g. hardware, storage, and
 networking) is ready. Phase 1, fully automated by this script, takes
 only seconds to run.

 In Phase 2, this script provides information for the manual steps
 needed to create, transfer, and load seed checkpoints onto the
 replica/edge. The guidance is specific to type of replica created,
 based on the command line flags provided to this script. This
 processing can take a while for large data sets, as it involves
 creating and transporting checkpoints.

 Before using this script, a set of geographic site tags must be defined.
 See the FILES: below for details on a site tags.

 This script adheres to the these SDP Standards:
 * Server Spec Naming Standard:
https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/view/main/doc/SDP_Guide.Unix.html#_server_spec_naming_standard
 * Journal Prefix Standard: https://swarm.workshop.perforce.com/projects/perforce-
software-sdp/view/main/doc/SDP_Guide.Unix.html#_the_journalprefix_standard

 In Phase 1, this script does the following to help create a replica or
 edge server:
 * Generates the server spec for the the replica.
 * Generates a server spec for master server (if needed).
 * Sets configurables ('p4 configure' settings) for replication.
 * Selects the correct 'Services' based on replica type.
 * Creates service user for the replica, and sets a password.
 * Creates service user for the master (if needed), and sets a password.
 * Adds newly created service users to the group 'ServiceUsers'.
 * Verifies the group ServiceUsers is granted super access in the
 protections table (and with the '-p', updates Protections).

 After these steps are completed, in Phase 2, detailed instructions are
 presented to guide the user through the remaining steps needed to complete
 the deployment of the replica. This starts with creating a new
 checkpoint to capture all the metadata changes made by this
 script in Phase 1.

SERVICE USERS:

Chapter 5. Backup, Replication, and Recovery - 43 of 156

© 2010-2021 Perforce Software, Inc. 43

 Service users created by this type are always of type 'service',
 and so will not consume a licensed seat.

 Service users also have an 'AuthMethod' of 'perforce' (not
 'ldap') as is required by 'p4d' for 'service' users. Passwords
 set for service users are long 32 character random strings
 that are not stored, as they are never needed. Login tickets for
 service users are generated using: p4login -service -v

OPTIONS:
 -t <Type>[N]
 Specify the replica type tag. The type corresponds to the 'Type:' and
 'Services:' field of the server spec, which describes the type of services
 offered by a given replica.

 Valid type values are:
 * ha: High Availability standby replica, for 'p4 failover' (P4D 2018.2+)
 * ham: High Availability metadata-only standby replica, for 'p4 failover' (P4D
2018.2+)
 * ro: Read-Only standby replica. (Discouraged; Use 'ha' instead for 'p4
failover' support.)
 * rom: Read-Only standby replica, Metadata only. (Discouraged; Use 'ham' instead
for 'p4 failover' support.)
 * fr: Forwarding Replica (Unfiltered).
 * fs: Forwarding Standby (Unfiltered).
 * frm: Forwarding Replica (Unfiltered, Metadata only).
 * fsm: Forwarding Standby (Unfiltered, Metadata only).
 * ffr: Filtered Forwarding Replica. Not a valid failover target.
 * edge: Edge Server. Filtered by definition.

 Replicas with 'standby' are always unfiltered, and use the 'journalcopy'
 method of replication, which copies a byte-for-byte verbatim journal file
 rather than one that is merely logically equivalent.

 The tag has several purposes:
 1. Short Hand. Each tag represents a combination of 'Type:' and fully
 qualified 'Services:' values used in server specs.

 2. Distillation. Only the most useful Type/Services combinations have a
 shorthand form

 3. For forwarding replicas, the name includes the critical distinction of
 whether any replication filtering is used; as filtering of any kind disqualifies
 a replica from being a potential failover target. (No such distinction is
 needed for edge servers, which are filtered by definition).

 -s <Site_Tag>
 Specify a geographic site tag indicating the location and/or data center where
 the replica will physically be located. Valid site tags are defined in the site
 tags file:

44 of 156 - Chapter 5. Backup, Replication, and Recovery

44 © 2010-2021 Perforce Software, Inc.

 /p4/common/config/SiteTags.cfg

 A sample SiteTags.cfg file that is here:

 /p4/common/config/SiteTags.cfg.sample

 -r <Replica_Host>
 Specify the DNS name of the server machine on which the new replica will
 run. This is used in the 'ExternalAddress:' field of the replica's
 ServerID, and also used in instructions to the user for steps after
 metadata configuration is done by this script.

 -f <From_ServerID>
 Specify ServerID of the P4TARGET server from which we are replicating.
 This is used to populate the 'ReplicatingFrom' field of the server
 spec. The value must be a valid ServerID.

 This option should be used if the target is something other than the
 master. For example, to create an HA replica of an edge server, you might
 specify something like '-f p4d_edge_syd'.

 -os Specify the '-os' option to overwrite an exising server spec. By
 default, this script will abort of the server spec to be generated
 already exists on the Helix Core server. Specify this option to
 overwrite the existing server spec.

 -p This script performs a check to ensure that the Protections table grants
 super access to the group ServiceUsers.

 By default, an error is displayed if the check fails, i.e. if super user
 access for the group ServiceUsers cannot be verified. This is
 because, by default, we want to avoid making changes to the Protections
 table. Some sites have local policies or custom automation that requires
 site-specific procedures to update the Protections table.

 If '-p' is specified, an attempt is made to append the Protections table
 an entry like:

 super group ServiceUsers * //...

-N <N>
 Specify '-N <N>', where N is an integer. This is used to indicate that
 multiple replicas of the same type are to be created at the same site.
 The value specified with '-N' must be a numeric value. Left-padding with
 zeroes is allowed. For example, '-N 04' is allowed, and 'N A7' is not
 (as it is not numeric).

 This affects the ServerID to ee generated. For example, the options
 '-t edge -s syd' would result in a ServerID of p4d_edge_syd. To
 create a second edge in the same site, use '-t edge -s syd -N 2' to
 generate p4d_edge2_syd.

Chapter 5. Backup, Replication, and Recovery - 45 of 156

© 2010-2021 Perforce Software, Inc. 45

 -i <SDP_Instance>
 Specify the SDP Instance. If not specifed and the SDP_INSTANCE environment
 is defined, that value is used. If SDP_INSTANCE is not defined, the
 '-i <SDP_Instance>' argument is required.

 -v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

 -L <log>
 Specify the path to a log file, or the special value 'off' to disable
 logging. By default, all output (stdout and stderr) goes in the logs
 directory referenced by $LOGS environment variable, in a file named
 mkrep.<timestamp>.log

 NOTE: This script is self-logging. That is, output displayed on the screen
 is simultaneously captured in the log file. Do not run this script with
 redirection operators like '> log' or '2>&1', and do not use 'tee.'

 -n No-Op. Prints commands instead of running them.

 -D Set extreme debugging verbosity.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message
 -V Display version info for this script and its libraries.

FILES:
 This Site Tags file defines the list of valid geographic site tags:
 /p4/common/config/SiteTags.cfg

 The contains one-line entries of the form:

 <tag>: <description>

 where <tag> is a short alphanumeric tag name for a geographic location,
 data center, or other useful distinction. This tag is incorporated into
 the ServerID of replicas or edge servers created by this script. Tag
 names should be kept short, ideally no more than about 5 characters in
 length.

 The <description> is a one-line text description of what the tag
 refers to, which may contain spaces and ASCII punctuation.

 Blank lines and lines starting with a '#' are considered comments
 and are ignored.

REPLICA SERVER MACHINE SETUP:
 The replica/edge server machine must be have the SDP structure installed,
 either using the mkdirs.sh script included in the SDP, or the Helix
 Installer for 'green field' installations.

46 of 156 - Chapter 5. Backup, Replication, and Recovery

46 © 2010-2021 Perforce Software, Inc.

 When setting up an edge server, a replica of an edge server, or filtered
 replica, confirm that the JournaPrefix Standard (see URL above) structure
 has the separate checkpoints folder as identified in the 'Second Form' in
 the standard. A baseline SDP structure can typically be extended by running
 commands like like these samples (assuming a ServerID of p4d_edge_syd or
 p4d_ha_edge_syd):

 mkdir /hxdepots/p4/1/checkpoints.edge_syd
 cd /p4/1
 ln -s /hxdepots/p4/1/checkpoints.edge_syd

CUSTOM PRE- AND POST- OPERATION AUTOMATION HOOKS:
 This script can execute custom pre- and post- processing scripts. This
 can be useful to incorporate site-specifc elements of replica setup.

 If the file /p4/common/site/mkrep/pre-mkrep.sh exists and is
 executable, it will be executed before mkrep.sh processing. If the file
 /p4/common/site/mkrep/post-mkrep.sh exists and is executable,
 it will be executed after mkrep.sh processing.

 Pre- and post- processing scripts are called with the same command line
 arguments passed to this mkrep.sh script.

 The pre- and post- processing scripts can use or ignore arguments as
 needed, though it is required to implement the '-n' flag to operate in
 preview mode, taking no actions that affect data (just as this script
 behaves).

 Pre- and post- processing scripts are expected to exit with a zero exit
 code to indicate success, and non-zero to indicate failure.

 The custom pre-processing script is executed after standard preflight
 checks complete successfully. If a custom pre-processing script
 indicates a failure, processing is aborted before standard mkrep.sh
 processing occurs.

 The post-processing custom script is executed after the standard
 mkrep.sh processing is successful. If a post-processing custom script
 is detected, the instructions that would be provided to the user in
 Phase 2 are not displayed, as it is expected that the custom post-
 processing will alter or handle these steps.

 Success or failure of pre- and post- processing scripts is reported in
 the log. These scripts do not require independent logging, as all
 standard and error output is captured in the log of this mkrep.sh
 script.

 TIP: Be sure to fully test custom scripts in a test environment
 before incorporating them into production systems.

Chapter 5. Backup, Replication, and Recovery - 47 of 156

© 2010-2021 Perforce Software, Inc. 47

EXAMPLES:
 EXAMPLE 1 - Set up a High Availability (HA) Replica of the master.

 Add an HA replica to instance 1 to run on host bos-helix-02:
 mkrep.sh -i 1 -t ha -s bos -r bos-helix-02

 EXAMPLE 2 - Add an Edge Server to the topology.

 Add an Edge server to instance acme to run on host syd-helix-04:

 mkrep.sh -i acme -t edge -s syd -r syd-helix-04

 EXAMPLE 3 - Setup an HA replica of an edge server.

 Add a HA replica of the edge server to instance acme to run on host syd-helix-05:

 mkrep.sh -i acme -t ha -f p4d_edge_syd -s syd -r syd-helix-05

 EXAMPLE 4 - Add a second edge server in the same site as another edge.

 mkrep.sh -i acme -t edge -N 2 -s syd -r syd-helix-04

5.3.4.1. SiteTags.cfg

The mkrep.sh documentation references a SiteTags.cfg file used to register short tag names for
geographic sites. Location is: /p4/common/config/SiteTags.cfg

Your tags should use abbreviations that are meaningful to your organization.

Example/Format

Valid Geographic site tags.

Each is intended to indicate a geography, and optionally a specific Data
Center (or Computer Room, or Computer Closet) within a given geographic
location.
#
The format is:
Name: Description
The Name must be alphanumeric only. The Description may contain spaces.
Lines starting with # and blank lines are ignored.

bej: Beijing, China
bos: Boston, MA, USA
blr: Bangalore, India
chi: Chicago greater metro area
cni: Chennai, India
pune: Pune, India
lv: Las Vegas, NV, USA
mlb: Melbourne, Australia
syd: Sydney, Australia

48 of 156 - Chapter 5. Backup, Replication, and Recovery

48 © 2010-2021 Perforce Software, Inc.

awsuseast1: AWS US-East-1
azuksouth: Azure UK South

A sample file exists /p4/common/config/SiteTags.cfg.sample.

5.3.4.2. Output of mkrep.sh

The output of mkrep.sh (which is also written to a log file in /p4/<instance>/logs/mkrep.*) describes
a number of steps required to continue setting up the replica after the metadata configuration
performed by the script is done.

5.3.5. Addition Replication Setup

In addition to steps recommended by mkrep.sh, there are other steps to be aware of to prepare a
replica server machine.

5.3.6. SDP Installation

The SDP must first be installed on the replica server machine. If SDP already exists on the machine
but not for the current instance, then mkdirs.sh must be used to add a new instance to the machine.

5.3.6.1. SSH Key Setup

SSH keys for the perforce operating system user should be setup to allow the perforce user to ssh
and rsync among the Helix server machines in the topology. If no ~perforce/.ssh directory exist on
a machine, it can be created with this command:

ssh-keygen -t rsa -b 4096

5.4. Recovery Procedures
There are three scenarios that require you to recover server data:

Metadata Depotdata Action required

lost or corrupt Intact Recover metadata as described
below

Intact lost or corrupt Call Perforce Support

lost or corrupt lost or corrupt Recover metadata as described
below.

Recover the hxdepots volume
using your normal backup
utilities.

Restoring the metadata from a backup also optimizes the database files.

Chapter 5. Backup, Replication, and Recovery - 49 of 156

© 2010-2021 Perforce Software, Inc. 49

5.4.1. Recovering a master server from a checkpoint and journal(s)

The checkpoint files are stored in the /p4/instance/checkpoints directory, and the most recent
checkpoint is named p4_instance.ckp.number.gz. Recreating up-to-date database files requires the
most recent checkpoint, from /p4/instance/checkpoints and the journal file from /p4/instance/logs.

To recover the server database manually, perform the following steps from the root directory of the
server (/p4/instance/root).

Assuming instance 1:

1. Stop the Perforce Server by issuing the following command:

/p4/1/bin/p4_1 admin stop

2. Delete the old database files in the /p4/1/root/save directory

3. Move the live database files (db.*) to the save directory.

4. Use the following command to restore from the most recent checkpoint.

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z /p4/1/checkpoints/p4_1.ckp.####.gz

5. To replay the transactions that occurred after the checkpoint was created, issue the following
command:

/p4/1/bin/p4d_1 -r /p4/1/root -jr /p4/1/logs/journal

6. Restart your Perforce server.

If the Perforce service starts without errors, delete the old database files from
/p4/instance/root/save.

If problems are reported when you attempt to recover from the most recent checkpoint, try
recovering from the preceding checkpoint and journal. If you are successful, replay the subsequent
journal. If the journals are corrupted, contact Perforce Technical Support. For full details about
backup and recovery, refer to the Perforce System Administrator’s Guide.

5.4.2. Recovering a replica from a checkpoint

This is very similar to creating a replica in the first place as described above.

If you have been running the replica crontab commands as suggested, then you will have the latest
checkpoints from the master already copied across to the replica through the use of Section 8.6.31,
“sync_replica.sh”.

See the steps in the script Section 8.6.31, “sync_replica.sh” for details (note that it deletes the state
and rdb.lbr files from the replica root directory so that the replica starts replicating from the start

50 of 156 - Chapter 5. Backup, Replication, and Recovery

50 © 2010-2021 Perforce Software, Inc.

mailto:support-helix-core@perforce.com
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html

of a journal).

Remember to ensure you have logged the service user in to the master server (and that the ticket is
stored in the correct location as described when setting up the replica).

5.4.3. Recovering from a tape backup

This section describes how to recover from a tape or other offline backup to a new server machine
if the server machine fails. The tape backup for the server is made from the hxdepots volume. The
new server machine must have the same volume layout and user/group settings as the original
server. In other words, the new server must be as identical as possible to the server that failed.

To recover from a tape backup, perform the following steps (assuming instance 1):

1. Recover the hxdepots volume from your backup tape.

2. Create the /p4 convenience directory on the OS volume.

3. Create the directories /hxmetadata/p4/1/db1/save and /hxmetadata/p4/1/offline_db.

4. Create the directories /hxmetadata/p4/1/db2/save and /hxmetadata/p4/2/offline_db.

5. Change ownership of these directories to the OS account that runs the Perforce processes.

6. Switch to the Perforce OS account, and create a link in the /p4 directory to /hxdepots/p4/1.

7. Create a link in the /p4 directory to /hxdepots/p4/common.

8. As a super-user, reinstall and enable the Systemd service files or or SysV init scripts.

9. Find the last available checkpoint, under /p4/1/checkpoints

10. Recover the latest checkpoint by running:

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z <last_ckp_file>

11. Recover the checkpoint to the offline_db directory (assuming instance 1):

/p4/1/bin/p4d_1 -r /p4/1/offline_db -jr -z <last_ckp_file>

12. Reinstall the Perforce server license to the server root directory.

13. Start the perforce service by running 1/p4/1/bin/p4d_1_init start`

14. Verify that the server instance is running.

15. Reinstall the server crontab or scheduled tasks.

16. Perform any other initial server machine configuration.

17. Verify the database and versioned files by running the p4verify.sh script. Note that files using
the +k file type modifier might be reported as BAD! after being moved. Contact Perforce
Technical Support for assistance in determining if these files are actually corrupt.

Chapter 5. Backup, Replication, and Recovery - 51 of 156

© 2010-2021 Perforce Software, Inc. 51

https://www.perforce.com/manuals/cmdref/Content/CmdRef/file.types.synopsis.modifiers.html

5.4.4. Failover to a replicated standby machine

See SDP Failover Guide (PDF) or SDP Failover Guide (HTML) for detailed steps.

52 of 156 - Chapter 5. Backup, Replication, and Recovery

52 © 2010-2021 Perforce Software, Inc.

SDP_Failover_Guide.pdf
SDP_Failover_Guide.html

Chapter 6. Upgrades
This section describes both upgrades of the SDP itself, as well as upgrades of Helix software such as
p4d, p4broker, p4p, and the the p4 command line client in the SDP structure.

6.1. Upgrade Order: SDP first, then Helix P4D
The SDP should normally be upgraded prior to the upgrade of Helix Core (P4D). If you are
upgrading P4D to or beyond P4D 2019.1 from a prior version of P4D, you must upgrade the SDP
first. If you run multiple instances of P4D on a given machine (potentially each running different
versions of P4D), upgrade the SDP first before upgrading any of the instances.

The SDP should also be upgraded before upgrading other Helix software on machines using the
SDP, including p4d, p4p, p4broker, and p4 (the command line client).

Upgrading a Helix Core server instance in the SDP framework is a simple process involving a few
steps.

6.2. SDP and P4D Version Compatibility
Starting with the SDP 2020.1 release, the released versions of SDP match the released versions of
P4D. So SDP r20.1 is guaranteed to work with P4D r20.1. In addition, the SDP Release Notes clarify
all the specific versions of P4D supported.

The SDP is often forward- and backward-compatible with P4D versions, but for best results they
should be kept in sync by upgrading SDP before P4D. This is partly because the SDP contains logic
that helps upgrade P4D, which can change as P4D evolves (most recently for 2019.1).

The SDP is aware of the P4D version, and has backward-compatibility logic to support older
versions of P4D. This is guaranteed for supported versions of P4D. Backward compatibility of SDP
with older versions of P4D may extend farther back, though without the "officially supported"
guarantee.

6.3. Upgrading the SDP
Starting with this SDP 2021.1 release, upgrades of the SDP from 2020.1 and later use a new
mechanism. The SDP upgrade procedure starting from 2020.1 and later uses the sdp_upgrade.sh
script. Some highlights of the new upgrade mechanism:

• Automated: Upgrades from SDP 2020.1 are automated with sdp_upgrade.sh provided with each
new version of the SDP.

• Continuous: Each new SDP version, starting from SDP 2021.1, will maintain the capability to
upgrade from all prior versions, so long as the starting version is SDP 2020.1 or later.

• Independent: SDP upgrades will enable upgrades to new Helix Core versions, but will not
directly cause Helix Core upgrades to occur immediately. Each Helix Core instance can be
upgraded independently of the SDP on its own schedule.

Chapter 6. Upgrades - 53 of 156

© 2010-2021 Perforce Software, Inc. 53

ReleaseNotes.pdf

6.3.1. Sample SDP Upgrade Procedure

For complete information, see: Section 8.2.3, “sdp_upgrade.sh”.

A basic set of commands is:

cd /hxdepots
[[-d downloads]] || mkdir downloads
cd downloads
[[-d new]] && mv new old.$(date +'%Y%m%d-%H%M%S')
[[-e sdp.Unix.tgz]] && mv sdp.Unix.tgz sdp.Unix.old.$(date +'%Y%m%d-%H%M%S')
curl -L -s -O https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/download/downloads/sdp.Unix.tgz
ls -l sdp.Unix.tgz
mkdir new
cd new
tar -xzf ../sdp.Unix.tgz

After extracting the SDP tarball, cd to the directory where the sdp_ugprade.sh script resides, and
execute it from there:

cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh -man

If the curl command cannot be used (perhaps due to lack of outbound internet
access), replace that step with some other means of acquiring the SDP tarball such
that it lands as /hxdepots/downloads/sdp.Unix.tgz, and then proceed from that
point forward.

What if there is no /hxdepots ?

If the existing SDP does not have a /hxdepots directory, find the correct value with this
command:

bash -c 'cd /p4/common; d=$(pwd -P); echo ${d%/p4/common}'

This can be run from any shell (bash, tcsh, zsh, etc.)

6.3.2. SDP Legacy Upgrade Procedure

If your current SDP is older than the 2020.1 release, see the SDP Legacy Upgrade Guide (for Unix)
for information on upgrading SDP to SDP 2020.1 from any prior version (dating back to 2007).

54 of 156 - Chapter 6. Upgrades

54 © 2010-2021 Perforce Software, Inc.

SDP_Legacy_Upgrades.Unix.pdf

6.4. Upgrading Helix Software with the SDP
The following outlines the procedure for upgrading Helix binaries using the SDP scripts.

6.4.1. Get Latest Helix Binaries

Acquire the latest Perforce Helix binaries to stage them for upgrade using the Section 8.2.1,
“get_helix_binaries.sh” script.

If you have multiple server machines with SDP, staging can be done with this script on one machine
first, and then the /hxdepots/sdp/helix_binaries folder can be rsync’d to other machines.

Alternately, this script can be run on each machine, but as patches can be released at any time,
running it once and then distributing the helix_binaries directory internally via rsync is preferred
to ensure all machines at your site deploy with the same binary versions.

See Section 8.2.1, “get_helix_binaries.sh”

6.4.2. Upgrade Each Instance

Use the SDP upgrade.sh script to upgrade each instance of Helix on the current machine, using the
staged binaries. The upgrade process handles all aspects of upgrading, including adjusting the
database structure, executing commands to upgrade the p4d database schema, and managing the
SDP symlinks in /p4/common/bin.

Instances can be upgraded independently of each other.

See Section 8.2.2, “upgrade.sh”.

6.4.3. Global Topology Upgrades - Outer to Inner

For any given instance, be aware of the Helix topology when performing upgrades, specifically
whether that instance has replicas and/or edge servers. When replicas and edge servers exist (and
are active), the order in which upgrade.sh must be run on different server machines matters.
Perform upgrades following an "outer to inner" strategy.

For example, say for SDP instance 1, your site has the following server machines:

• bos-helix-01 - The master (in Boston, USA)

• bos-helix-02 - Replica of master (in Boston, USA)

• nyc-helix-03 - Replica of master (in New York, USA)

• syd-helix-04 - Edge Server (in Sydney, AU)

• syd-helix-05 - Replica of Sydney edge (in Sydney)

Envision the above topology with the master server in the center, and two concentric circles.

The Replica of the Sydney edge would be done first, as it is by itself in the outermost circle.

The Edge server and two Replicas of the master are all at the next inner circle. So bos-helix-02, nyc-

Chapter 6. Upgrades - 55 of 156

© 2010-2021 Perforce Software, Inc. 55

helix-03, and syd-helix-04 could be upgraded in any order with respect to each other, or even
simultaneously, as they are in the same circle.

The master is the innermost, and would be upgraded last.

A few standards need to be in place to make this super easy:

• The perforce operating system user would have properly configured SSH keys to allow
passwordless ssh from the master to all other servers.

• The perforce user shell environment (~/.bash_profile and ~/.bashrc) ensured that the SDP shell
environment automatically sourced

The Helix global topology upgrade could be done something like, starting as perforce@bos-helix-01:

cd /p4/sdp/helix_binaries
./get_helix_binaries.sh
rsync -a /p4/sdp/helix_binaries/ syd-helix-05:/p4/sdp/helix_binaries
rsync -a /p4/sdp/helix_binaries/ syd-helix-04:/p4/sdp/helix_binaries
rsync -a /p4/sdp/helix_binaries/ nyc-helix-03:/p4/sdp/helix_binaries
rsync -a /p4/sdp/helix_binaries/ bos-helix-02:/p4/sdp/helix_binaries

Then do a preview of the upgrade on all machines, in outer-to-inner order:

ssh syd-helix-05 upgrade.sh
ssh syd-helix-04 upgrade.sh
ssh nyc-helix-03 upgrade.sh
ssh bos-helix-02 upgrade.sh
ssh bos-helix-01 upgrade.sh

On each machine, check for a message in the output that contains Success: Finished. If that looks
good, then proceed to execute the actual upgrades:

ssh syd-helix-05 upgrade.sh -y
ssh syd-helix-04 upgrade.sh -y
ssh nyc-helix-03 upgrade.sh -y
ssh bos-helix-02 upgrade.sh -y
ssh bos-helix-01 upgrade.sh -y

As with the preview, check for a message in the output that contains Success: Finished.

6.5. Database Modifications
Occasionally modifications are made to the Perforce database from one release to another. For
example, server upgrades and some recovery procedures modify the database.

When upgrading the server, replaying a journal patch, or performing any activity that modifies the

56 of 156 - Chapter 6. Upgrades

56 © 2010-2021 Perforce Software, Inc.

db.* files, you must ensure that the offline checkpoint process is functioning correctly so that the
files in the offline_db directory match the ones in the live server directory.

Normally upgrades to the offline_db after a P4D upgrade will be applied by rotating the journal in
the normal way, and applying it to the offline_db.

In some cases it is necessary to restart the offline checkpoint process and the easiest way to is to
run the live_checkpoint script after modifying the db.* files, as follows:

/p4/common/bin/live_checkpoint.sh 1

This script makes a new checkpoint of the modified database files in the live root directory, then
recovers that checkpoint to the offline_db directory so that both directories are in sync. This script
can also be used anytime to create a checkpoint of the live database.

Please note the warnings about how long this process may take at Section 8.4.6,
“live_checkpoint.sh”

This command should be run when an error occurs during offline checkpointing. It restarts the
offline checkpoint process from the live database files to bring the offline copy back in sync. If the
live checkpoint script fails, contact Perforce Consulting at consulting@perforce.com.

Chapter 6. Upgrades - 57 of 156

© 2010-2021 Perforce Software, Inc. 57

mailto:consulting@perforce.com

Chapter 7. Maximizing Server Performance
The following sections provide some guidelines for maximizing the performance of the Perforce
Helix Core Server, using tools provided by the SDP. More information on this topic can be found in
the Knowledge Base.

7.1. Ensure Transparent Huge Pages (THP) is turned
off
This is reference KB Article on Platform Notes

There is a (now deprecated) script in the SDP which will do this:

/p4/sdp/Server/Unix/setup/os_tweaks.sh

It needs to be run as root or using sudo. This will not persist after system is rebooted - and is thus no
longer the recommended option.

We recommend the usage of tuned instead of the above, since it will persist after
reboots.

Install as appropriate for your Linux distribution (so as root):

yum install tuned

or

apt-get install tuned

1. Create a customized tuned profile with disabled THP. Create a new directory in /etc/tuned
directory with desired profile name:

mkdir /etc/tuned/nothp_profile

2. Then create a new tuned.conf file for nothp_profile, and insert the new tuning info:

cat <<EOF > /etc/tuned/nothp_profile/tuned.conf
[main]
include= throughput-performance

[vm]
transparent_hugepages=never

58 of 156 - Chapter 7. Maximizing Server Performance

58 © 2010-2021 Perforce Software, Inc.

https://community.perforce.com/s/article/2529
https://community.perforce.com/s/article/3005

EOF

3. Make the script executable

chmod +x /etc/tuned/nothp_profile/tuned.conf

4. Enable nothp_profile using the tuned-adm command.

tuned-adm profile nothp_profile

5. This change will immediately take effect and persist after reboots. To verify if THP are disabled
or not, run below command:

cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

7.2. Putting server.locks directory into RAM
The server.locks directory is maintained in the $P4ROOT (so /p4/1/root) for a running server
instance. This directory contains a tree of 0-length files (or 17 byte files in earlier p4d versions) used
for lock coordination amongst p4d processes.

This directory can be removed every time the p4d instance is restarted, so it is safe to put it into a
tmpfs filesystem (which by its nature does not survive a reboot).

Even on a large installation with many hundreds or thousands of users, this directory will be
unlikely to exceed 64M. The files in this directory are 17 or 0 bytes depending on th p4d version;
space is needed for inodes.

To do this, first determine if the setting will be global for all p4d servers at your site, or will be
determined on a per-server machine basis. If set globally, the per-machine configuration described
below MUST be done on all p4d server machines.

This should be done in a scheduled maintenance window.

For each p4d server machine (all server machines if you intend to make this a global setting), do
the following as user root:

1. Create a local directory mount point, and change owner/group to perforce:perforce (or $OSUSER
if SDP config specifies a different OS user, and whatever group is used):

mkdir /hxserverlocks
chown perforce:perforce /hxserverlocks

2. Add a line to /etc/fstab (adjusting appropriately if $OSUSER and group are set to something other

Chapter 7. Maximizing Server Performance - 59 of 156

© 2010-2021 Perforce Software, Inc. 59

than perforce:perforce):

HxServerLocks /hxserverlocks tmpfs
uid=perforce,gid=perforce,size=64M,mode=0700 0 0

Note: The 64M in the above example is suitable for many sites, including large ones. For servers with
less available RAM, a smaller value is recommended, but no less than 128K.

If multiple SDP instances are operated on the machine, the value must be large enough for all
instances.

1. Mount the storage volume:

mount -a

2. Check it is looking correct and has correct ownership (perforce or $OSUSER):

df -h
ls -la /hxserverlocks

As user perforce (or $OSUSER), set the configurable server.locks.dir. This will be set in one of two
ways, depending on whether it was set globally, or on a per-server machine.

First, set the shell environment for your instance:

source /p4/common/bin/p4_vars N

Replacing N with your instance name; 1 by default.

To set server.locks.dir globally, do:

p4 configure set server.locks.dir="/hxserverlocks${P4HOME}/server.locks"

e.g.

p4 configure set ${SERVERID}#server.locks.dir=/hxserverlocks${P4HOME}/server.locks

If you set this globally (without serverid# prefix), then you must ensure that all
server machines running p4d, including replicas end edge servers, have a
similarly named directory available (or bad things will happen!)

Consider failover options. A failover will, by nature, change the ServerID on a
given machine. If server.locks.dir is set globally, and all machines have the

60 of 156 - Chapter 7. Maximizing Server Performance

60 © 2010-2021 Perforce Software, Inc.

HxServerLocks configuration done as noted above, then the server.locks.dir
setting is fully accounted for, and will not cause a problem in a failover situaion.

If server.locks.dir is set on a per-machine basis, then you should ensure that every standby server
has the same configuration with respect to server.locks.dir and the HxServerLocks filesystem as
its target server. So any standby servers replicating from a commit server should have the same
configuration as the commit server, and any standby servers replicating from an edge server
should have the same configuration as the target edge server. For simplicity, using a global setting
should be considered.

If you are defining server machine templates (such as an AMI in AWS or with Terraform or similar),
the HxServerLoccks configuration can and should be accounted for in the system template.

7.3. Installing monitoring packages
The sysstat and sos packages are recommended for helping investigate any performance issues on
a server.

yum install sysstat sos

or

apt install sysstat sos

Then enable it:

systemctl enable --now sysstat

The reports are text based, but you can use kSar (https://github.com/vlsi/ksar) to visualize the data.
If installed before sosreport is run, sosreport will include the sysstat data.

We also recommend P4prometheus - https://github.com/perforce/p4prometheus. See Automated
script installer for SDP instances which makes it easy to install node_exporter, p4prometheus and
monitoring scripts in the crontab

See an example of interpreting prometheus metrics

7.4. Optimizing the database files
The Perforce Server’s database is composed of b-tree files. The server does not fully rebalance and
compress them during normal operation. To optimize the files, you must checkpoint and restore the
server. This normally only needs to be done very few months.

To minimize the size of back up files and maximize server performance, minimize the size of the
db.have and db.label files.

Chapter 7. Maximizing Server Performance - 61 of 156

© 2010-2021 Perforce Software, Inc. 61

https://github.com/vlsi/ksar
https://github.com/perforce/p4prometheus
https://github.com/perforce/p4prometheus/blob/master/INSTALL.md#automated-script-installation
https://github.com/perforce/p4prometheus/blob/master/INSTALL.md#automated-script-installation
https://brian-candler.medium.com/interpreting-prometheus-metrics-for-linux-disk-i-o-utilization-4db53dfedcfc

7.5. P4V Performance Settings
These are covered in: https://community.perforce.com/s/article/2878

7.6. Proactive Performance Maintenance
This section describes some things that can be done to proactively to enhance scalability and
maintain performance.

7.6.1. Limiting large requests

To prevent large requests from overwhelming the server, you can limit the amount of data and
time allowed per query by setting the MaxResults, MaxScanRows and MaxLockTime parameters to
the lowest setting that does not interfere with normal daily activities. As a good starting point, set
MaxScanRows to MaxResults * 3; set MaxResults to slightly larger than the maximum number of
files the users need to be able to sync to do their work; and set MaxLockTime to 30000 milliseconds.
These values must be adjusted up as the size of your server and the number of revisions of the files
grow. To simplify administration, assign limits to groups rather than individual users.

To prevent users from inadvertently accessing large numbers of files, define their client view to be
as narrow as possible, considering the requirements of their work. Similarly, limit users' access in
the protections table to the smallest number of directories that are required for them to do their
job.

Finally, keep triggers simple. Complex triggers increase load on the server.

7.6.2. Offloading remote syncs

For remote users who need to sync large numbers of files, Perforce offers a proxy server. P4P, the
Perforce Proxy, is run on a machine that is on the remote users' local network. The Perforce Proxy
caches file revisions, serving them to the remote users and diverting that load from the main
server.

P4P is included in the Windows installer. To launch P4P on Unix machines, copy the
/p4/common/etc/init.d/p4p_1_init script to /p4/1/bin/p4p_1_init. Then review and customize the
script to specify your server volume names and directories.

P4P does not require special hardware but it can be quite CPU intensive if it is working with binary
files, which are CPU-intensive to attempt to compress. It doesn’t need to be backed up. If the P4P
instance isn’t working, users can switch their port back to the main server and continue working
until the instance of P4P is fixed.

62 of 156 - Chapter 7. Maximizing Server Performance

62 © 2010-2021 Perforce Software, Inc.

https://community.perforce.com/s/article/2878
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.proxy.html

Chapter 8. Tools and Scripts
This section describes the various scripts and files provided as part of the SDP package.

8.1. General SDP Usage
This section presents an overview of the SDP scripts and tools, with details covered in subsequent
sections.

8.1.1. Linux

Most scripts and tools reside in /p4/common/bin. The /p4/<instance>/bin directory (e.g. /p4/1/bin)
contains scripts or links that are specific to that instance such as wrappers for the p4d executable.

Older versions of the SDP required you to always run important administrative commands using
the p4master_run script, and specify fully qualified paths. This script loads environment information
from /p4/common/bin/p4_vars, the central environment file of the SDP, ensuring a controlled
environment. The p4_vars file includes instance specific environment data from
/p4/common/config/p4_instance.vars e.g. /p4/common/config/p4_1.vars. The p4master_run script is
still used when running p4 commands against the server unless you set up your environment first
by sourcing p4_vars with the instance as a parameter (for bash shell: source /p4/common/bin/p4_vars
1). Administrative scripts, such as daily_checkpoint.sh, no longer need to be called with
p4master_run however, they just need you to pass the instance number to them as a parameter.

When invoking a Perforce command directly on the server machine, use the p4_instance wrapper
that is located in /p4/instance/bin. This wrapper invokes the correct version of the p4 client for the
instance. The use of these wrappers enables easy upgrades, because the wrapper is a link to the
correct version of the p4 client. There is a similar wrapper for the p4d executable, called
p4d_instance.

This wrapper is important to handle case sensitivity in a consistent manner, e.g.
when running a Unix server in case-insensitive mode. If you just execute p4d
directly when it should be case-insensitive, then you may cause problems, or
commands will fail.

Below are some usage examples for instance 1.

Example Remarks

/p4/common/bin/p4master_run 1 /p4/1/bin/p4_1
admin stop

Run p4 admin stop on instance 1

/p4/common/bin/live_checkpoint.sh 1 Take a checkpoint of the live database on
instance 1

/p4/common/bin/p4login 1 Log in as the perforce user (superuser) on
instance 1.

Some maintenance scripts can be run from any client workspace, if the user has administrative
access to Perforce.

Chapter 8. Tools and Scripts - 63 of 156

© 2010-2021 Perforce Software, Inc. 63

8.1.2. Monitoring SDP activities

The important SDP maintenance and backup scripts generate email notifications when they
complete.

For further monitoring, you can consider options such as:

• Making the SDP log files available via a password protected HTTP server.

• Directing the SDP notification emails to an automated system that interprets the logs.

8.2. Upgrade Scripts

8.2.1. get_helix_binaries.sh

Usage

USAGE for get_helix_binaries.sh v1.3.3:

get_helix_binaries.sh [-r <HelixMajorVersion>] [-b <Binary1>,<Binary2>,...] [-n] [-D]

 or

get_helix_binaries.sh -h|-man

DESCRIPTION:
 This script acquires Perforce Helix binaries from the Perforce FTP server.

 The four Helix binaries that can be acquired are:

 * p4, the command line client
 * p4d, the Helix Core server
 * p4p, the Helix Proxy
 * p4broker, the Helix Broker

 This script gets the latest patch of binaries for the current major Helix
 version. It is intended to acquire the latest patch for an existing install,
 or to get initial binaries for a fresh new install. It must be run from
 the /hxdepots/sdp/helix_binaries directory (or similar; the /hxdepots
 directory is the default but is subject to local configuration).

 The helix_binaries directory is used for staging binaries for later upgrade
 with the SDP 'upgrade.sh' script (documented separately). This helix_binaries
 directory is used to stage binaries on the current machine, while the
 'upgrade.sh' script updates a single SDP instance (of which there might be
 several on a machine).

 The helix_binaries directory may not be in the PATH. As a safety feature,
 the 'verify_sdp.sh' will report an error if the 'p4d' binary is found outside
 /p4/common/bin in the PATH. The SDP 'upgrade.sh' check uses 'verify_sdp.sh'
 as part of its preflight checks, and will refuse to upgrade if any 'p4d' is

64 of 156 - Chapter 8. Tools and Scripts

64 © 2010-2021 Perforce Software, Inc.

 found outside /p4/common/bin.

 When a newer major version of Helix binaries is needed, this script should not
 be modified directly. Instead, the recommended approach is to upgrade the SDP
 to get the latest version of SDP first, which will included a newer version of
 this script, as well as the latest 'upgrade.sh'. The 'upgrade.sh' script
 is updated with each major SDP version to be aware of any changes in
 the upgrade procedure for the corresponding p4d version. Upgrading SDP first
 ensures you have a version of the SDP that works with newer versions of p4d
 and other Helix binaries.

OPTIONS:
 -r <HelixMajorVersion>
 Specify the Helix Version, using the short form. The form is rYY.N, e.g. r21.2
 to denote the 2021.2 release. The default: is r23.1

 -b <Binary1>[,<Binary2>,...]
 Specify a comma-delimited list of Helix binaries. The default is: p4 p4d p4broker
p4p

 -n Specify the '-n' (No Operation) option to show the commands needed
 to fetch the Helix binaries from the Perforce FTP server without attempting
 to execute them.

 -D Set extreme debugging verbosity using bash 'set -x' mode.

HELP OPTIONS:
 -h Display short help message
 -man Display this manual page

EXAMPLES:
 Note: All examples assume the SDP is in the standard location, /hxdepots/sdp.

 Example 1 - Typical Usage with no arguments:

 cd /hxdepots/sdp/helix_binaries
 ./get_helix_binaries.sh

 This acquires the latest patch of all 4 binaries for the r23.1
 release (aka 2023.1).

 Example 2 - Specifying the major version:

 cd /hxdepots/sdp/helix_binaries
 ./get_helix_binaries.sh -r r21.2

 This gets the latest patch of for the 2021.2 release of all 4 binaries.

 Note: Only supported Helix binaries are guaranteed to be available from the
 Perforce FTP server.

Chapter 8. Tools and Scripts - 65 of 156

© 2010-2021 Perforce Software, Inc. 65

 Note: Only the latest patch of any given binary is available from the Perforce
 FTP server.

 Example 3 - Sample getting r22.2 and skipping the proxy binary (p4p):

 cd /hxdepots/sdp/helix_binaries
 ./get_helix_binaries.sh -r r22.2 -b p4,p4d,p4broker

DEPENDENCIES:
 This script requires outbound internet access. Depending on your environment,
 it may also require HTTPS_PROXY to be defined, or may not work at all.

 If this script doesn't work due to lack of outbound internet access, it is
 still useful illustrating the locations on the Perforce FTP server where
 Helix Core binaries can be found. If outbound internet access is not
 available, use the '-n' flag to see where on the Perforce FTP server the
 files must be pulled from, and then find a way to get the files from the
 Perforce FTP server to the correct directory on your local machine,
 /hxdepots/sdp/helix_binaries by default.

EXIT CODES:
 An exit code of 0 indicates no errors were encountered. An
 non-zero exit code indicates errors were encountered.

8.2.2. upgrade.sh

The upgrade.sh script is used to upgrade p4d and other Perforce Helix binaries on a given server
machine.

The links for different versions of p4d are described in Section A.1.3, “P4D versions and links”

Usage

USAGE for upgrade.sh v4.10.7:

upgrade.sh <instance> [-p|-I] [-M] [-Od] [-Osp] [-c] [-y] [-L <log>] [-d|-D]

or

upgrade.sh [-h|-man]

DESCRIPTION:

 This script upgrades the following Helix Core software:

 * p4d, the Perforce Helix Core server
 * p4broker, the Helix Broker server
 * p4p, the Helix Proxy server
 * p4, the command line client

66 of 156 - Chapter 8. Tools and Scripts

66 © 2010-2021 Perforce Software, Inc.

 Details of each upgrade are described below. Prior to executing any upgrades, a
 preflight check is done to help ensure upgrades will go smoothly. Also, checks
 are done to determine what (if any) of the above software products need to be
 updated.

 To prepare for an upgrade, new binaries must be update in the
/p4/sdp/helix_binaries
 directory. This is generally done using the get_helix_binaries.sh script in
 that directory. Binaries in this directory are not referenced by live running
 servers, and so it is safe to upgrade files in this directory to stage for a
 future upgrade at any time. Also, the SDP standard PATH does not include this
 directory, as verified by the verify_sdp.sh script.

THE INSTANCE BIN DIR

 The 'instance bin' directory, /p4/<instance>/bin, (e.g. /p4/1/bin for instance
 1), is expected to contain *_init scripts for services that operate on the
 given machine.

 For example, a typical master machine for instance 1 might have the following
 in /p4/1/bin:

 * p4broker_1_init script
 * p4broker_1 symlink
 * p4d_1_init script
 * p4d_1 symlink or script
 * p4_1 symlink (a reference to the 'p4' command line client)

 A server machine for instance 1 that runs only the proxy server would have the
 following in /p4/1/bin:

 * p4p_1_init script
 * p4p_1 symlink
 * p4_1 symlink

 The instance bin directory is never modified by the 'upgrade.sh' script.
 The addition of new binaries and update of symlinks occur in .

 The existence of *_init scripts for any given binary determines whether this
 script attempts to manage the service on a given machine, stopping it before
 upgrades, restarting it afterward, and other processing in the case of p4d.

 Note that Phase 2, adding new binaries and updating symlinks, will occur for
 all binaries for which new staged versions are available, regardless of
 whether they are operational on the given machine.

THE COMMON DIR

 This script performs it operations in the SDP common bin dir, .

Chapter 8. Tools and Scripts - 67 of 156

© 2010-2021 Perforce Software, Inc. 67

 Unlike the instance bin directory, the directory is expected
 to be identical across all machines in a topology. Scripts and symlinks
 should always be the same, with only temporary differences while global
 topology upgrades are in progress.

 Thus, all binaries available to be upgraded will be upgraded in Phase 2, even
 if the binary does not operate on the current machine. For example, if a new
 version of 'p4p' binary is available, a new version will be copied to
 and symlink references updated there. However, the p4p binary will
 not be stopped/started.

GENERAL UPGRADE PROCESS

 This script determines what binaries need to be upgraded, based on what new
 binaries are available in the /p4/sdp/helix_binaries directory compared to what
binaries
 the current instance uses.

 There are 5 potential phases. Which phases execute depend on the set of binaries
 being upgraded. The phases are:

 * PHASE 1 - Establish a clean rollback point.
 This phase executes on the master if p4d is upgraded.

 * PHASE 2 - Install new binaries and update SDP symlinks in .
 This phase executes for all upgrades.

 * PHASE 3 - Stop services to be upgraded.
 This phase executes for all upgrades involving p4d, p4p, p4broker.
 Only a 'p4' client only upgrade skips this phase.

 * PHASE 4 - Perforce p4d schema upgrades
 This step involves the 'p4d -xu' processing. It executes if p4d is upgraded
 to a new major version, and occurs on the master as well as all replicas/edge
 servers. The behavior of 'p4d -xu' differs depending on whether the server is
 the master or a replica.

 This phase is skipped if upgrading to a patch of the same major version, as
 patches do not require 'p4d -xu' processing.

 * PHASE 5 - Start upgraded services.
 This phase executes for all upgrades involving p4d, p4p, p4broker.
 Only a 'p4' client only upgrade skips this phase.

SPECIAL CASE - To OR THRU P4D 2019.1

 If you are upgrading from a version that is older than 2019.1, services
 are NOT restarted after the upgrade in Phase 5, except on the master.
 Services must be restarted manually on all other servers.

 For these 'to-or-thru' 2019.1 upgrades, after ensuring all replicas/edges

68 of 156 - Chapter 8. Tools and Scripts

68 © 2010-2021 Perforce Software, Inc.

 are caught up (per 'p4 pull -lj'), shutdown all servers other than the
 master.

 Proceeding outer-to-inner, execute this script like so on all machines
 except the master:

 1. Deploy new executables in /p4/sdp/helix_binaries
 2. Stop p4d.
 3. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.
 4. Run 'upgrade.sh -M' to update symlinks.
 5. Do the upgrade manually with: p4d -xu
 6. Leave the server offline.

 On the master, execute like this:

 1. Deploy new executables in /p4/sdp/helix_binaries
 2. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.
 3. upgrade.sh

 When the script completes (it will wait for 'p4 storage' upgrades),
 restart services manually after the upgrade in the 'inner-to-outer'
 direction. Restart services on replicas/edges going inner-to-outer

 This procedure requiring extra steps is specific to 'to-or-thru' P4D 2019.1
 upgrades. For upgrades starting from P4D 2019.1 or later, things are simpler.

UPGRADES FOR P4D 2019.1+

 For upgrades where the P4D start version is 2019.1 and going to any subsequent
 version, run this script going outer-to-inner. On each machine, it leaves the
 services online and running. Going in the outer-to-inner direction an all
 servers, do:

 1. Deploy new executables in /p4/sdp/helix_binaries
 2. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.
 3. upgrade.sh

UPGRADE PREPARATION

 The steps for deploying new binaries to server machines and running verify_sdp.sh
 (and potentially correcting any issues it discovers) can and should be done before
 the time or even day of any planned upgrade.

UPGRADING HELIX CORE - P4D

 The p4d process, the Perforce Helix Core Server, is the center of the Perforce
 Helix universe, and the only server with a significant database component.
 Most of the upgrade phases above are about performing the p4d upgrade.

Chapter 8. Tools and Scripts - 69 of 156

© 2010-2021 Perforce Software, Inc. 69

 This 'upgrade.sh' script requires that the 'p4d' service be running at the
 beginning of processing if p4d is to be upgraded, and will abort if p4d is
 not running.

ORDER OF UPGRADES

 Any given Perforce Helix installation will have least one p4d master server, and
 may have several other p4d servers deployed on different machines as replicas and
 edge servers. When upgrading multiple p4d servers for any given instance (i.e.
 any given data set, with a unique set of changelist numbers and users), the order
 in which upgrades are performed matters. Upgrades must be done in "outer to
 inner" order.

 The master server, at the center of the topology, is the innermost server and
 must be upgraded last. Any replicas or edge servers connected directly to the
 master constitute the next outer circle. These can be upgraded in any order
 relative to each other, but must be done before the master and after any
 replicas farther out from the master in the topology. So this 'upgrade.sh'
 script should be run first on the server machines that are "outermost" from
 the master from a replication perspective, and moving inward. The last run is
 done on the master server machine.

 Server machines running only proxies and brokers do not have a strict order
 dependency for upgrades. These are commonly done in the same "outer to inner"
 methodology as p4d for process consistency rather than strict technical need.

 See the SDP_Guide.Unix.html for more information related to performing global
 topology upgrades.

MASTER JOURNAL ROTATIONS

 This script helps minimize downtime for upgrades by taking advantage of the SDP
 offline checkpoint mechanism. Rather than wait for a full checkpoint, a journal
 is rotated and replayed to the offline_db. This typically takes very little
 time compared to a checkpoint, reducing downtime needed for the overall upgrade.

 When the master server is upgraded, two rotations of the master server's journal
 occur during processing. The first journal rotation occurs before any upgrade
 processing occurs, i.e. before the new binaries are added and symlinks are
 updated. This gives a clean rollback point.

 Later, after the p4d has started and p4d performs its journaled upgrade
 processing, a second journal rotation occurs in Phase 5. This second journal
 rotation captures all upgrade-related processing in a separately numbered journal.

UPGRADING HELIX BROKER

 Helix Broker (p4broker) servers are commonly deployed on the same machine as a
 Helix Core server, and can also be deployed on stand-alone machines (e.g.
 deployed to a DMZ host to provide secure access outside a corporate firewall).

70 of 156 - Chapter 8. Tools and Scripts

70 © 2010-2021 Perforce Software, Inc.

 Helix Brokers configured in the SDP environment can use a default configuration
 file, and may have other configurations. The default configuration is the done
 defined in /p4/common/config/p4_N.broker.cfg (or a host-specific override file
 if it exists named /p4/common/config/p4_N.broker.<short_hostname>.cfg). Other
 broker configurations may exist, such as a DFM (Down for Maintenance) broker
 config /p4/common/config/p4_N.broker.dfm.cfg.

 During upgrade processing, this 'upgrade.sh' script only stops and restarts the
 broker with the default configuration. Thus, if coordinating DFM brokers, first
 manually shutdown the default broker and start the DFM brokers before calling
 this script. This script will leave the DFM brokers running while adding the
 new binaries and updating the symlinks. (Note: Depending on how services
 are configured, this DFM configuration might not survive a machine reboot.
 typically the default broker will come online after a machine reboot).

 This 'upgrade.sh' script will stop the p4broker service if it is running at the
 beginning of processing. If it was stopped, it will be restarted after the new
 binaries are in place and symlinks are updated. If p4broker was not running at the
 start of processing, new binaries are added and symlinks updated, but the
 p4broker server will not be started.

UPGRADING HELIX PROXY

 Helix Proxy (p4p) are commonly deployed on a machine by themselves, with no p4d
 and no broker. It may also be run on the same machine as p4d.

 This 'upgrade.sh' script will stop the p4p service if it is running at the
 beginning of processing. If it was stopped, it will be restarted after the new
 binaries are in place and symlinks are updated. If p4p was not running at the
 start of processing, new binaries are added and symlinks updated, but the p4p
 server will not be started.

UPGRADING HELIX P4 COMMAND LINE CLIENT

 The command line client, 'p4', is upgraded in Phase 2 by addition of new
 binaries and updating of symlinks.

STAGING HELIX BINARIES

 If your server can reach the Perforce FTP server over the public internet, a
 script can be used from the /p4/sdp/helix_binaries directory to get the latest
 binaries:

 $ cd /p4/sdp/helix_binaries
 $./get_helix_binaries.sh

 If your server cannot reach the Perforce FTP server, perhaps due to outbound
 network firewall restrictions or operating on an "air gapped" network,
 use the '-n' option to see where Helix binaries can be acquired from:

Chapter 8. Tools and Scripts - 71 of 156

© 2010-2021 Perforce Software, Inc. 71

 $ cd /p4/sdp/helix_binaries
 $./get_helix_binaries.sh -n

OPTIONS:
 <instance>
 Specify the SDP instance name to add. This is a reference to the Perforce
 Helix Core data set. This defaults to the current instance based on the
 $SDP_INSTANCE shell environment variable. If the SDP shell environment is
 not loaded, this option is required.

 -p Specify '-p' to halt processing after preflight checks are complete,
 and before actual processing starts. By default, processing starts
 immediately upon successful completion of preflight checks.

 -Od
 Specify '-Od' to override the rule preventing downgrades.

 WARNING: This is an advanced option intended for use by or with the
 guidance of Perforce Support or Perforce Consulting.

 -Osp
 Specify '-Osp' to override the sudo preflight, skipping that check.

 WARNING: This is an advanced option intended for use by or with the
 guidance of Perforce Support or Perforce Consulting.

 -I Specify '-I' to ignore preflight errors. Use of this flag is STRONGLY
 DISCOURAGED, as the preflight checks are essential to ensure a safe
 and smooth migration. If used, preflight checks are still done so
 their errors are recorded in the upgrade log, and then the migration
 will attempt to proceed.

 WARNING: This is an advanced option intended for use by or with the
 guidance of Perforce Support or Perforce Consulting.

 -M Specify '-M' if you plan to do a manual upgrade. With this option,
 only Phase 2 processing, adding new staged binaries and updating
 symlinks, is done by this script.

 WARNING: This is an advanced option intended for use by or with the
 guidance of Perforce Support or Perforce Consulting.

 -c Specify '-c' to execute a command to upgrade the Protections table
 comment format after the p4d upgrade, by using a command like:

 p4 protect --convert-p4admin-comments -o | p4 -s protect -i

 By default, this Protections table conversion is not performed. In some
 environments with custom policies related to update of the protections
 table, this command may not work.

72 of 156 - Chapter 8. Tools and Scripts

72 © 2010-2021 Perforce Software, Inc.

 The new style of comments and the '--convert-p4admin-comments' option
 was introduced in P4D 2016.1.

 -L <log>
 Specify the path to a log file, or the special value 'off' to disable
 logging. By default, all output (stdout and stderr) goes to this file
 in the /p4/N/logs directory (where N is the SDP instance name):

 upgrade.p4_N.<datestamp>.log

 NOTE: This script is self-logging. That is, output displayed on the
 screen is simultaneously captured in the log file. Do not run this
 script with redirection operators like '> log' or '2>&1', and do not
 use 'tee.'

 Logging can only be disabled with '-L off' if the '-n' or '-p' flags
 are used. Disabling logging for actual upgrades is not allowed.

 -y Specify the '-y' option to confirm that the upgrade should be done.

 By default, this script operates in No-Op mode, meaning no actions
 that affect data or structures are taken. Instead, commands that would
 be run are displayed. This mode can be educational, showing various
 steps that will occur during an actual upgrade.

DEBUGGING OPTIONS:
 -d Increase verbosity for debugging.

 -D Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message

EXAMPLES:
 EXAMPLE 1: Preflight Only

 To see if an upgrade is needed for this instance, based on binaries
 staged in /p4/sdp/helix_binaries, use the '-p' flag to execute only the preflight
 checks, and disable logging, as in this example:

 $ cd /p4/common/bin
 $./upgrade.sh 1 -p -L off

 EXAMPLE 2: Typical Usage

 Typical usage is with just the SDP instance name as an argument, e.g.
 instance '1', and no other parameters, as in this example:

 $ cd /p4/common/bin
 $./upgrade.sh 1

Chapter 8. Tools and Scripts - 73 of 156

© 2010-2021 Perforce Software, Inc. 73

 This first runs preflight checks, and aborts if preflight checks
 detected any issues. The it gives a preview of the upgrade. A
 successful preview completes with a line near the end that looks like
 this sample:

 Success: Finished p4_1 Upgrade.

 If the preview is successful, then proceed with the real upgrade using
 the -y flag:

 $./upgrade.sh 1 -y

 EXAMPLE 3: Simplified

 If the standard SDP shell environment is loaded, upgrade.sh will be in
 the path, so the 'cd' command to /p4/common/bin is not needed. Also,
 the SDP_INSTANCE shell environment variable will be defined, so the
 'instance' parameter can be dropped, with simply a call to the script
 needed. First do a preview:

 $ upgrade.sh

 Review the output of the preview, looking for the 'Success: Finished'
 message near the end of the output. If that exists, then execute again
 with the '-y' flag to execute the actual migration:

 $ upgrade.sh -y

CUSTOM PRE- AND POST- UPGRADE AUTOMATION HOOKS:
 This script can execute custom pre- and post- upgrade scripts. This
 can be useful to incorporate site-specifc elements of an upgrade.

 If the file /p4/common/site/upgrade/pre-upgrade.sh exists and is
 executable, it will be executed as a pre-upgrade script. If the file
 /p4/common/site/upgrade/post-upgrade.sh exists and is executable,
 it will be executed as a post-ugprade script.

 Pre- and post- upgrade scripts are called with an SDP instance
 parameter, and an optional '-y' flag to confirm actual processing is
 to be done. Custom scripts are expected to operate in preview mode
 by default, taking no actions that affect data (just as this script
 behaves). If this upgrade.sh script is given the '-y' flag, that
 option is passed to the custom script as well, indicating active
 processing should occur.

 Pre- and post- upgrade scripts are expected to exit with a zero exit
 code to indicate success, and non-zero to indicate failure.

 The custom pre-upgrade script is executed after standard preflight
 checks complete successfully. If the '-I' flag is used to ignore the

74 of 156 - Chapter 8. Tools and Scripts

74 © 2010-2021 Perforce Software, Inc.

 status of preflight checks, the custom pre-upgrade script is
 executed regardless of the status of preflight checks. Preflight
 checks are executed before actual upgrade processing commences. If a
 custom pre-upgrade script indicates a failure, the overall upgrade
 process aborts.

 The post-upgrade custom script is executed after the main upgrade
 is successful.

 Success or failure of pre- and post- upgrade scripts is reported in
 the log. These scripts do not require independent logging, as all
 standard and error output is captured in the log of this upgrade.sh
 script.

 TIP: Be sure to fully test custom scripts in a test environment
 before incorporating them into an upgrade on production systems.

SEE ALSO:
 The /verify_sdp.sh script is used for preflight checks.

 The /p4/sdp/helix_binaries/get_helix_binaries.sh script acquires new binaries
 for upgrades.

 Both scripts sport the same '-h' (short help) and '-man' (full manual)
 usage options as this script.

LIMITATIONS:
 This script does not handle upgrades of 'p4dtg', Helix Swarm,
 Helix4Git, or any other software. It only handles upgrades of
 p4d, p4p, p4broker, and the p4 client binary on the SDP-managed
 server machine on which it is executed.

8.2.3. sdp_upgrade.sh

This script will perform an upgrade of the SDP itself - see Section 6.3, “Upgrading the SDP”

Usage

USAGE for sdp_upgrade.sh v1.7.6:

 sdp_upgrade.sh [-y] [-p] [-L <log>|off] [-D]

 or

sdp_upgrade.sh -h|-man

This script must be executed from the 'sdp_upgrade' directory in the extracted
SDP tarball.

Typical operation starts like this:

Chapter 8. Tools and Scripts - 75 of 156

© 2010-2021 Perforce Software, Inc. 75

cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
./sdp_upgrade.sh -h

DESCRIPTION:

 This script upgrades Perforce Helix Server Deployment Package (SDP) from
 SDP 2020.1 to the version included in the latest SDP version, SDP
 2022.2.

 == Pre-Upgrade Planning ==

 This script will upgrade the SDP if the pre-upgrade starting SDP version
 is SDP 2020.1 or later, including any/all patches of SDP
 2020.1.

 If the current SDP version is older than 2020.1, it must first be upgraded
 to SDP 2020.1 using the SDP Legacy Upgrade Guide. For upgrading from
 pre-20.1 versions dating back to 2007, in-place or migration-style upgrades
 can be done. See:

 https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/view/main/doc/SDP_Legacy_Upgrades.Unix.html

 The SDP should always be upgraded to the latest version first before
 Helix Core binaries p4d/p4broker/p4p are upgraded using the SDP
 upgrade.sh script.

 Upgrading the SDP first ensures the version of the SDP you have
 is compatible with the latest versions of p4d/p4broker/p4p/p4, and
 will always be compatible with all supported versions of these
 Helix Core binaries.

 When this script is used, i.e. when the current SDP version is 2020.1
 or newer, the SDP upgrade procedure does not require downtime for any
 running Perforce Helix services, such as p4d, p4broker, or p4p. This
 script is safe to run in environments where live p4d instances are running,
 and does not require p4d, p4broker, p4p, or any other services to be stopped
 or upgraded. Upgrade of the SDP is cleanly separate from the upgrade the
 Helix Core binaries. The upgrade of the SDP can be done immediately prior to
 Helix Core upgrades, or many days prior.

 There can be multiple SDP instances on a given server machine. This script
 will upgrade the SDP on the machine, and thus after the upgrade all
 instances will immediately use new SDP scripts and updated instance
 configuration files, e.g. the /p4/common/config/p4_N.vars files. However,
 all instances will continue running the same Helix Core binaries. Any live
 running Helix Core server process on the machine are unaffected by the
 upgrade of SDP.

76 of 156 - Chapter 8. Tools and Scripts

76 © 2010-2021 Perforce Software, Inc.

 This script will upgrade the SDP on a single machine. If your Perforce
 Helix topology has multiple machines, the SDP should be upgraded on all
 machines. The upgrade of SDP on multiple machines can be done in any order,
 as there is no cross-machine dependency requiring the SDP to be the same
 version. (The order of upgrade of Helix Core services and binaries such as
 p4d in global topologies with replicas and edge servers does matter, but is
 outside the scope of this script).

 Planning Recap:
 1. The SDP can be upgraded without downtime when this script is used, i.e.
 when the starting SDP version is 2020.1 or later.
 2. Upgrade SDP on all machines, in any order, before upgrading p4d and other
 Helix binaries.

 == NFS Sharing of HxDepots ==

 In some environments, the HxDepots volume is shared across multiple server
 machines with NFS, typically mounted as /hxdepots. This script updates the
 /hxdepots/p4/common and /hxdepots/sdp directories, both of which are on the
 NFS mount. Thus upgrading SDP on a single machine will effectively and
 immediately upgrade the SDP on all machines that share /hxdepots from the
 same NFS-mounted storage. This is a safe and valid configuration, as
 upgrading the SDP does not affect any live running p4d servers.

 == Acquiring the SDP Package ==

 This script is part of the SDP package (tarball). It must be run from an
 extracted tarball directory. Acquiring the SDP tarball is a manual operation.

 The SDP tarball must be extracted such that the 'sdp' directory appears as
 <HxDepots>/downloads/new/sdp, where <HxDepots> defaults to /hxdepots. To
 determine the value for <HxDepots> at your site you can run the following:

 bash -c 'cd /p4/common; d=$(pwd -P); echo ${d%/p4/common}'

 On this machine, that value is: /hxdepots

 Following are sample commands to acquire the latest SDP, to be executed
 as the user perforce:

 cd /hxdepots
 [[-d downloads]] || mkdir downloads
 cd downloads
 [[-d new]] && mv new old.$(date +'%Y%m%d-%H%M')
 curl -s -k -O https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/download/downloads/sdp.Unix.tgz
 mkdir new
 cd new
 tar -xzf ../sdp.Unix.tgz

 After extracting the SDP tarball, cd to the directory where this

Chapter 8. Tools and Scripts - 77 of 156

© 2010-2021 Perforce Software, Inc. 77

 sdp_upgrade.sh script resides, and execute it from there.

 cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
 ./sdp_upgrade.sh -man

 == Preflight Checks ==

 Prior to upgrading, preflight checks are performed to ensure the
 upgrade can be completed successfully. If the preflight checks
 fail, the upgrade will not start.

 Sample Preflight Checks:

 * The existing SDP version is verified to be SDP 2020.1+.
 * Various basic SDP structural checks are done.
 * The /p4/common/bin/p4_vars is checked to confirm it can be upgraded.
 * All /p4/common/config/p4_N.vars files are checked to confirm they can be
upgraded.

 == Automated Upgrade Processing ==

 Step 1: Backup /p4/common.

 The existing <HxDepots>/p4/common structure is backed up to:

 <HxDepots>/p4/common.bak.<YYYYMMDD-hhmm>

 Step 2: Update /p4/common.

 The existing SDP /p4/common structure is updated with new
 versions of SDP files.

 Step 3: Generate the SDP Environment File.

 Regenerate the SDP general environment file,
 /p4/common/bin/p4_vars.

 The template is /p4/common/config/p4_vars.template.

 Step 4: Generate the SDP Instance Files.

 Regenerate the SDP instance environment files for all instances based on
 the new template.

 The template is /p4/common/config/instance_vars.template.

 For Steps 3 and 4, the re-generation logic will preserve current
 settings. If upgrading from SDP r20.1, any custom logic that
 exists below the '### MAKE LOCAL CHANGES HERE' tag will be
 split into separate files. Custom logic in p4_vars will be moved
 to /p4/common/site/config/p4_vars.local. Custom logic in

78 of 156 - Chapter 8. Tools and Scripts

78 © 2010-2021 Perforce Software, Inc.

 p4_N.vars files will be moved to /p4/common/site/config/p4_N.vars.local.

 Note: Despite these changes, the mechanism for loading the SDP shell
 environment remains unchanged since 2007, so it looks like:

 $ source /p4/common/bin/p4_vars N

 Changes to the right-side of assignments for specific are preserved
 for all defined SDP settings. For p4_vars, preserved settings are:
 - OSUSER (determined by current owner of /p4/common)
 - KEEPLOGS
 - KEEPCKPS
 - KEEPJNLS

 For instance_vars files, preserved settings are:
 - MAILTO
 - MAILFROM
 - P4USER
 - P4MASTER_ID
 - SSL_PREFIX
 - P4PORTNUM
 - P4BROKERPORTNUM
 - P4MASTERHOST
 - PROXY_TARGET
 - PROXY_PORT
 - PROXY_V_FLAGS
 - P4DTG_CFG
 - SNAPSHOT_SCRIPT
 - SDP_ALWAYS_LOGIN
 - SDP_AUTOMATION_USERS
 - SDP_MAX_START_DELAY_P4D
 - SDP_MAX_START_DELAY_P4BROKER
 - SDP_MAX_START_DELAY_P4P
 - SDP_MAX_STOP_DELAY_P4D
 - SDP_MAX_STOP_DELAY_P4BROKER
 - SDP_MAX_STOP_DELAY_P4P
 - VERIFY_SDP_SKIP_TEST_LIST
 - The 'umask' setting.
 - KEEPLOGS (if set)
 - KEEPCKPS (if set)
 - KEEPJNLS (if set)

 Note that the above list excludes any values that are calculated.

 Step 5: Remove Deprecated Files.

 Deprecated files will be purged from the SDP structure. The list of
 files to be cleaned are listed in this file:

 /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade/deprecated_files.txt

Chapter 8. Tools and Scripts - 79 of 156

© 2010-2021 Perforce Software, Inc. 79

 Paths listed in this file are relative to the '/p4' directory (or
 more accurately the SDP Install Root directory, which is always
 '/p4' except in SDP test production environments).

 Step 6: Update SDP crontabs.

 No crontab updates are required for this SDP upgrade.

 == Post-Upgrade Processing ==

 This script provides guidance on any post-processing steps. For some
 releases, this may include upgrades to crontabs.

OPTIONS:
-y Specify the '-y' option to confirm that the SDP upgrade should be done.

 By default, this script operates in No-Op mode, meaning no actions
 that affect data or structures are taken. Instead, commands that would
 be run are displayed. This mode can be educational, showing various
 steps that will occur during an actual upgrade.

 -p Specify '-p' to halt processing after preflight checks are complete,
 and before actual processing starts. By default, processing starts
 immediately upon successful completion of preflight checks.

 -L <log>
 Specify the log file to use. The default is /tmp/sdp_upgrade.<timestamp>.log

 The special value 'off' disables logging to a file. This cannot be
 specified if '-y' is used.

 -d Enable debugging verbosity.

 -D Set extreme debugging verbosity.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message

FILES AND DIRECTORIES:
 Name: SDPCommon
 Path: /p4/common
 Notes: This sdp_upgrade.sh script updates files in and under this folder.

 Name: HxDepots
 Default Path: /hxdepots
 Notes: The folder containing versioned files, checkpoints, and numbered
 journals, and the SDP itself. This is commonly a mount point.

 Name: DownloadsDir
 Default Path: /hxdepots/downloads

80 of 156 - Chapter 8. Tools and Scripts

80 © 2010-2021 Perforce Software, Inc.

 Name: SDPInstallRoot
 Path: /p4

EXAMPLES:
 This script must be executed from 'sdp_upgrade' directory in the extracted
 SDP tarball. Typical operation starts like this:

 cd /hxdepots/downloads/new/sdp/Server/Unix/p4/common/sdp_upgrade
 ./sdp_upgrade.sh -h

 All following examples assume operation from that directory.

 Example 1: Prelight check only:

 sdp_upgrade.sh -p

 Example 2: Preview mode:

 sdp_upgrade.sh

 Example 3: Live operation:

 sdp_upgrade.sh -y

LOGGING:
 This script generates a log file, ~/sdp_upgrade.<timestamp>.log
 by default. See the '-L' option above.

CUSTOM PRE- AND POST- UPGRADE AUTOMATION HOOKS:
 This script can execute custom pre- and post- upgrade scripts. This
 can be useful to incorporate site-specific elements of an SDP upgrade.

 If the file /p4/common/site/upgrade/pre-sdp_upgrade.sh exists and is
 executable, it will be executed as a pre-upgrade script. If the file
 /p4/common/site/upgrade/post-sdp_upgrade.sh exists and is executable,
 it will be executed as a post-upgrade script.

 Pre- and post- upgrade scripts are passed the '-y' flag to confirm
 actual processing is to be done. Custom scripts are expected to
 operate in preview mode by default, taking no actions that affect data
 (just as this script behaves). If this sdp_upgrade.sh script is given
 the '-y' flag, that option is passed to the custom script as well,
 indicating active processing should occur.

 Pre- and post- upgrade scripts are expected to exit with a zero exit
 code to indicate success, and non-zero to indicate failure.
 The custom pre-upgrade script is executed after standard preflight
 checks complete successfully. Preflight checks are executed before
 actual upgrade processing commences. If a custom pre-upgrade script
 indicates a failure, the overall upgrade process aborts.

Chapter 8. Tools and Scripts - 81 of 156

© 2010-2021 Perforce Software, Inc. 81

 The post-upgrade custom script is executed after the main SDP upgrade
 is successful.

 Success or failure of pre- and post- upgrade scripts is reported in
 the log. These scripts do not require independent logging, as all
 standard and error output is captured in the log of this sdp_upgrade.sh
 script.

 TIP: Be sure to fully test custom scripts in a test environment
 before incorporating them into an upgrade on production systems.

EXIT CODES:
 An exit code of 0 indicates no errors were encountered during the
 upgrade. A non-zero exit code indicates the upgrade was aborted
 or failed.

8.3. Legacy Upgrade Scripts

8.3.1. clear_depot_Map_fields.sh

The clear_depot_Map_fields.sh script is used when upgrading to SDP from versions earlier than SDP
2020.1. Its usage is discussed in SDP Legacy Upgrade Guide (for Unix).

Usage

USAGE for clear_depot_Map_fields.sh v1.2.0:

clear_depot_Map_fields.sh [-i <instance>] [-L <log>] [-v<n>] [-p|-n] [-D]

or

clear_depot_Map_fields.sh [-h|-man|-V]

DESCRIPTION:
 This script obsoletes the SetDefaultDepotSpecMapField.py trigger.

 It does so by following a series of steps. First, it ensures that
 the configurable server.depot.root is set correctly, setting it
 if it is not already set.

 Next, the Triggers table is checked to ensure the call to the
 SetDefaultDepotSpecMapField.py is not called; it is deleted from
 the Triggers table if found.
 Last, it resets the 'Map:' field of depot specs for depot
 types where that is appropriate, setting it to the default value of
 '<DepotName>/...', so that it honors the server.depot.root
 configurable. This is done for depots of these types:

82 of 156 - Chapter 8. Tools and Scripts

82 © 2010-2021 Perforce Software, Inc.

SDP_Legacy_Upgrades.Unix.html

 * stream
 * local
 * spec
 * unload
 * graph

 but not these:
 * archive
 * remote

 If an unknown depot type is encountered, the 'Map:' field is reset
 as well if it is set.

 This script does a preflight check first, reporting any cases
 where the starting conditions are not as expected. These conditions
 are treated as Errors, and will abort processing:

 * Depot Map field set to something other than the default.
 * Configurable server.depot.root is set, but to something other
 than what it should be.

 The following are treated as Warnings, and will be reported but
 will not prevent processing.

 * Configurable server.depot.root is already set.
 * SetDefaultDepotSpecMapField.py not found in triggers.
 * Depot already has 'Map:' field set to the default value:
 <DepotName>/...

OPTIONS:
 -v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

 -L <log>
 Specify the path to a log file, or the special value 'off' to disable
 logging. By default, all output (stdout and stderr) goes to
 EDITME_DEFAULT_LOG

 NOTE: This script is self-logging. That is, output displayed on the screen
 is simultaneously captured in the log file. Do not run this script with
 redirection operators like '> log' or '2>&1', and do not use 'tee.'

 -p Run preflight checks only, and then stop. By default, actual changes
 occur if preflight checks find no issues.

 -n No-Op. No actions are taken that would affect data significantly;
 instead commands are displayed rather than executed.

 -D Set extreme debugging verbosity.

HELP OPTIONS:

Chapter 8. Tools and Scripts - 83 of 156

© 2010-2021 Perforce Software, Inc. 83

 -h Display short help message
 -man Display man-style help message
 -V Display version info for this script and its libraries.

EXAMPLES:
 A typical flow for this script is to do a preflight first, and then
 a live run, for any given instance:
 clear_depot_Map_fields.sh -i 1 -p
 clear_depot_Map_fields.sh -i 1

 Note that if using '-n', the '-v5' flag should also be used.

8.4. Core Scripts
The core SDP scripts are those related to checkpoints and other scheduled operations, and all run
from /p4/common/bin.

If you source /p4/common/bin/p4_vars <instance> then the /p4/common/bin directory will be added to
your $PATH.

8.4.1. p4_vars

The /p4/common/bin/p4_vars defines the SDP shell environment, as required by the Perforce Helix
server process. This script uses a specified instance number as a basis for setting environment
variables. It will look for and open the respective p4_<instance>.vars file (see next section).

This script also sets server logging options and configurables.

It is intended to be used by other scripts for common environment settings, and also by users for
setting the environment of their Bash shell.

Usage

source /p4/common/bin/p4_vars 1

See also: Section 4.4, “Setting your login environment for convenience”

8.4.2. p4_<instance>.vars

Defines the environment variables for a specific instance, including P4PORT etc.

This script is called by Section 8.4.1, “p4_vars” - it is not intended to be called directly by a user.

For instance 1:

p4_1.vars

For instance art:

84 of 156 - Chapter 8. Tools and Scripts

84 © 2010-2021 Perforce Software, Inc.

p4_art.vars

Occasionally you may need to edit this script to update variables such as P4MASTERHOST or similar.

Location: /p4/common/config

8.4.3. p4master_run

The /p4/common/bin/p4master_run is a wrapper script to other SDP scripts. This ensures that the shell
environment is loaded from p4_vars before executing the script. It provides a '-c' flag for silent
operation, used in many crontab so that email is sent from the scripts themselves.

This is especially useful for calling scripts that do not set their own shell environment, such as
Python or Perl scripts. Historically it was used as a wrapper for all SDP scripts.

Many of the bash shell scripts in the SDP set their own environment (by doing
source /p4/common/bin/p4_vars N for their instance); those bash shell scripts do not
need to be called with the p4master_run wrapper.

8.4.4. daily_checkpoint.sh

The /p4/common/bin/daily_checkpoint.sh script configured by default to run six days a week using
crontab. The script:

• truncates the journal

• replays it into the offline_db directory

• creates a new checkpoint from the resulting database files

• recreates the offline_db database from the new checkpoint.

This procedure rebalances and compresses the database files in the offline_db directory.

These can be rotated into the live (root) database, by the script Section 8.4.10,
“refresh_P4ROOT_from_offline_db.sh”

Usage

/p4/common/bin/daily_checkpoint.sh <instance>
/p4/common/bin/daily_checkpoint.sh 1

8.4.5. recreate_offline_db.sh

The /p4/common/bin/recreate_offline_db.sh recovers the offline_db database from the latest
checkpoint and replays any journals since then. If you have a problem with the offline database
then it is worth running this script first before running Section 8.4.6, “live_checkpoint.sh”, as the
latter will stop the server while it is running, which can take hours for a large installation.

Run this script if an error occurs while replaying a journal during daily checkpoint process.

Chapter 8. Tools and Scripts - 85 of 156

© 2010-2021 Perforce Software, Inc. 85

This script recreates offline_db files from the latest checkpoint. If it fails, then check to see if the
most recent checkpoint in the /p4/<instance>/checkpoints directory is bad (ie doesn’t look like the
right size compared to the others), and if so, delete it and rerun this script. If the error you are
getting is that the journal replay failed, then the only option may be to run Section 8.4.6,
“live_checkpoint.sh” script.

Usage

/p4/common/bin/recreate_offline_db.sh <instance>
/p4/common/bin/recreate_offline_db.sh 1

8.4.6. live_checkpoint.sh

The /p4/common/bin/live_checkpoint.sh is used to initialize the SDP offline_db. It must be run once,
typically manually during initial installation, before any other scripts that rely on the offline_db
can be used, such as daily_checkpoint.sh and rotate_journal.sh.

This script can also be used in some cases to repair the offline_db if it has has become corrupt, e.g.
due to a sudden power loss while checkpoint processing was running.

Be aware this script locks the live database for the duration of the checkpoint
which can take hours for a large installation (please check the
/p4/1/logs/checkpoint.log for the most recent output of daily_checkpoint.sh to see
how long checkpoints take to create/restore).

Note that when a live_checkpoint.sh runs, the server will be unresponsive to users for a time. On a
new installation this "hang time" will be imperceptible, but over time it can grow to minutes and
eventually hours. The idea is that live_checkpoint.sh should be used only very sparingly, and is not
scheduled as a routine operation.

This performs the following actions:

• Does a journal rotation, so the active P4JOURNAL file becomes numbered.

• Creates a checkpoint from the live database db.* files in the P4ROOT.

• Recovers the offline_db database from that checkpoint to rebalance and compress the files

Run this script when creating the server instance and if an error occurs while replaying a journal
during the off-line checkpoint process.

Usage

/p4/common/bin/live_checkpoint.sh <instance>
/p4/common/bin/live_checkpoint.sh 1

8.4.7. p4verify.sh

The /p4/common/bin/p4verify.sh script verifies the integrity of the 'archive' files, all versioned files
in your repository. This script is run by crontab on a regular basis, typically weekly.

86 of 156 - Chapter 8. Tools and Scripts

86 © 2010-2021 Perforce Software, Inc.

It verifies both shelves and submitted archive files

Any errors in the log file (e.g. /p4/1/logs/p4verify.log) should be handled according to KB articles:

• MISSING! errors from p4 verify

• BAD! error from p4 verify

If in doubt contact support-helix-core@perforce.com

Our recommendation is that you should expect this to be without error, and you should address
errors sooner rather than later. This may involve obliterating unrecoverable errors.

when run on replicas, this will also append the -t flag to the p4 verify command
to ensure that MISSING files are scheduled for transfer. This is useful to keep
replicas (including edge servers) up-to-date.

Usage

/p4/common/bin/p4verify.sh <instance>
/p4/common/bin/p4verify.sh 1

USAGE for v5.13.3:

p4verify.sh [<instance>] [-N] [-nu] [-nr] [-ns] [-nS] [-a] [-nt] [-nz] [-o
BAD|MISSING] [-chunks <ChunkSize>|-paths <paths_file>] [-w <Wait>] [-q
<MaxActivePullQueueSize>] [-Q MaxTotalPullQueueSize] [-recent] [-dlf
<depot_list_file>] [-I|-ignores <regex_ignores_file>] [-Ocache] [-n] [-L <log>] [-v]
[-d] [-D]

 or

p4verify.sh -h|-man

DESCRIPTION:

 This script performs a 'p4 verify' of all submitted and shelved versioned
 files in depots of all types except 'remote' and 'archive' type depots.

 If run on a replica, it schedules archive failures for transfer to the
 replica.

OPTIONS:
<instance>
 Specify the SDP instance. If not specified, the SDP_INSTANCE
 environment variable is used instead. If the instance is not
 defined by a parameter and SDP_INSTANCE is not defined, p4verify.sh
 exists immediately with an error message.

 -N Specify '-N' (Notify Only On Failure) to disable the default behavior

Chapter 8. Tools and Scripts - 87 of 156

© 2010-2021 Perforce Software, Inc. 87

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_verify.html
https://community.perforce.com/s/article/3186
https://community.perforce.com/s/article/2404
mailto:support-helix-core@perforce.com

 which will always send a notification which includes a report of the p4
 verify status. Specifying '-N' which change the behavior to only send
 a notification if there is an error during the p4 verify execution.
 Notification methods are email, AWS SNS, and PagerDuty. Details on
 configuration can be found in the SDP documentation. Providing the
 environment variable NOTIFY_ONLY_ON_FAILURE=1 is equivalent to the '-N'
 command line argument.

 -nu Specify '-nu' (No Unload) to skip verification of the singleton depot
 of type 'unload' (if created). The 'unload' depot is verified
 by default.

 -nr Specify '-nr' (No Regular) to skip verification of regular submitted
 archive files. The '-nr' option is not compatible with '-recent'.
 Regular submitted archive files are verified by default.

 -ns Specify '-ns' (No Spec Depot) to skip verification of singleton depot
 of type 'spec' (if created). The 'spec' depot is verified by default.

 -nS Specify '-nS' (No Shelves) to skip verification of shelved archive
 files, i.e. to skip the 'p4 verify -qS'.

 -a Specify '-a' (Archive Depots) to do verification of depots of type
 'archive'. Depots of type 'archive' are not verified by default, as
 archive depots are often physically removed from the server's
 storage subsystem for long-term cold storage.

-nt Specify the '-nt' option to avoid passing the '-t' flag to 'p4 verify'
 on a replica. By default, p4verify.sh detects if it is running on a
 replica, and if so automatically applies the '-t' flag to 'p4 verify'.
 That causes the replica to attempt to self-heal, as files that fail
 verification are scheduled for transfer from the P4TARGET server. This
 default behavior results in 'Transfer scheduled' messages in the log,
 and MISSING/BAD files are listed as 'info:' rather than 'error:'. There
 is no clear indication of whether or which of the scheduled transfers
 complete successfully, and so there may be a mix of transient/correctable
 and "real"/persistent transfer errors for files that are also BAD/MISSING
 on the master server. Specify '-nt' to ensure the log contains a list
 of files that currently fail a 'p4 verify' without attempting to transfer
 them from the master.

 -nz Specify '-nt' to skip the gzip of the old log file. By default, if a
 log with the default name or the name specified with '-L' exists at the
 start of processing, the old log is rotated and gzipped. With this option
 the old log is not zipped when rotated.

 -o BAD|MISSING
 Specify '-o MISSING' to check only whether expected archive files exist
 or not, skipping the checksum calculation of existing files. This results
 in dramatically faster, if less comprehensive, verification. This
 is particularly well suited when verification is being used to schedule

88 of 156 - Chapter 8. Tools and Scripts

88 © 2010-2021 Perforce Software, Inc.

 archive file transfers of missing files on replicas. This translates into
 passing the '--only MISSING' option to 'p4 verify'.

 Specify '-o BAD' to check only for BAD revisions. This translates into
 passing the '--only BAD' option to 'p4 verify'.

 This option requires p4d to be 2021.1 or newer. For older p4d versions,
 this option is silently ignored.

 -chunks <ChunkSize>
 Specify the maximum amount of content by size to verify at once. If
 this is specified, the depot_verify_chunks.py script is used to
 break up depots into chunks of a given size, e.g. 100M or 4G.

 The <ChunkSize> parameter must be a size value valid to pass to the
 depot_verify_chunks.py script with the '-m' option. That is,
 specifying '-chunks 200M' translates to calling depot_chunks_verify.sh
 with '-m 200M'.

 This requires the perforce-p4python3 module to be installed and the
 python3 in the PATH must be the correct one that uses the P4 module.

 Using '-chunks' is likely to result in a significantlly slower overall
 verify operation, though chuking can make it less impactful when it
 runs. Using the '-chunks' option may be necessary on very large data
 sets, e.g. if there insufficient resources to process the largest
 depots.

 The '-recent' and '-chunks' options are mutually exclusive.

 The '-chunks' and '-paths' options can be used together; see the
 description of the '-paths' option below.

 Chunking logic applies only in depots of type 'stream' or 'local'.

 -paths <paths_file>

 Specify a file containing a list of depot paths to verify, with one
 line per entry. Valid entries in the file start with '//', e.g.

 //mydepot/main/src/...

 In this example, when //mydepot depot is processed, only specified
 paths will be verified. All other depots will be processed in full.
 To verify only specified paths, combine '-paths <paths_file>' with
 '-dlf <depot_list_file>' where the depot list file contains only
 'mydepot' (per the example above).

 The '-recent' and '-paths' options are mutually exclusive.

 The '-chunks' and '-paths' options can be used together for combined

Chapter 8. Tools and Scripts - 89 of 156

© 2010-2021 Perforce Software, Inc. 89

 effects. If both options are specified, depots that contain specified
 paths are chunked based on the specified paths rather than the entire
 depot, and other paths in that depot are not processed. Depots that
 do not have any specified paths listed in the <paths_file> are
 chunked at the top/depot level directory.

 Paths specified must be in depots of type 'stream' or 'local'.

 -w <Wait>
 Specify the '-w' option, where <Wait> is a positive integer
 indicating the number of seconds to sleep between individual calls
 to 'p4 verify' commands. For example, specifying '-w 300' results
 in a delay of 5 minutes between verify commands.

 This can be used with '-chunks' to inject a delay between chunked
 depot paths. Otherwise, the delay is injected between each depot
 processed. This can significantly lengthen the overall duration
 of 'p4verify.sh' operation, but can also spread out the resource
 consumption load on a server machine.

 If shelves are procossed (regardless of whether '-chunks' is used),
 the delay is injected between each individual shelved changelist, as
 shelved changes are verified one changelist at a time. For data sets
 with a large number of shelves, it may be be wise to process shelves
 separately from submitted files if '-w' is used, a delay value to
 apply between depots may be different from that applied to
 individual changelists.

 See the '-q' option for a description of how '-q' and '-w' can be
 used together.

-q <MaxActivePullQueueSize>
 Specify the '-q' option, where <MaxActivePullQueueSize> is a positive
 integer indicating the maximum number of active pulls allowed before
 a 'p4 verify' command will be executed to transfer archives.

 The absolute maximum number of possible active pulls is affected by
 the number of 'startup.N' threads configured to pull archives files,
 and whether those threads indicate batching.

 The threads that pull archive files are those that configured to use
 the 'pull' command the '-u' option. Typically, a small number of pull
 threads are configured, between 2 and 10 or perhaps 20.

 If '-q 1' is specified, new 'p4 verify' commands will only be run
 when the active pull queue is quiet. Specifying a too-high value,
 e.g. '-q 50' if only 3 'pull -u' archive pull threads are configured,
 will be ineffective, as the active pull threads will never exceed
 3 (let alone 50).

 The current active pull queue on a replica is reported by:

90 of 156 - Chapter 8. Tools and Scripts

90 © 2010-2021 Perforce Software, Inc.

 p4 -ztag -F %replicaTransfersActive% pull -ls

 This option can be useful if using this p4verify.sh script to pull
 many or even all archives on a new replica server machine from its
 target server. The injected delays can give the server time to transfer
 archives scheduled in one call to 'p4 verify' before calling it again
 with the goal of avoidng overloading the pull queue.

 If '-w' and '-q' options are both used, the delay specified by '-w'
 is ignored unless the active pull queue size is greater than or equal
 to the specified maximum active pull queue size. The '-w' then
 essentially determines how frequently the 'p4 pull -ls' is run to
 check the active pull queue size. A reasonable set of values might
 be '-q 1 -w 10'.

 The '-q' option in mutually exclusive with '-nt'.

 The '-q' option in mutually exclusive with '-Q'.

-Q <MaxTotalPullQueueSize>
 Specify the '-Q' option, where <MaxTotalPullQueueSize> is a positive
 integer indicating the maximum number of total pulls allowed before
 a 'p4 verify' command will be executed to transfer archives.

 In certain scenarios, the pull queue can become quite massive. For
 example, if a fresh standby replica is seeded from a checkpoint
 but has no archive files, and then a 'p4verify.sh' is run, the
 verify will schedule all files to be transferred, perhaps millions.

 If the pull queue gets too large, it can impact metadata replication.
 Setting this value may help mitigate issues related to scheduling
 too many archives pulls at once, by delaying scheduling new archive
 pulls until enough previously scheduled pulls are completed.

 This option can be useful in such scenarios, if this p4verify.sh script
 is used to pull many or even all archives on a new replica server machine
 from its target server. The injected delays can give the server time to
 transfer archives scheduled in one call to 'p4 verify' before calling it
 again with the goal of avoidng overloading the pull queue.

 If individual depots contain large numbers of files, such that
 a verify on a single depot will schedule too many files to be
 transferred at once, it may be necessary to combine this option with
 the '-chunks' option to avoid overloading the transfer queue.

 WARNING: If there are files that cannot be tranferred from the
 replica's target server, the value of '-Q' must be set to higher than
 that number, or an infinite loop may occur. For example, if there are
 500 permanent "legacy" verify errors on the commit server from 10
 years ago that have long since been abandoned, those files can never

Chapter 8. Tools and Scripts - 91 of 156

© 2010-2021 Perforce Software, Inc. 91

 be transferred to any replica. Running p4verify.sh on the replica will
 cause those files to be scheduled, but as they cannot be pulled, they
 will land in the total pull queue. In this scenario, the value set
 with '-Q' must be greater than 500, or an infinite loop is possible.

 Specify '-Q 0' to disable checking the total pull queue.

 The current total pull queue on a replica is reported by:

 p4 -ztag -F %replicaTransfersTotal% pull -ls

 This option can be useful if using this p4verify.sh script to pull
 many or even all archives on a new replica server machine from its
 target server. The injected delays can give the server time to transfer
 archives scheduled in one call to 'p4 verify' before calling it again
 with the goal of avoidng overloading the pull queue.

 If '-w' and '-Q' options are both used, the delay specified by '-w'
 is ignored unless the total pull queue size is greater than or equal
 to the specified maximum total pull queue size. The '-w' then
 essentially determines how frequently the 'p4 pull -ls' is run to
 check the total pull queue size. A reasonable set of values might
 be '-q 50000 -w 10'.

 The '-Q' option in mutually exclusive with '-nt'.

 The '-Q' option in mutually exclusive with '-q'.

 -recent
 Specify that only recent changelists should be verified.
 The $SDP_RECENT_CHANGES_TO_VERIFY variable defines how many
 changelists are considered recent; the default is 200.

 If the default is not appropriate for your site, add
 "export SDP_RECENT_CHANGES_TO_VERIFY" to /p4/common/config/p4_N.vars to
 change the default for an instance, or to /p4/common/bin/p4_vars to
 change it globally. If $SDP_RECENT_CHANGES_TO_VERIFY is unset, the
 default is 200.

 When -recent is used, neither shelves nor files in the unload depot
 are verified.

 -dlf <depot_list_file>
 Specify a file containing a list of depots to process in the desired
 order. By default, all depots reported by 'p4 depots', which
 effectively results in depots processed in alphabetical order.

 This can be useful in time-sensitive situations where the order
 of processing can be prioritized, and/or to prevent processing
 certain depots.

92 of 156 - Chapter 8. Tools and Scripts

92 © 2010-2021 Perforce Software, Inc.

 The format fo the depot list file is straighforward, one line per
 depot, without the '//' nor trailling /..., so a list might look
 like this sample:

 ProjA
 ProjB
 spec
 .swarm
 unload
 archive
 ProjC

 Blank lines and lines starting with a '#' are treated as comments and
 ignored.

 WARNING: This is not intended to be the primary method of verification,
 because it would be easy to forget to add new depots to the list file.

 If the depot list file is not readable, processing aborts.

 -ignores <regex_ignores_file>
 Specify the 'verify ignores' file, a file containing a series of
 regular expression patterns representing files or file revisions
 to ignore when scanning for verify errors. Errors matching the
 pattern will be suppressed from the output captured in the log,
 and will not be considered a verification error.

 If the '-ignores' is not specified, the default verify ignores
 file is:

 /p4/common/config/p4verify.N.ignores

 where 'N' is the SDP instance name. If this file exists, it is
 considered the 'verify ignores' file.

 Specify '-ignores none' to avoid processing the standard ignores
 file.

 The patterns can be specific files, specific file paths, or broader
 patterns (e.g. in the case of entirely abandoned depots). The file
 provided is passed as the '-f <file>' option to the 'grep' utility,
 and is expected to contain a series of one-line entries, each
 containing an expression to exclude from being considered as verify
 errors reported by this script.

 You can test your expression by first using it with grep to
 ensure it suppresses errors by using a command like this sample,
 providing an older log from this script that contains errors to
 be suppressed:

 grep -Ev -f /path/to/regex_file /path/to/old/p4verify.log

Chapter 8. Tools and Scripts - 93 of 156

© 2010-2021 Perforce Software, Inc. 93

 If your server is case-sensitive, change that command to use '-i':

 grep -Evi -f /path/to/regex_file /path/to/old/p4verify.log

 This sample entry ignores a single file revision:

 //Alpha/main/docs/Expenses from February 1999.xls#3

 This sample entry ignores all revisions of a single file:

 //Alpha/main/docs/Expenses from February 1999.xls

 This sample entry ignores all entries in the spec depot
 related to client specs:

 //spec/client

 This sample uses the MD5 checksum from the verify error, just
 to illustrate that this can be used as an alternative to
 specifying file paths:

 D34989BFB8D9B0FB9866C4A604A05410

 This sample ignores BAD! (but not MISSING!) errors under the
 //Beta/main/src directory tree:

 //Beta/main/src/.* BAD!

 WARNING: Ensure that the regex file provided does NOT contain
 any blank lines or comments. The file should contain only tested
 regex patterns.

 This option is intended to provide a way to ignore unrecoverably lost
 file revisions from things like past infrastructure failures, for
 which search and recovery efforts have been abandoned. This option
 subtly changes the question answered by this script from "Are there any
 verify errors?" to "Are there any new verify errors, errors we don't
 already know about?"

 WARNING: This option is not intended to be incorporated into the primary
 method of verification, because ignoring archive errors in this script
 does not solve the problem at its source. Ideally, the root cause of
 the verify errors should be addressed by recovering lost archives,
 injecting replacement content, or other means. So long as verify errors
 remain, even if ignored by this option, users attempting to access the
 revisions will still see Librarian errors, and replicas will encounter
 errors trying to pull the missing archives. This option could increase
 the risk that such revisions are never dealt with.

 -Ocache

94 of 156 - Chapter 8. Tools and Scripts

94 © 2010-2021 Perforce Software, Inc.

 Specify '-Ocache' to attempt a verification on a replica configured
 with a 'lbr.replication' replication configuration setting value
 of 'cache'. By default, if the 'lbr.replication' configurable is
 set to 'cache', this script aborts, as replication of such a depot
 will schedule transfers that are likely unintended. This is a
 safety feature.

 The 'cache' mode is generally used on replicas or edge servers with
 limited disk space. Because running a verify will cause transfers
 of any missing files, this could result in filling up the disk.

 Use of '-Ocache' is strongly discouraged unless combined with
 other options to ensure that only targeted paths are scheduled
 for transfer.

 -v Verbose. Show output of verify attempts, which is suppressed by default.
 Setting SDP_SHOW_LOG=1 in the shell environment has the same effect as -v.

 The default behavior of this script is to generate no terminal output,
 but instead to write output into a log file -- see LOGGING below. If
 '-v' is specified, the generated log is sent to stdout at the end of
 processing. This flag is not recommended for routine cron operation or
 for large data sets.

 The -chunks and -recent options are mutually exclusive.

 -L <log>
 Specify the log file to use. The default is /p4/N/logs/p4verify.log

 Log rotation and old log cleanup logic does not apply to log files
 specified with -L. Thus, using -L is not recommended for routine
 scheduled operation, e.g. via crontab.

DEBUGGING OPTIONS:
 -n No-Operation (NO_OP) mode, for debugging.

 Display certain commands that would be executed without executing
 them. When '-n' is used, commands that might take a long time to
 run or affect data are only displayed.

 Even in '-n' mode, some information-gathering commands such as
 listing shelved CLs are executed, which may cause the script to take
 a bit of time to run on a large data set even in dry run mode.

 -d Specify that debug messages should be displayed.

 -D Use bash 'set -x' extreme debugging verbosity, and imply '-d'.

 -L off
 The special value '-L off' disables logging. This can only be used
 with '-n' for debugging.

Chapter 8. Tools and Scripts - 95 of 156

© 2010-2021 Perforce Software, Inc. 95

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message

EXAMPLES:
 Example 1: Full Verify

 This script is typically called via cron with only the instance
 parameter as an argument, e.g.:

 p4verify.sh 1

 Example 2: Fast Verify

 A "fast" verify is one in which only the check for MISSING archives
 is done, while the resource-intensive checksum calculation of
 potentially BAD existing archives is skipped. This is especially
 useful when used on a replica.

 p4verify.sh 1 -o MISSING

 Example 3: Fast and Recent Verify

 The '-o MISSING' and '-recent' flags can be combined for a very
 fast check. This check might be incorporated into a failover
 procedure.

 p4verify.sh 1 -o MISSING -recent

 Example 4: Submitted Files Only

 This will verify only use submitted files, ignoring shelves and the
 spec and unload depots, putting the results in a specified log:

 p4verify.sh 1 -ns -nS -nu -L -L /p4/1/logs/p4verify.submitted.log

 Example 5: Shelved Files Only

 This will verify only use submitted files, ignoring shelves and the
 spec and unload depots, putting them in a specified log:

 p4verify.sh 1 -nr -ns -nu -L /p4/1/logs/p4verify.shelved.log

 Example 6: A Dry Run

 The '-n' option can be used for a dry run. Output may also be
 displayed to the screen ('-v') for a dry run and the log file optionally
 discarded:

 p4verify.sh 1 -n -nS -L off -v

96 of 156 - Chapter 8. Tools and Scripts

96 © 2010-2021 Perforce Software, Inc.

 Example 7: Archive File Load for New Replica

 The p4verify.sh script can be used to schedule transfers of a large
 number of files from a replica. When doing so, however, overloading
 the new replicas pull queue with too many files may impact metadata
 replication. This can be addressed by combining a variety of
 options, such as '-chunks' and '-Q'. For example:

 p4verify.sh 1 -chunks 200M -Q 10000 -w 20 -o MISSING

NOHUP USAGE:
 Because archive verification is typically a long running task,
 it is advisable to use 'nohup' to call each command, and combine
 that by running the command as a background process. Alternately,
 use 'screen' or similar.

 Any of the examples above can be used with 'nohup', without output
 redirected to /dev/null (i.e. to "the void", as this script handles
 logging and output redirection).

 To use 'nohup', start the command line with 'nohup', and then after
 the command, add this text exactly:

 < /dev/null > /dev/null 2>&1 &

 As a example, Example 2 above, called with nohup, would look like:

 nohup /p4/common/bin/p4verify.sh 1 -o MISSING < /dev/null > /dev/null 2>&1 &

 With the ampersand '&' at the end, the command will appear to return
 immediately as the process continues to run in the background.

 Then optionally monitor the log:

 tail -f /p4/1/logs/p4verify.log

LOGGING:
 This script generates no output by default. All (stdout and stderr) is
 logged to /p4/N/logs/p4verify.log.

 The exception is usage errors, which result an error being sent to
 stderr followed usage info on stdout, followed by an immediate exit.

NOTIFICATIONS:
 In addition to logging, a short summary of the verify is sent as a
 notification. The summary is reliably short even if the output of the
 verifications done by this script results in a large log file.

 There are two notification schemes with this script:

Chapter 8. Tools and Scripts - 97 of 156

© 2010-2021 Perforce Software, Inc. 97

 * Email notification is always attempted.

 * AWS SNS notification is attempted if the SNS_ALERT_TOPIC_ARN custom
 setting is defined. This is typically set in:

 /p4/common/site/config/p4_N.vars.local

TIMING:
 The log file captures various timing information, including the
 time required to verify each depot, or each chunk or path if
 '-paths' or '-chunks' are used. The time to verify shelves
 in all depots is reported separately from submitted files.

 Timing indications all start with the text 'Time: ' on the beginning
 of a line of output in the log file, and can be extrated with a
 command like this example (adjusting the log file name as needed):

 grep ^Time: /p4/1/logs/p4verify.log

EXIT CODES:
 An exit code of 0 indicates no errors were encountered attempting to
 perform verifications, AND that all verifications attempted
 reported no problems.

 A exit status of 1 indicates that verifications could not be
 attempted for some reason.

 A exit status of 2 indicates that verifications were successfully
 performed, but that problems such as BAD or MISSING files
 were detected, or else system limits prevented verification.

8.4.8. p4login

The /p4/common/bin/p4login script is a convenience wrapper to execute a series of p4 login
commands, using the administration password configured in mkdirs.cfg and subsequently stored in
a text file: /p4/common/config/.p4passwd .p4_<instance>.admin.

Usage

USAGE for p4login v4.4.4:

p4login [<instance>] [-p <port> | -service] [-automation] [-all]

 or

p4login -h|-man

DESCRIPTION:

 In its simplest form, this script simply logs in P4USER to P4PORT

98 of 156 - Chapter 8. Tools and Scripts

98 © 2010-2021 Perforce Software, Inc.

 using the defined password access mechanism.

 It generates a login ticket for the SDP super user, defined by
 P4USER when sourcing the SDP standard shell environment. It is
 called from cron scripts, and so does not normally generate any
 output.

 If run on a replica with the -service option, the serviceUser defined
 for the given replica is logged in.

 The $SDP_AUTOMATION_USERS variable can be defined in
 /p4_N.vars. If defined, this should contain a
 comma-delimited list of automation users to be logged in when the
 -automation option is used. A definition might look like:

 export SDP_AUTOMATION_USERS=builder,trigger-admin,p4review

 Login behavior is affected by external factors:
 1. P4AUTH, if defined, affects login behavior on replicas.

 2. The auth.id setting, if defined, affects login behaviors (and
 generally simplifies them).

 3. The $SDP_ALWAYS_LOGIN variable. If set to 1, this causes p4login
 to always execute a 'p4 login' command to generate a login ticket,
 even if a 'p4 login -s' test indicates none is needed. By default,
 the login is skipped if a 'p4 login -s' test indicates a long-term
 ticket is available that expires 31+days in the future.
 Add "export SDP_ALWYAYS_LOGIN=1" to /p4_N.vars to
 change the default for an instance, or to /p4/common/bin/p4_vars to
 change it globally. If unset, the default is 0.

 4. If the P4PORT contains an ssl: prefix, the P4TRUST relationship
 is checked, and if necessary, a p4 trust -f -y is done to establish
 trust.

OPTIONS:
<instance>
 Specify the SDP instances. If not specified, the SDP_INSTANCE
 environment variable is used instead. If the instance is not
 defined by a parameter and SDP_INSTANCE is not defined, p4login
 exists immediately with an error message.

 -service
 Specify -service when run on a replica or edge server to login
 the super user and the replication service user.

 This option is not compatible with '-p <port>'.

 -p <port>
 Specify a P4PORT value to login to, overriding the default

Chapter 8. Tools and Scripts - 99 of 156

© 2010-2021 Perforce Software, Inc. 99

 defined by P4PORT setting in the environment. If operating
 on a host other than the master, and auth.id is set, this
 flag is ignored; the P4TARGET for the replica is used
 instead.

 This option is not compatible with '-service'.

 -automation
 Specify -automation to login external automation users defined
 by the $SDP_AUTOMATION_USERS variable.

 -v Show output of login attempts, which is suppressed by default.
 Setting SDP_SHOW_LOG=1 in the shell environment has the same
 effect as -v.

 -L <log>
 Specify the log file to use. The default is /p4/N/logs/p4login.log

 -d Set debugging verbosity.

 -D Set extreme debugging verbosity.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message

EXAMPLES:
 1. Typical usage for automation, with instance SDP_INSTANCE defined
 in the environment by sourcing p4_vars, and logging in only the super
 user P4USER to P4PORT:
 source /p4/common/bin/p4_vars abc
 p4login

 Login in only P4USER to the specified port, P4MASTERPORT in this example:
 p4login -p $P4MASTERPORT

 Login the super user P4USER, and then login the replication serviceUser
 for the current ServerID:
 p4login -service

 Login external automation users (see SDP_AUTOMATION_USERS above):
 p4login -automation

 Login all users:
 p4login -all

 Or: p4login -service -automation

LOGGING:
 This script generates no output by default. All (stdout and stderr) is
 logged to /p4/N/logs/p4login.log.

100 of 156 - Chapter 8. Tools and Scripts

100 © 2010-2021 Perforce Software, Inc.

 The exception is usage errors, which result an error being sent to
 stderr followed usage info on stdout, followed by an immediate exit.

 If the '-v' flag is used, the contents of the log are displayed to
 stdout at the end of processing.

EXIT CODES:
 An exit code of 0 indicates a valid login ticket exists, while a
 non-zero exit code indicates a failure to login.

8.4.9. p4d_<instance>_init

Starts the Perforce server instance. Can be called directly or as describe in Section 4.2.3,
“Configuring Automatic Service Start on Boot” - it is created by mkdirs.sh when SDP is installed.

Do not use directly if you have configured systemctl for systemd Linux
distributions such as CentOS 7.x. This risks database corruption if systemd does not
think the service is running when it actually is running (for example on shutdown
systemd will just kill processes without waiting for them).

This script sources /p4/common/bin/p4_vars, then runs /p4/common/bin/p4d_base (Section 8.6.10,
“p4d_base”).

Usage

/p4/<instance>/bin/p4d_<instance>_init [start | stop | status | restart]
/p4/1/bin/p4d_1_init start

8.4.10. refresh_P4ROOT_from_offline_db.sh

The /p4/common/bin/refresh_P4ROOT_from_offline_db.sh script is intended to be used occasionally,
perhaps monthly, quarterly, or on-demand, to help ensure that your live (root) database files are
defragmented.

It will:

• stop p4d

• truncate/rotate live journal

• replay journals to offline_db

• switch the links between root and offline_db

• restart p4d

It also knows how to do similar processes on edge servers and standby servers or other replicas.

Chapter 8. Tools and Scripts - 101 of 156

© 2010-2021 Perforce Software, Inc. 101

Usage

/p4/common/bin/refresh_P4ROOT_from_offline_db.sh <instance>
/p4/common/bin/refresh_P4ROOT_from_offline_db.sh 1

8.4.11. run_if_master.sh

The /p4/common/bin/run_if_master.sh script is explained in Section 8.4.14,
“run_if_master/edge/replica.sh”

8.4.12. run_if_edge.sh

The /p4/common/bin/run_if_edge.sh script is explained in Section 8.4.14,
“run_if_master/edge/replica.sh”

8.4.13. run_if_replica.sh

The /p4/common/bin/run_if_replica.sh script is explained in Section 8.4.14,
“run_if_master/edge/replica.sh”

8.4.14. run_if_master/edge/replica.sh

The SDP uses wrapper scripts in the crontab: run_if_master.sh, run_if_edge.sh, run_if_replica.sh.
We suggest you ensure these are working as desired, e.g.

Usage

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

It is important to ensure these are returning the valid results for the server machine you are on.

Any issues with these scripts are likely configuration issues with /p4/common/config/p4_1.vars (for
instance 1)

8.5. More Server Scripts
These scripts are helpful components of the SDP that run on the server machine, but are not
included in the default crontab schedules.

8.5.1. p4.crontab

Contains crontab entries to run the server maintenance scripts.

Location: /p4/sdp/Server/Unix/p4/common/etc/cron.d

102 of 156 - Chapter 8. Tools and Scripts

102 © 2010-2021 Perforce Software, Inc.

8.5.2. verify_sdp.sh

The /p4/common/bin/verify_sdp.sh does basic verification of SDP setup.

Usage

USAGE for verify_sdp.sh v5.22.2:

verify_sdp.sh [<instance>] [-online] [-skip <test>[,<test2>,...]] [-warn
<test>[,<test2>,...]] [-si] [-L <log>|off] [-D]

 or

verify_sdp.sh -h|-man

DESCRIPTION:

 This script verifies the current SDP setup for the specified instance,
 and also performs basic health checks of configured servers.

 This uses the SDP instance bin directory /p4/N/bin to determine
 what server binaries (p4d, p4broker, p4p) are expected to be configured
 on this machine.

 Existence of the '*_init' script indicates the given binary is
 expected. For example, for instance 1, if /p4/1/bin/p4d_1_init
 exists, a p4d server is expected to run on this machine.

 Checks may be executed or skipped depending on what servers are
 configured. For example, if a p4d is configured, the $P4ROOT/server.id
 file should exist. If p4p is configured, the 'cache' directory
 should exist.

OPTIONS:
 <instance>
 Specify the SDP instances. If not specified, the SDP_INSTANCE
 environment variable is used instead. If the instance is not
 defined by a parameter and SDP_INSTANCE is not defined,
 exits immediately with an error message.

 -online
 Online mode. Does additional checks that requires p4d, p4broker,
 and/or p4p to be online. Any servers for which there are
 *_init scripts in the Instance Bin directory must be online.
 The Instance Bin directory is the /p4/N/bin directory, where N
 is the SDP instance name.

 -skip <test>[,<test2>,...]

 Specify a comma-delimited list of named tests to skip.

Chapter 8. Tools and Scripts - 103 of 156

© 2010-2021 Perforce Software, Inc. 103

 Valid test names are:

 * cron|crontab: Skip crontab check. Use this if you do not expect crontab to
 be configured, perhaps if you use a different scheduler.
 * excess: Skip checks for excess copies of p4d/p4p/p4broker in PATH.
 * init: Skip compare of init scripts w/templates in /p4/common/etc/init.d
 * license: Skip license related checks.
 * masterid: Skip check ensuring ServerID of master starts with 'master'.
 * offline_db: Skip checks that require a healthy offline_db.
 * p4root: Skip checks that require healthy P4ROOT db files.
 * p4t_files: Skip checks for existence of P4TICKETS and P4TRUST files.
 * passwd|password: Skip SDP password checks.
 * version: Skip version checks.

 As an alternative to using the '-skip' option, the shell environment
 variable VERIFY_SDP_SKIP_TEST_LIST can be set to a comma-separated
 list of named tests to skip. Using the command line parameter is the
 best choice for temporarily skipping tests, while specifying the
 environment variable is better for making permanent exceptions (e.g.
 always excluding the crontab check if crontabs are not used at this
 site). The variable should be set in /p4/common/config/p4_N.vars.

 If the '-skip' option is provided, the VERIFY_SDP_SKIP_TEST_LIST
 variable is ignored (not appended to). So it may make sense to
 reference the variable on the command line. For example, if the
 value of the variable is 'crontab', to skip crontab and license
 checks, you could specify:

 -skip $VERIFY_SDP_SKIP_TEST_LIST,license

 -warn <test>[,<test2>,...]
 Specify a comma-delimited list of named tests that will be reported
 as warnings rather than errors.

 The list of valid test names as the same as for the '-skip' option.

 As an alternative to using the '-warn' option, the shell environment
 variable VERIFY_SDP_WARN_TEST_LIST can be set to a comma-separated
 list of name tests to skip. Using the command line parameter is the
 best choice for temporarily converting errors to warnings, while
 specifying the environment variable is better for making the
 conversion to warnings permanent. The variable should be set in
 /p4/common/config/p4_N.vars file.

 If the '-warn' option is provided, the VERIFY_SDP_WARN_TEST_LIST
 variable is ignored (not appended to). So it may make sense to
 reference the variable on the command line. For example, if the
 value of the variable is 'crontab', to convert to warnings for
 crontab and excess binaries tests, you could specify:

 -warn $VERIFY_SDP_WARN_TEST_LIST,excess

104 of 156 - Chapter 8. Tools and Scripts

104 © 2010-2021 Perforce Software, Inc.

 -si Silent mode, useful for cron operation. Both stdout and stderr
 are still captured in the log. The '-si' option cannot be used
 with '-L off'.

 -L <log>
 Specify the log file to use. The default is /p4/N/logs/verify_sdp.log
 The special value 'off' disables logging to a file.

 Note that '-L off' and '-si' are mutually exclusive.

 -D Set extreme debugging verbosity.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message

EXAMPLES:
 Example 1: Typical usage:

 This script is typically called after SDP update with only the instance
 name or number as an argument, e.g.:

 verify_sdp.sh 1

 Example 2: Skipping some checks.

 verify_sdp.sh 1 -skip crontab

 Example 3: Automation Usage

 If used from automation already doing its own logging, use -L off:

 verify_sdp.sh 1 -L off

LOGGING:
 This script generates a log file and also displays it to stdout at the
 end of processing. By default, the log is:
 /p4/N/logs/verify_sdp.log.

 The exception is usage errors, which result an error being sent to
 stderr followed usage info on stdout, followed by an immediate exit.

 If the '-si' (silent) flag is used, the log is generated, but its
 contents are not displayed to stdout at the end of processing.

EXIT CODES:
 An exit code of 0 indicates no errors were encountered attempting to
 perform verifications, and that all checks verified cleanly.

Chapter 8. Tools and Scripts - 105 of 156

© 2010-2021 Perforce Software, Inc. 105

8.6. Other Scripts and Files
The following table describes other files in the SDP distribution. These files are usually not invoked
directly by you; rather, they are invoked by higher-level scripts.

8.6.1. backup_functions.sh

The /p4/common/bin/backup_functions.sh script contains Bash functions used in other SDP scripts.

It is sourced (source /p4/common/bin/backup_functions.sh) by other scripts that use the common
shared functions.

It is not intended to be called directly by the user.

8.6.2. broker_rotate.sh

The /p4/common/bin/broker_rotate.sh rotates the broker log file. It is intended for use on a server
machine that has only broker running. When a broker is run on a p4d server machine, the
daily_checkpoint.sh take care of rotating the broker log.

It can be added to a crontab for e.g. daily log rotation.

Usage

/p4/common/bin/broker_rotate.sh <instance>
/p4/common/bin/broker_rotate.sh 1

8.6.3. edge_dump.sh

The /p4/common/bin/edge_dump.sh script is designed to create a seed checkpoint for an Edge server.

An edge server is naturally filtered, with certain database tables (e.g. db.have) excluded. In addition
to implicit filtering, the server spec may specify additional tables to be excluded, e.g. by using the
ArchiveDataFilter field of the server spec.

The script requires the SDP instance and the edge ServerID.

Usage

/p4/common/bin/edge_dump.sh <instance> <edge server id>
/p4/common/bin/edge_dump.sh 1 p4d_edge_syd

It will output the full path of the checkpoint to be copied to the edge server and used with Section
8.6.24, “recover_edge.sh”

8.6.4. edge_vars

The /p4/common/bin/edge_vars file is sourced by scripts that work on edge servers.

106 of 156 - Chapter 8. Tools and Scripts

106 © 2010-2021 Perforce Software, Inc.

It sets the correct list db.* files that are edge-specific in the federated architecture. This version is
dependent on the version of p4d in use; this script accounts for the P4D version.

It is not intended for users to call directly.

8.6.5. edge_shelf_replicate.sh

The /p4/common/bin/edge_shelf_replicate.sh script is intended to be run on an edge server and will
ensure that all shelves are replicated to that edge server (by running p4 print on them).

Only use if directed to by Perforce Support or Perforce Consulting.

8.6.6. load_checkpoint.sh

The /p4/common/bin/load_checkpoint.sh script loads a checkpoint into root and offline_db for
commit/edge/replica instance.

 This script will replace your /p4/<instance>/root database files! Be careful!

If you want to create db files in offline_db then use Section 8.4.5, “recreate_offline_db.sh”.

Usage

USAGE for load_checkpoint.sh v2.8.1:

load_checkpoint.sh <checkpoint> [<jnl.1> [<jnl.2> ...]] [-k] [-i <instance>] [-s
<ServerID>] [-t <Type>] [-verify {default|"Verify Options"} [-delay <delay>]] [-c] [-
l] [-r] [-b] [-y] [-L <log>] [-si] [-v<n>] [-D]

or

load_checkpoint.sh [-h|-man|-V]

DESCRIPTION:
 This script loads a specified checkpoint into /p4/N/root and /p4/N/offline_db,
 where 'N' is the SDP instance name.

 At the start of processing, preflight checks are done. Preflight checks
 include:
 * The specified checkpoint and corresponding *.md5 file must exist.
 * All journal files to replay (if any were specified) must exist.
 * The $P4ROOT/server.id file must exist, unless '-s' is specified.
 * If the $P4ROOT/server.id file exists and '-s' is specified, the values
 must match.
 * The $P4ROOT/license file must exist, unless '-l' is specified or if
 the replica type does not require a license.
 * Basic SDP structure and key files must exist.

 If the preflight passes, the p4d_N service is shutdown, and also the

Chapter 8. Tools and Scripts - 107 of 156

© 2010-2021 Perforce Software, Inc. 107

 p4broker_N service is shutdown if configured.

 If a P4LOG file exists, it is moved aside so there is a fresh p4d server
 log corresponding to operation after the checkpoint load.

 If a P4JOURNAL file exists, it is moved aside as the old journal data is
 no longer relevant after a checkpoint replay. (Exception: If the P4JOURNAL
 is speciffed in a list of journals to reply, then it is not moved aside).

 Next, any existing state* files in P4ROOT are removed.

 Next, any existing database files in P4ROOT are removed (or moved aside
 with '-k').

 Next, the specified checkpoint is loaded. Upon completion, the Helix Core
 server process, p4d_N, is started.

 If the server to be started is a replica, the serviceUser configured for
 the replica is logged into the P4TARGET server. Any needed 'p4 trust' and
 'p4 login' commands are done to enable replication.

 Note that this part of the processing will fail if the correct super user
 password is not stored in the standard SDP password file,

 /p4/common/config/.p4passwd.p4_N.admin

 After starting the server, a local 'p4 trust' is done if needed, and then
 a 'p4login -service -v' and 'p4login -v'.

 By default, the p4d_N service is started, but the p4broker_N service is not.
 Specify '-b' to restart both services.

ARGUMENTS AND OPTIONS:
 <checkpoint>
 Specify the path to the checkpoint file to load. Exactly one checkpoint
 must be specified.

 The file may be a compressed or uncompressed checkpoint, and it may be a case
 sensitive or case-insensitive checkpoint. The checkpoint file must have a
 corresponding *.md5 checksum file in the same directory, with one of two name
 variations: If the checkpoint file is /somewhere/foo.gz, the checksum file may
 be named /somewhere/foo.gz.md5 or /somewhere/foo.md5.

<jnl.1> [<jnl.2> ...]
 Specify the path to the one or more journal files to replay after the
 checkpoint, in the correct sequence order.

 -k Specify '-k' to keep db.* files in P4ROOT rather than removing them. This may
 be desirable to preserve databases for investigation. This option requires
 sufficient disk space to hold an extra copy of the db.* files.

108 of 156 - Chapter 8. Tools and Scripts

108 © 2010-2021 Perforce Software, Inc.

 If -k specified, a folder named 'MovedDBs.<datestamp>' is created under the
 P4ROOT directory, and databases are moved there.

 -i <instance>
 Specify the SDP instance. This can be omitted if SDP_INSTANCE is already
 defined.

 -s <ServerID>
 Specify the ServerID. This value is written into $P4ROOT/server.id file.

 If no $P4ROOT/server.id file exists, this flag is required.

 If the $P4ROOT/server.id file exists, this argument is not needed. If this
 '-s <ServerID>' is given and a $P4ROOT/server.id file exists, the value in
 the file must match the value specified with this argument.

 -t <Type>
 Specify the replica type tag if the checkpoint to be loaded is for an edge
 server or replica. The set of valid values for the replica type
 tag are defined in the documentation for mkrep.sh. See: mkrep.sh -man

 If the type is specified, the '-s <ServerID>' is required.

 If the SDP Server Spec Naming Standard is followed, the ServerID
 specified with '-s' will start with 'p4d_'. In that case, the
 value for '-t edge' value is inferred, and '-t' is not required.

 If the type is specified or inferred, certain behaviors change based
 on the type:
 * If the type is edge, only the correct edge-specific subset of database
 tables are loaded.
 * The P4ROOT/license file check is suppressed unless the type is
 ha, ham, fs, for fsm (standby replicas usable with 'p4 failover').

 Do not use this '-t <Type>' option if the checkpoint being loaded is
 for a master server.

 For an edge server, an edge seed checkpoint created with edge_dump.sh
 must be used if the edge is filtered, e.g. if any of the *DataFilter
 fields in the server spec are used. If the edge server is not filtered
 by means other than being an edge server (for which certain tables are
 filtered by nature), a standard full checkpoint from the master can be
 used.

 For a filtered forwarding replica, a proper seed checkpoint must be
 loaded. This can be created on the master using key options to p4d,
 including '-P <ServerID> -jd <SeedCkp' on the master (possibly using
 the 'offline_db' to avoid downtime, similar to how edge_dump.sh
 works for edge servers).

 WARNING: While this script is useful for seeding a new edge server, this

Chapter 8. Tools and Scripts - 109 of 156

© 2010-2021 Perforce Software, Inc. 109

 script is NOT to be used for recovering or reseeding an existing edge server,
 because all edge-local database tables (mostly workspace data) would be lost.
 To recover an existing edge server, see the recover_edge.sh script.

 Warning: If this option is specified with the incorrect type for the
 checkpoint specified, results will be unpredictable.

 -verify default [-delay <delay>]
 -verify "Verify Options" [-delay <delay>]

 Specify '-verify' to initiate a call to 'p4verify.sh' after the server
 is online. On a replica, this can be useful to cause the server to pull
 missing archive files from its P4TARGET server. If this load_checkpoint.sh
 script is used in a recovery situation for a master server, this '-verify'
 option can be used to discover if archive files are missing after the
 metadata is recovered.

 The 'p4verify.sh' script has a rich set of options; see 'p4verify.sh -man'
 for more info. To options to pass to p4verify.sh can be passed in a
 quoted list, or the value 'verify default' can be used to indicate these
 options:

 -o MISSING

 By default, a fast verify is used if the p4d version is new enough (2021.1+).
 See 'p4verify.sh -man' for more information, specifically the description
 of the '-o MISSING' option.

 In all cases, p4verify.sh is invoked as a background process; this
 load_checkpoint.sh script does not wait for it to complete. The p4verify.sh
 script will email as per normal when it completes.

 The optional delay option specifies how long to wait until kicking off the
 p4verify.sh command, in seconds. The default is 600 seconds.
 This is intended to give the replica time get get caught up with metadata
 before the archive pulls are scheduled. The delay is a workaround for job079842.

 -c Specify that SSL certificates are required, and not to be generated with
 'p4d_N -Gc'.

 By default, if '-c' is not supplied and SSL certs are not available, certs
 are generated automatically with 'p4d_N -Gc'.

 -l Specify that the server is to start without a license file. By default, if
 there is no $P4ROOT/license file, this script will abort. Note that if '-l'
 is specified and a license file is actually needed, the attempt this script makes
 to start the server after loading the checkpoint will fail.

 If -'t <type>' is specified, the license check is skipped unless the type is
 'ha' or 'ham', i.e. HA replicas that need a license file to support failover.

110 of 156 - Chapter 8. Tools and Scripts

110 © 2010-2021 Perforce Software, Inc.

 -r Specify '-r' to replay only to P4ROOT. By default, this script replays both
 to P4ROOT and the offline_db.

 -b Specify '-b' to start the a p4broker process (if configured). By default
 the p4d process is started after loading the checkpoint, but the p4broker
 process is not. This can be useful to ensure the human administrator has
 an opportunity to do sanity checks before enabling the broker to allow
 access by end users (if the broker is deployed for this usage).

 -y Use the '-y' flag to bypass an interactive warning and confirmation
 prompt.

 -v<n> Set verbosity 1-5 (-v1 = quiet, -v5 = highest). The default is 5.

 -L <log>
 Specify the path to a log file. By default, all output (stdout and stderr)
 goes to:
 /p4/<instance>/logs/load_checkpoint.<timestamp>.log

 NOTE: This script is self-logging. That is, output displayed on the screen
 is simultaneously captured in the log file. Do not run this script with
 redirection operators like '> log' or '2>&1', and do not use 'tee.'

 -si Operate silently. All output (stdout and stderr) is redirected to the log
 only; no output appears on the terminal.

 -D Set extreme debugging verbosity.

HELP OPTIONS:
 -h Display short help message
 -man Display man-style help message
 -V Display version info for this script and its libraries.

EXAMPLES:
 EXAMPLE 1: Non-interactive Usage

 Non-interactive usage (bash syntax) to load a checkpoint:

 nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz -i 1 -y < /dev/null >
/dev/null 2>&1 &

 Then, monitor with:
 tail -f $(ls -t $LOGS/load_checkpoint.*.log|head -1)

 EXAMPLE 2: Checkpoint Load then Verify

 Non-interactive usage (bash syntax) to load a checkpoint followed by a full
 verify of recent archives files only with other options passed to verify.sh:

 nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz -i 1 -verify -recent

Chapter 8. Tools and Scripts - 111 of 156

© 2010-2021 Perforce Software, Inc. 111

-nu -ns -y < /dev/null > /dev/null 2>&1 &

 EXAMPLE 3: Load Checkpoint and Journals

 Non-interactive usage (bash syntax) to loading a checkpoint and subsequent
journals:

 nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz
/p4/1/checkpoints/p4_1.jnl.4025 /p4/1/checkpoints/p4_1.jnl.4026 -i 1 -y < /dev/null >
/dev/null 2>&1 &

 Then, monitor with:
 tail -f $(ls -t $LOGS/load_checkpoint.*.log|head -1)

 EXAMPLE 4: Interactive usage.

 Interactive usage to load a checkpoint with no license file.

 /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz -i 1 -l

 With interactive usage, logging still occurs; all output to the screen is
 captured.

 Note that non-interactive usage with nohup is recommended for checkpoints
 with a long replay duration, to make operation more reliable in event of a
 shell session disconnect. Alternately, running interactively in a 'screen'
 session (if 'screen' is available) provides similar protection against
 shell session disconnects.

 EXAMPLE 5: Seed New Edge

 Seeding a new edge server.

 nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz -i 1 -s p4d_edge_syd
< /dev/null > /tmp/null 2>&1 &

 WARNING: While this script is useful for seeding a new edge server, this
 script is NOT to be used for recovering or reseeding an existing edge server,
 because all edge-local database tables (mostly workspace data) would be lost.
 To recover an existing edge server, see the recover_edge.sh script.

 EXAMPLE 6: Seed New Edge and Verify

 Seeding a new edge server and then do a verify with default options.

 nohup /load_checkpoint.sh /p4/1/checkpoints/p4_1.ckp.4025.gz -i 1 -s p4d_edge_syd
-verify default < /dev/null > /tmp/null 2>&1 &

112 of 156 - Chapter 8. Tools and Scripts

112 © 2010-2021 Perforce Software, Inc.

8.6.7. gen_default_broker_cfg.sh

The /p4/common/bin/gen_default_broker_cfg.sh script generates an SDP instance-specific variant of
the generic P4Broker config file. Display to standard output.

Usage:

cd /p4/common/bin
gen_default_broker_cfg.sh 1 > /tmp/p4broker.cfg.ToBeReviewed

The final p4broker.cfg should end up here:

/p4/common/config/p4_${SDP_INSTANCE}.${SERVERID}.broker.cfg

8.6.8. journal_watch.sh

The /p4/common/bin/journal_watch.sh script will check diskspace available to P4JOURNAL and
trigger a journal rotation based on specified thresholds. This is useful in case you are in danger of
running out of disk space and your rotated journal files are stored on a separate partition than the
active journal.

This script is using the following external variables:

• SDP_INSTANCE - The instance of Perforce that is being backed up. If not set in environment,
pass in as argument to script.

• P4JOURNALWARN - Amount of space left (K,M,G,%) before min journal space where an email
alert is sent

• P4JOURNALWARNALERT - Send an alert if warn threshold is reached (true/false, default: false)

• P4JOURNALROTATE - Amount of space left (K,M,G,%) before min journal space to trigger a
journal rotation

• P4OVERRIDEKEEPJNL - Allow script to temporarily override KEEPJNL to retain enough journals
to replay against oldest checkpoint (true/false, default: false)

Usage

/p4/common/bin/journal_watch.sh <P4JOURNALWARN> <P4JOURNALWARNALERT> <P4JOURNALROTATE>
<P4OVERRIDEKEEPJNL (Optional)>

Examples

Run from CLI that will warn via email if less than 20% is available and rotate journal when less
than 10% is available

./journal_watch.sh 20% TRUE 10% TRUE

Chapter 8. Tools and Scripts - 113 of 156

© 2010-2021 Perforce Software, Inc. 113

Cron job that will warn via email if less than 20% is available and rotate journal when less than
10% is available

30 * * * * [-e /p4/common/bin] && /p4/common/bin/run_if_master.sh ${INSTANCE}
/p4/common/bin/journal_watch.sh ${INSTANCE} 20\% TRUE 10\% TRUE

8.6.9. kill_idle.sh

The /p4/common/bin/kill_idle.sh script runs p4 monitor terminate on all processes showing in the
output of p4 monitor show that are in the IDLE state.

Usage

/p4/common/bin/kill_idle.sh <instance>
/p4/common/bin/kill_idle.sh 1

8.6.10. p4d_base

The /p4/common/bin/p4d_base script is the script to start/stop/restart the p4d instance.

It is called by p4d_<instance>_init script (and thus also systemctl on systemd Linux distributions). It
is not intended to be called by users directly.

8.6.11. p4broker_base

The /p4/common/bin/p4broker_base script is very similar to Section 8.6.10, “p4d_base” but for the
p4broker service instance.

See p4broker in SysAdmin Guide

8.6.12. p4ftpd_base

The /p4/common/bin/p4ftpd_base script is very similar to Section 8.6.10, “p4d_base” but for the p4ftp
service instance. The p4ftp has been deprecated; this may be removed in a future SDP release.

This product is very seldom used these days!

See P4FTP Installation Guide.

8.6.13. p4p_base

The /p4/common/bin/p4p_base is very similar to Section 8.6.10, “p4d_base” but for the p4p (P4 Proxy)
service instance.

See p4proxy in SysAdmin Guide

114 of 156 - Chapter 8. Tools and Scripts

114 © 2010-2021 Perforce Software, Inc.

https://www.perforce.com/manuals/p4dist/Content/P4Dist/chapter.broker.html
https://www.perforce.com/manuals/p4ftp/index.html
https://www.perforce.com/manuals/p4dist/Content/P4Dist/chapter.proxy.html

8.6.14. p4pcm.pl

The /p4/common/bin/p4pcm.pl script is a utility to remove files in the proxy cache if the amount of
free disk space falls below the low threshold.

Usage

Usage:

 p4pcm.pl [-d "proxy cache dir"] [-tlow <low_threshold>] [-thigh <high_threshold>]
[-n]
or
 p4pcm.pl -h

This utility removes files in the proxy cache if the amount of free disk space
falls below the low threshold (default 10GB). It removes files (oldest first)
until the high threshold is (default 20GB) is reached. Specify the thresholds
in kilobyte units (kb).

The '-d "proxy cache dir"' argument is required unless $P4PCACHE is defined,
in which case it is used.

The log is $LOGS/p4pcm.log if $LOGS is defined, else p4pcm.log in the current
directory.

Use '-n' to show what files would be removed.

8.6.15. p4review.py

The /p4/common/bin/p4review.py script sends out email containing the change descriptions to users
who are configured as reviewers for affected files (done by setting the Reviews: field in the user
specification). This script is a version of the p4review.py script that is available on the Perforce Web
site, but has been modified to use the server instance number. It relies on a configuration file in
/p4/common/config, called p4_<instance>.p4review.cfg.

This is not required if you have installed Swarm which also performs notification functions and is
easier for users to configure.

Usage

/p4/common/bin/p4review.py # Uses config file as above

8.6.16. p4review2.py

The /p4/common/bin/p4review2.py script is an enhanced version of Section 8.6.15, “p4review.py”

1. Run p4review2.py --sample-config > p4review.conf

2. Edit the file p4review.conf

Chapter 8. Tools and Scripts - 115 of 156

© 2010-2021 Perforce Software, Inc. 115

3. Add a crontab similar to this:

◦ * * * * python2.7 /path/to/p4review2.py -c /path/to/p4review.conf

Features:

• Prevent multiple copies running concurrently with a simple lock file.

• Logging support built-in.

• Takes command-line options.

• Configurable subject and email templates.

• Use P4Python when available and use P4 (the CLI) as a fallback.

• Option to send a single email per user per invocation instead of multiple ones.

• Reads config from a INI-like file using ConfigParser

• Have command line options that overrides environment variables.

• Handles unicode-enabled server and non-ASCII characters on a non-unicode-enabled server.

• Option to opt-in (--opt-in-path) reviews globally (for migration from old review daemon).

• Configurable URLs for changes/jobs/users (for swarm).

• Able to limit the maximum email message size with a configurable.

• SMTP auth and TLS (not SSL) support.

• Handles P4AUTH (optional; use of P4AUTH is no longer recommended).

8.6.17. proxy_rotate.sh

The /p4/common/bin/proxy_rotate.sh rotates the proxy log file. It is intended for use on a server
machine that has only proxy running. When a proxy is run on a p4d server machine, the
daily_checkpoint.sh script takes care of rotating the proxy log.

It can be added to a crontab for e.g. daily log rotation.

Usage

/p4/common/bin/proxy_rotate.sh <instance>
/p4/common/bin/proxy_rotate.sh 1

8.6.18. p4sanity_check.sh

The /p4/common/bin/p4sanity_check.sh script is a simple script to run:

• p4 set

• p4 info

• p4 changes -m 10

116 of 156 - Chapter 8. Tools and Scripts

116 © 2010-2021 Perforce Software, Inc.

Usage

/p4/common/bin/p4sanity_check.sh <instance>
/p4/common/bin/p4sanity_check.sh 1

8.6.19. p4dstate.sh

The /p4/common/bin/p4dstate.sh is a trouble-shooting script for use when directed by support, e.g. in
situations such as server hanging, major locking problems etc.

It is an "SDP-aware" version of the standard p4dstate.sh so that it only requires the SDP instance to
be specified as a parameter (since the location of logs etc are defined by SDP).

Usage

sudo /p4/common/bin/p4dstate.sh <instance>
sudo /p4/common/bin/p4dstate.sh 1

8.6.20. ps_functions.sh

The /p4/common/bin/ps_functions.sh library file contains common functions for using 'ps' to check
on process ids. It is not intended to be called by users.

get_pids ($exe)

Usage

Call with an exe name, e.g. /p4/1/bin/p4web_1

Examples

p4web_pids=$(get_pids $P4WEBBIN)
p4broker_pids=$(get_pids $P4BROKERBIN)

8.6.21. pull.sh

The /p4/common/bin/pull.sh is a reference pull trigger implementation for External Archive
Transfer using pull-archive and edge-content triggers

It is a fast content transfer mechanism using Aspera (and can be adapted to other similar UDP
based products.) An Edge server uses this trigger to pull files from its upstream Commit server. It
replaces or augments the built in replication archive pull and is useful in scenarios where there are
lots of large (binary) files and commit/edge are geographically distributed with high latency and/or
low bandwidth between them.

See also companion trigger Section 8.6.29, “submit.sh”.

Chapter 8. Tools and Scripts - 117 of 156

© 2010-2021 Perforce Software, Inc. 117

https://community.perforce.com/s/article/15261
https://community.perforce.com/s/article/15337
https://community.perforce.com/s/article/15337

It is based around getting a list of files to copy from commit to edge, then doing the file transfer
using ascp (Aspera file copy).

The configurable pull.trigger.dir should be set to a temp folder like /p4/1/tmp.

Startup commands look like:

startup.2=pull -i 1 -u --trigger --batch=1000

The trigger entry for the pull commands looks like this:

pull_archive pull-archive pull "/p4/common/bin/triggers/pull.sh %archiveList%"

There are some pull trigger options, but the are not necessary with Aspera. Aspera works best if
you give it the max batch size of 1000 and set up 1 or more threads. Note, that each thread will use
the max bandwidth you specify, so a single pull-trigger thread is probably all you will want.

The ascp user needs to have ssl public keys set up or export ASPERA_SCP_PASS.

The ascp user should be set up with the target as / with full write access to the volume where the
depot files are located. The easiest way to do that is to use the same user that is running the p4d
service.

ensure ascp is correctly configured and working in your environment:
https://www-01.ibm.com/support/docview.wss?uid=ibm10747281 (search for "ascp
connectivity testing")

Standard SDP environment is assumed, e.g P4USER, P4PORT, OSUSER, P4BIN, etc. are set, PATH is
appropriate, and a super user is logged in with a non-expiring ticket.

Read the trigger comments for any customization requirements required for your
environment.

See also the test version of the script: Section 8.6.22, “pull_test.sh”

See the /p4/common/bin/triggers/pull.sh script for details and to customize for your environment.

8.6.22. pull_test.sh

The /p4/common/bin/pull_test.sh script is a test script.

THIS IS A TEST SCRIPT - it substitutes for Section 8.6.21, “pull.sh” which uses
Aspera’s ascp and replaces that with Linux standard scp utility. IT IS NOT
INTENDED FOR PRODUCTION USE!!!!

If you don’t have an Aspera license, then you can test with this script to understand the process.

118 of 156 - Chapter 8. Tools and Scripts

118 © 2010-2021 Perforce Software, Inc.

https://www-01.ibm.com/support/docview.wss?uid=ibm10747281

See the /p4/common/bin/triggers/pull_test.sh script for details.

There is a demonstrator project showing usage: https://github.com/rcowham/p4d-edge-pull-demo

8.6.23. purge_revisions.sh

The /p4/common/bin/purge_revisions.sh script will allow you to archive files and optionally purge
files based on a configurable number of days and minimum revisions that you want to keep. This is
useful if you want to keep a certain number of days worth of files instead of a specific number of
revisions.

Note: If you run this script with purge mode disabled, and then enable it after the fact, all
previously archived files specified in the configuration file will be purged if the configured criteria
is met.

Prior to running this script, you may want to disable server locks for archive to reduce impact to
end users.

See: https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/
configurables.configurables.html#server.locks.archive

Parameters:

• SDP_INSTANCE - The instance of Perforce that is being backed up. If not set in environment,
pass in as argument to script.

• P4_ARCHIVE_CONFIG - The location of the config file used to determine retention. If not set in
environment, pass in as argument to script. This can be stored on a physical disk or somewhere
in perforce.

• P4_ARCHIVE_DEPOT - Depot to archive the files in (string)

• P4_ARCHIVE_REPORT_MODE - Do not archive revisions; report on which revisions would have
been archived (bool - default: true)

• P4_ARCHIVE_TEXT - Archive text files (or other revisions stored in delta format, such as files of
type binary+D) (bool - default: false)

• P4_PURGE_MODE - Enables purging of files after they are archived (bool - default: false)

Config File Format

The config file should contain a list of file paths, number of days and minimum of revisions to keep
in a tab delimited format.

<PATH> <DAYS> <MINIMUM REVISIONS>

Example:

//test/1.txt 10 1
//test/2.txt 1 3
//test/3.txt 10 10

Chapter 8. Tools and Scripts - 119 of 156

© 2010-2021 Perforce Software, Inc. 119

https://github.com/rcowham/p4d-edge-pull-demo
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.locks.archive
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.locks.archive

//test/4.txt 30 3
//test/5.txt 30 8

Usage

/p4/common/bin/purge_revisions.sh <SDP_INSTANCE> <P4_ARCHIVE_CONFIG>
<P4_ARCHIVE_DEPOT> <P4_ARCHIVE_REPORT_MODE (Optional)> 4_ARCHIVE_TEXT (Optional)>
<P4_PURGE_MODE (Optional)>

Examples

Run from CLI that will archive files as defined in the config file

./purge_revisions.sh 1 /p4/common/config/p4_1.p4purge.cfg archive FALSE

Cron job that will will archive files as defined in the config file, including text files

30 0 * * * [-e /p4/common/bin] && /p4/common/bin/run_if_master.sh ${INSTANCE}
/p4/common/bin/purge_revisions.sh $INSTANCE} /p4/common/config/p4_1.p4purge.cfg
archive FALSE FALSE

8.6.24. recover_edge.sh

The /p4/common/bin/recover_edge.sh script is designed to rebuild an Edge server from a seed
checkpoint from the master while keeping the existing edge specific data.

You have to first copy the seed checkpoint from the master, created with Section 8.6.3,
“edge_dump.sh”, to the edge server before running this script. (Alternately, a full checkpoint from
the master can be used so long as the edge server spec does not specify any filtering, e.g. does not
use ArchiveDataFilter.)

Then run this script on the Edge server host with the instance number and full path of the master
seed checkpoint as parameters.

Usage

/p4/common/bin/recover_edge.sh <instance> <absolute path to checkpoint>
/p4/common/bin/recover_edge.sh 1 /p4/1/checkpoints/p4_1.edge_syd.seed.ckp.9188.gz

8.6.25. replica_cleanup.sh

The /p4/common/bin/replica_cleanup.sh script performs the following actions for a replica:

• rotate logs

• remove old checkpoints and journals

• remove old logs

120 of 156 - Chapter 8. Tools and Scripts

120 © 2010-2021 Perforce Software, Inc.

This should be used on replicas for which the sync_replica.sh is not used.

Usage

/p4/common/bin/replica_cleanup.sh <instance>
/p4/common/bin/replica_cleanup.sh 1

8.6.26. replica_status.sh

The /p4/common/bin/replica_status.sh script is regularly run by crontab on a replica or edge (using
Section 8.4.13, “run_if_replica.sh”).

0 8 * * * [-e /p4/common/bin] && /p4/common/bin/run_if_replica.sh ${INSTANCE}
/p4/common/bin/replica_status.sh ${INSTANCE} > /dev/null
0 8 * * * [-e /p4/common/bin] && /p4/common/bin/run_if_edge.sh ${INSTANCE}
/p4/common/bin/replica_status.sh ${INSTANCE} > /dev/null

It performs a p4 pull -lj command on the replica to report current replication status, and emails
this to the standard SDP administrator email on a daily basis. This is useful for monitoring purposes
to detect replica lag or similar problems.

If you are using enhanced monitoring such as p4prometheus then this script may not be required.

Usage

/p4/common/bin/replica_status.sh <instance>
/p4/common/bin/replica_status.sh 1

8.6.27. request_replica_checkpoint.sh

The /p4/common/bin/request_replica_checkpoint.sh script is intended to be run on a standby replica.
It essentially just calls 'p4 admin checkpoint -Z' to request a checkpoint and exits. The actual
checkpoint is created on the next journal rotation on the master.

Usage

/p4/common/bin/request_replica_checkpoint.sh <instance>
/p4/common/bin/request_replica_checkpoint.sh 1

8.6.28. rotate_journal.sh

The /p4/common/bin/rotate_journal.sh script is a convenience script to perform the following
actions for the specified instance (single parameter):

• rotate live journal

• replay it to the offline_db

Chapter 8. Tools and Scripts - 121 of 156

© 2010-2021 Perforce Software, Inc. 121

https://github.com/perforce/p4prometheus

• rotate logs files according to the settings in p4_vars for things like KEEP_LOGS

It has several use cases:

• For sites with large, long-running checkpoints, it can be used to schedule journal rotations to
occur more frequently than daily_checkpoint.sh is run.

• It can be used to trigger checkpoints to run on edge servers.

Usage

/p4/common/bin/rotate_journal.sh <instance>
/p4/common/bin/rotate_journal.sh 1

8.6.29. submit.sh

The /p4/common/bin/submit.sh script is an example submit trigger for External Archive Transfer
using pull-archive and edge-content triggers

This is a reference edge-content trigger for use with an Edge/Commit server topology - the Edge
server uses this trigger to transmit files which are being submitted to the Commit instead of using
its normal file transfer mechanism. This trigger uses Aspera for fast file transfer, and UDP, rather
than TCP and is typically much faster, especially with high latency connections.

Companion trigger/script to Section 8.6.21, “pull.sh”

Uses fstat -Ob with some filtering to generate a list of files to be copied. Create a temp file with the
filename pairs expected by ascp, and then perform the copy.

This configurable must be set:

rpl.submit.nocopy=1

The edge-content trigger looks like this:

EdgeSubmit edge-content //... "/p4/common/bin/triggers/ascpSubmit.sh %changelist%"

The ascp user needs to have ssl public keys set up or export ASPERA_SCP_PASS. The ascp user should
be set up with the target as / with full write access to the volume where the depot files are located.
The easiest way to do that is to use the same user that is running the p4d service.

ensure ascp is correctly configured and working in your environment:
https://www-01.ibm.com/support/docview.wss?uid=ibm10747281 (search for "ascp
connectivity testing")

Standard SDP environment is assumed, e.g P4USER, P4PORT, OSUSER, P4BIN, etc. are set, PATH is
appropriate, and a super user is logged in with a non-expiring ticket.

122 of 156 - Chapter 8. Tools and Scripts

122 © 2010-2021 Perforce Software, Inc.

https://community.perforce.com/s/article/15337
https://community.perforce.com/s/article/15337
https://www-01.ibm.com/support/docview.wss?uid=ibm10747281

See the test version of this script below: Section 8.6.30, “submit_test.sh”

See the /p4/common/bin/triggers/submit.sh script for details and to customize for your environment.

8.6.30. submit_test.sh

The /p4/common/bin/submit_test.sh script is a test script.

THIS IS A TEST SCRIPT - it substitutes for Section 8.6.29, “submit.sh” (which uses
Aspera) - and replaces ascp with Linux standard scp. IT IS NOT INTENDED FOR
PRODUCTION USE!!!!

If you don’t have an Aspera license, then you can test with this script to understand the process.

See the /p4/common/bin/triggers/submit_test.sh for details.

There is a demonstrator project showing usage: https://github.com/rcowham/p4d-edge-pull-demo

8.6.31. sync_replica.sh

The /p4/common/bin/sync_replica.sh script is included in the standard crontab for a replica.

It runs rsync to mirror the /p4/1/checkpoints (assuming instance 1) directory to the replica
machine.

It then uses the latest checkpoint in that directory to update the local offline_db directory for the
replica.

This ensures that the replica can be quickly and easily reseeded if required without having to first
copy checkpoints locally (which can take hours over slow WAN links).

Usage

/p4/common/bin/sync_replica.sh <instance>
/p4/common/bin/sync_replica.sh 1

8.6.32. templates directory

This sub-directory of /p4/common/bin contains some files which can be used as templates for new
commands if you wish:

• template.pl - Perl

• template.py - Python

• template.py.cfg - config file for python

• template.sh - Bash

They are not intended to be run directly.

Chapter 8. Tools and Scripts - 123 of 156

© 2010-2021 Perforce Software, Inc. 123

https://github.com/rcowham/p4d-edge-pull-demo

8.6.33. update_limits.py

The /p4/common/bin/update_limits.py script is a Python script which is intended to be called from a
crontab entry one per hour. It must be wrapped with the p4master_run script.

It ensures that all current users are added to the limits group. This makes it easy for an
administrator to configure global limits on values such as MaxScanRows, MaxSearchResults etc.
This can reduce load on a heavily loaded instance.

For more information:

• Maximizing Perforce Helix Core Performance

• Multiple MaxScanRows and similar values

Usage

/p4/common/bin/update_limits.py <instance>
/p4/common/bin/update_limits.py 1

124 of 156 - Chapter 8. Tools and Scripts

124 © 2010-2021 Perforce Software, Inc.

https://community.perforce.com/s/article/2529
https://community.perforce.com/s/article/2521

Chapter 9. Sample Procedures
This section describes sample procedures using the SDP tools described above, given certain
scenarios.

9.1. Installing Python3 and P4Python
Python3 and P4Python are useful for custom automation, including triggers.

Installing Python3 and P4Python is best done using packages. First, set up the machine to download
packages from Perforce Software, following the guidance appropriate for your platform on the
Perforce Packages page.

Then install Python3 and P4Python Packages with the command appropriate for your operating
system. For RHEL/Rocky Linux family, use:

sudo yum install perforce-p4python3

For the Debian/Ubuntu family, use:

sudo apt update
sudo apt install perforce-p4python3

It is possible to have multiple versions of Python installed, possibly Python 2.7 (the end of the
Python 2 line) and various Python 3.x versions, and possibly multiple versions either or both of
Python 2 and Python 3. Whether having multiple versions is desirable or necessary depends on
what software on the machine uses Python; that discussion is outside the scope of this document.
However, being are of this possibility is important for installing in various existing environments.

The behaviors of the perforce-python3 package install vary slighly depending on what is already
installed, and are optimized to avoid disrupting existing software.

• If no prior version of Python 3 exists on the machine when the perforce-p4python3 package is
installed, then the newly installed Python 3 will be established as the default, such that calling
python3 (a symlink) will implicitly refer to the just-installed Python 3 version. The P4Python
module will be available by calling python3.

• If Python 3.8 exists on the machine when the perforce-p4python3 package is installed, P4Python
wil be added to the existing Python 3.8 install. The P4Python module will be available by
calling python3.

• If there is already some other version of Python 3.x installed but not 3.8, such as Python 3.6,
installing the perforce-p4python3 package will add a new Python 3.8 installation with the
version of Python 3 it uses (e.g. python3.8), but it will not adjust the existing python3 symlink.
The P4Python module will not P4Python module available with python3. You can at that
point decide to manually adjust the python3 symlink to point to python3.8, though this has some
risk of breaking other things (such as custom triggers) that require the other version of Python3

Chapter 9. Sample Procedures - 125 of 156

© 2010-2021 Perforce Software, Inc. 125

https://package.perforce.com

if it was actively used. Alternately, you can adjust the shebang lines of specific scripts that use
P4Python to refer to python3.8 specifically rather than just python3. In any case, avoid using
python2 or just python, both of which by convention Python 2.

9.2. Installing CheckCaseTrigger.py
This trigger is very useful to avoid people accidentally checking in files on a case-sensitive server
which only differ in case from an existing file (or directory).

 This trigger requires python3 not python2

The trigger to install is part of the SDP but by default is in /p4/sdp/Unsupported/Samples/triggers.

To install:

1. Install p4python. See: Section 9.1, “Installing Python3 and P4Python”.

2. Copy the trigger and dependencies to approprpiate directory

mkdir -p /p4/common/site/bin/triggers
cp /p4/sdp/Unsupported/Samples/triggers/CheckCaseTrigger.py
/p4/common/site/bin/triggers/
cp /p4/sdp/Unsupported/Samples/triggers/P4Trigger.py /p4/common/site/bin/triggers/

3. Edit the shebang line (first line) at the start of the trigger if necessary, e.g. change to:

#!/bin/env python3

Usually python3 is appropriate.

1. Test on an existing (small) changelist:

p4 changes -s submitted -m 9

pick a suitable changelist no, e.g. 1234

/p4/common/site/bin/triggers/CheckCaseTrigger.py 1234

2. Test that it works

a. Add appropriate line to triggers table:

check-case submit-change //test/...
"/p4/common/site/bin/triggers/CheckCaseTrigger.py %changelist%"

126 of 156 - Chapter 9. Sample Procedures

126 © 2010-2021 Perforce Software, Inc.

b. Create test workspace

c. Submit simple Test.txt

d. Attempt to submit test.txt and check for error

3. Change triggers table to valid version/path:

check-case submit-change //... "/p4/common/site/bin/triggers/CheckCaseTrigger.py
%changelist%"

9.3. Swarm JIRA Link
Here is an example of linking to cloud JIRA in config.php:

'jira' => array(
 'host' => 'https://example.atlassian.net/',
 'user' => 'p4jira@example.com',
 'password' => '<API-Token>',
 'link_to_jobs' => 'true',
),

No need to get complicated with .pem files or 'http_client_options' section. Just
specify https:// prefix as above.

Login to user account on Atlassian URL as above, and then create an API token by going to this URL:

https://id.atlassian.com/manage-profile/security/api-tokens

This curl request tested the API:

curl https://example.atlassian.net/rest/api/latest/project --user
p4jira@example.com:<API-TOKEN>

The above should list all active projects:

Example JSON response

{"expand":"description,lead,issueTypes,url,projectKeys,permissions,insight","self":"ht
tps://example.atlassian.net/rest/api/2/project/11904","id":"11904","key":"ULG","name":
"Ultimate Game"}

Check that the provided JIRA account has access to all required projects to be
linked (and that it isn’t missing some)! See below.

Chapter 9. Sample Procedures - 127 of 156

© 2010-2021 Perforce Software, Inc. 127

https://id.atlassian.com/manage-profile/security/api-tokens

Example list of projects accessible to JIRA account

$ curl --user 'p4jira@example.com:<API-TOKEN>'
https://example.atlassian.net/rest/api/latest/project | jq > projects.txt

$ egrep "name|key" projects.txt
egrep "name|key" projects.txt
 "key": "PRJA",
 "name": "Project A",
 "key": "PRJB",
 "name": "Project B",

9.4. Reseeding an Edge Server
Perforce Helix Edge Servers are a form of replica that replicates "persistent history" data such as
submitted changelists from the master server, while maintaining local databases for "work-in-
progress" data, to include user workspaces, lists of files checked out in user workspaces, etc. This
separation of persistent and work-in-progress data has significant benefits that make edge servers
perform optimally for certain use cases.

When a new edge server is deployed for the first time, it is "seeded" with a special seed checkpoint
from the master server. This is done using the SDP edge_dump.sh script.

Edge servers need to be reseeded in certain circumstances. When an edge server is reseeded, the
latest persistent history from the master server is combined with the latest work-in-progress data
from the edge server.

Some occasions that require reseeding include:

• When changing the scope of replication filtering, i.e. if the *DataFilter fields of the server spec
are changed.

• In some recovery situations involving hardware or other infrastructure failure.

• When advised by Perforce Support.

An article Edge Server Metadata Recovery discusses the manual process in detail. The process
outlined in this article is implemented in the SDP with two scripts, edge_dump.sh and
recover_edge.sh.

Key aspects of this implementation:

• No downtime is required for the master server process.

• Downtime for the edge to be reseeded is required. This is kept to a minimum.

9.5. Edge Reseed Scenario
In this sample scenario, an edge server needs to be reseeded.

Sample details about this scenario:

128 of 156 - Chapter 9. Sample Procedures

128 © 2010-2021 Perforce Software, Inc.

https://community.perforce.com/s/article/12127

• The SDP instance is 1.

• The perforce operating system runs the p4d process on all machines.

• The perforce user’s ~/.bashrc ensures that the shell environment is set automatically on login,
by doing: source /p4/common/bin/p4_vars 1

• The master server has a ServerID of master.1 and runs on the machine bos-helix-01.

• The edge server has a ServerID of p4d_edge_syd and runs on the machine syd-helix-04.

• Both the master and edge server are online and actively in use at the start of processing.

• Users of the edge server to be reseeded have been notified about a planned outage.

• No outage is planned or necessary for the master server

• SSH keys are setup for the perforce user.

9.5.1. Step 0: Preflight Checks

Make sure the start state is healthy.

As perforce@bos-helix-01 (the master):

verify_sdp.sh 1 -online

As perforce@syd-helix-04 (the edge):

verify_sdp.sh 1

9.5.2. Step 1: Create New Edge Seed Checkpoint

On the master server, create a new edge seed checkpoint using edge_dump.sh. This will contain
recent persistent history from the master.

This process uses the offline_db rather than P4ROOT, so no downtime is needed.

Creating an edge seed requires that the offline_db directory not be interfered
with. The daily_checkpoint.sh script runs in the crontab of the perforce user on the
master, and that script must not be run when edge_dump.sh runs. Ensure that
edge_dump.sh is run at a time when it won’t conflict with the operation of
daily_checkpoint.sh. If checkpoints take many hours, consider disabling the
crontab for daily_checkpoint.sh by commenting it out of the crontab until
edge_dump.sh completes — but don’t forget to re-enable it afterward!

Create the edge seed like so, as perforce@bos-helix-01 (the master):

nohup /p4/common/bin/p4master_run 1 edge_dump.sh 1 p4d_edge_syd < /dev/null >
/p4/1/logs/dump.log 2>&1 &

Chapter 9. Sample Procedures - 129 of 156

© 2010-2021 Perforce Software, Inc. 129

Then monitor until completion with:

tail -f $(ls -t $LOGS/edge_dump.*.log | head -1)

The edge seed will appear as a file looking something like:

/p4/1/checkpoints/p4_1.edge_syd.seed.2035.gz
/p4/1/checkpoints/p4_1.edge_syd.seed.2035.gz.md5

When the .md5 file appears, the edge seed checkpoint is complete.

Notes:

• The nohup at the beginning of the command and the & at the end ensure this process will
continue to run even if the terminal window in which the command was executed disconnects.

9.5.3. Step 2: Transfer Edge Seed

Transfer the edge seed from the master to the edge like so, as perforce@bos-helix-01 (the master):

scp -p /p4/1/checkpoints/p4_1.edge_syd.seed.2035.gz syd-helix-04:/p4/1/checkpoints/.
scp -p /p4/1/checkpoints/p4_1.edge_syd.seed.2035.gz.md5 syd-helix-
04:/p4/1/checkpoints/.

9.5.4. Step 3: Reseed the Edge

Reseed the edge. As perforce@syd-helix-04 (the edge):

nohup /p4/common/bin/run_if_edge.sh 1 recover_edge.sh 1
/p4/1/checkpoints/p4_1.edge_syd.seed.2035.gz < /dev/null > /p4/1/logs/rec.log 2>&1 &

Notes:

• The offline_db of the edge server is removed at the start of processing, but is replaced at the
end.

• It is safe for the p4d process of the edge server to be up and running when this process starts. It
it is up at the start of processing, it will be shutdown by the recovered_edge.sh, but not
immediately. The script allows the p4d service to remain in use while the edge seed checkpoint
from the master is replayed into the offine_db.

• After the edge seed checkpoint has been replayed, the p4d service is shutdown, and then the
process of combining persistent and work-in-progress data commences, the essense of the
reseed operation.

• After the edge reseed is complete, the p4d process is started. It will then start replcating new
data from the master since the time of the edge seed checkpoint creation. The p4d service may

130 of 156 - Chapter 9. Sample Procedures

130 © 2010-2021 Perforce Software, Inc.

hang and be unresponive for several minutes after it is started. If you choose to monitor closely,
when a p4 pull -lj on the edge indicates it has caught up to the master, the service is safe to
use again.

• The recover_edge.sh script continues to run after the service is back online, as it rebuilds the
offline_db of the edge server.

• On the edge server, the edge server’s regular checkpoints land in /p4/1/checkpionts.edge_syd.
The /p4/1/checkpoints folder is used only for holding edge seed checkpoints transferred from
the master.

• Typically, all steps described in the process are done on the same day. However, it is OK if the
edge_dump.sh, seed checkpoint transfer, and recover_edge.sh with some time lag between the
major steps, typically measured in journal rotations or simply days, with incremental impact on
the duration of the recovery step, and so long as the edge seed is not so far behind that the
master no longer has numbered journals to feed the edge once it starts.

Reseeding requires that the offline_db directory not be interfered with. The
daily_checkpoint.sh script runs in the crontab of the perforce user on the edge
server, and that script must not be run when recover_edge.sh runs. Ensure that
recover_edge.sh is run at a time when it won’t conflict with the operation of
daily_checkpoint.sh. If checkpoints take many hours, consider disabling the
crontab for daily_checkpoint.sh by commenting it out of the crontab until
recover_edge.sh completes — but don’t forget to re-enable it afterward!

This sample procedure does not illustrate using a p4broker service to broadcast a
"Down for maintence" message on the edge server. If your SDP installation uses
p4brokers on p4d server machines, they can be used to prevent regular users from
attempting to access the edge server during the processing of recover_edge.sh. This
can help prevent users from experiencing a hang, for example, in the time after
the edge p4d process starts but before it catches up to the master.

Chapter 9. Sample Procedures - 131 of 156

© 2010-2021 Perforce Software, Inc. 131

Appendix A: SDP Package Contents and
Planning
The directory structure of the SDP is shown below in Figure 1 - SDP Package Directory Structure.
This includes all SDP files, including documentation and sample scripts. A subset of these files are
deployed to server machines during the installation process.

sdp
 doc
 Server (Core SDP Files)
 Unix
 setup (Unix-specific setup)
 p4
 common
 bin (Backup scripts, etc)
 triggers (Example triggers)
 config
 etc
 cron.d
 init.d
 systemd
 lib
 test
 setup (cross platform setup - typemap, configure, etc)
 test (automated test scripts)

Figure 1 - SDP Package Directory Structure

A.1. Volume Layout and Server Planning
Figure 2: SDP Runtime Structure and Volume Layout, viewed from the top down, displays a
Perforce application administrator’s view of the system, which shows how to navigate the directory
structure to find databases, log files, and versioned files in the depots. Viewed from the bottom up,
it displays a Perforce system administrator’s view, emphasizing the physical volume where Perforce
data is stored.

A.1.1. Memory and CPU

Make sure the server has enough memory to cache the db.rev database file and to prevent the
server from paging during user queries. Maximum performance is obtained if the server has
enough memory to keep all of the database files in memory. While the p4d process itself is frugal
with system resources such as RAM, it benefits from an excess of RAM due to modern operating
systems using excess RAM as file I/O cache. This is to the great benefit of p4d, even though the p4d
process itself may not be seen as consuming much RAM directly.

Below are some approximate guidelines for allocating memory.

132 of 156 - Appendix A: SDP Package Contents and Planning

132 © 2010-2021 Perforce Software, Inc.

• 1.5 kilobyte of RAM per file revision stored in the server.

• 32 MB of RAM per user.

INFO: When doing detailed history imports from legacy SCM systems into Perforce, there may be
many revisions of files. You want to account for (total files) x (average number of revisions per
file) rather than simply the total number of files.

Use the fastest processors available with the fastest available bus speed. Faster processors are
typically more desirable than a greater number of cores and provide better performance since
quick bursts of computational speed are more important to Perforce’s performance than the
number of processors. Have a minimum of two processors so that the offline checkpoint and back
up processes do not interfere with your Perforce server. There are log analysis options to diagnose
underperforming servers and improve things. Contact Perforce Support/Perforce Consulting for
details.

A.1.2. Directory Structure Configuration Script for Linux/Unix

This script describes the steps performed by the mkdirs.sh script on Linux/Unix platforms. Please
review this appendix carefully before running these steps manually. Assuming the three-volume
configuration described in the Volume Layout and Hardware section are used, the following
directories are created. The following examples are illustrated with "1" as the server instance
number.

Directory Remarks

/p4 Must be under root (/) on the OS volume

/hxdepots/p4/1/bin Files in here are generated by the mkdirs.sh
script.

/hxdepots/p4/1/depots

/hxdepots/p4/1/tmp

/hxdepots/p4/common/config Contains p4_<instance>.vars file, e.g. p4_1.vars

/hxdepots/p4/common/bin Files from $SDP/Server/Unix/p4/common/bin.

/hxdepots/p4/common/etc Contains init.d and cron.d.

/hxlogs/p4/1/logs/old

/hxmetadata2/p4/1/db2 Contains offline copy of main server databases
(linked by /p4/1/offline_db.

/hxmetadata1/p4/1/db1/save Used only during running of
refresh_P4ROOT_from_offline_db.sh for extra
redundancy.

Next, mkdirs.sh creates the following symlinks in the /hxdepots/p4/1 directory:

Link source Link target Command

/hxmetadata1/p4/1/db1 /p4/1/root ln -s /hxmetadata1/p4/1/root

Appendix A: SDP Package Contents and Planning - 133 of 156

© 2010-2021 Perforce Software, Inc. 133

Link source Link target Command

/hxmetadata2/p4/1/db2 /p4/1/offline_db ln -s
/hxmetadata1/p4/1/offline_db

/hxlogs/p4/1/logs /p4/1/logs ln -s /hxlogs/p4/1/logs

Then these symlinks are created in the /p4 directory:

Link source Link target Command

/hxdepots/p4/1 /p4/1 ln -s /hxdepots/p4/1 /p4/1

/hxdepots/p4/common /p4/common ln -s /hxdepots/p4/common
/p4/common

Next, mkdirs.sh renames the Perforce binaries to include version and build number, and then
creates appropriate symlinks.

A.1.3. P4D versions and links

The versioned binary links in /p4/common/bin are as below.

For the example of <instance> 1 we have:

ls -l /p4/1/bin
p4d_1 -> /p4/common/bin/p4d_1_bin

The structure is shown in this example, illustrating values for two instances, with instance #1 using
p4d release 2018.1 and instance #2 using release 2018.2.

In /p4/1/bin:

p4_1 -> /p4/common/bin/p4_1_bin
p4d_1 -> /p4/common/bin/p4d_1_bin

In /p4/2/bin:

p4_2 -> /p4/common/bin/p4_2
p4d_2 -> /p4/common/bin/p4d_2

In /p4/common/bin:

p4_1_bin -> p4_2018.1_bin
p4_2018.1_bin -> p4_2018.1.685046
p4_2018.1.685046

p4_2_bin -> p4_2018.2_bin

134 of 156 - Appendix A: SDP Package Contents and Planning

134 © 2010-2021 Perforce Software, Inc.

p4_2018.2_bin -> p4_2018.2.700949
p4_2018.2.700949

p4d_1_bin -> p4d_2018.1_bin
p4d_2018.1_bin -> p4d_2018.1.685046
p4d_2018.1.685046

p4d_2_bin -> p4d_2018.2_bin
p4d_2018.2_bin -> p4d_2018.2.700949
p4d_2018.2.700949

The naming of the last comes from:

./p4d_2018.2.700949 -V

Rev. P4D/LINUX26X86_64/2018.2/700949 (2019/07/31).

So we see the build number p4d_2018.2.700949 being included in the name of the p4d executable.

Although this link structure may appear quite complex, it is easy to understand,
and it allows different instances on the same server host to be running with
different patch levels, or indeed different releases. And you can upgrade those
instances independently of each other which can be very useful.

A.1.4. Case Insensitive P4D on Unix

By default p4d is case sensitive on Unix for filenames and directory names etc.

It is possible and quite common to run your server in case insensitive mode. This is often done
when Windows is the main operating system in use on the client host machines.

In "case insensitive" mode, that means that you should ALWAYS execute p4d with
the flag -C1 (or you risk possible table corruption in some circumstances).

The SDP achieves this by executing a simple Bash script which (for instance 1) is /p4/1/bin/p4d_1
with contents:

#!/bin/bash
P4D="/p4/common/bin/p4d_1_bin"
exec $P4D -C1 "$@"

So the above will ensure that /p4/common/bin/p4d_1_bin (for instance 1) is executed with the -C1 flag.

Appendix A: SDP Package Contents and Planning - 135 of 156

© 2010-2021 Perforce Software, Inc. 135

As noted above, for case sensitive servers, p4d_1 is normally just a link:

/p4/1/bin/p4d_1 -> /p4/common/bin/p4d_1_bin

Note for an instance alpha (not 1), the file would be /p4/alpha/bin/p4d_alpha with contents:

#!/bin/bash
P4D="/p4/common/bin/p4d_alpha_bin"
exec $P4D -C1 "$@"

136 of 156 - Appendix A: SDP Package Contents and Planning

136 © 2010-2021 Perforce Software, Inc.

Appendix B: The journalPrefix Standard
The Perforce Helix configurable journalPrefix determines where the active journal is rotated to
when it becomes a numbered journal file during the journal rotation process. It also defines where
checkpoints are created.

In the SDP structure, the journalPrefix is set so that numbered journals and checkpoints land on
the /hxdepots volume. This volume contains critical digital assets that should be reliably backed up
and should have sufficient storage for large digital assets such as checkpoints.

B.1. SDP Scripts that set journalPrefix
The SDP configure_new_server.sh, which applies SDP standards to fresh new p4d servers, sets the
journalPrefix for the master server according to this standard.

The SDP mkrep.sh script, which creates new replicas, sets `journalPrefix for replicas according to
this standard.

The SDP mkdirs.sh script, which initializes the SDP structure, creates a directory structure for
checkpoints based on the journalPrefix.

B.2. First Form of journalPrefix Value
The first form of the journalPrefix value applies to the master server’s metadata set. This value is of
this form, where N is replaced with the SDP instance name:

/p4/N/checkpoints/p4_N

If the SDP instance name is the default 1, then files with a p4_1 prefix would be stored in the
/p4/1/checkpoints directory on the filesystem. Journal files in that directory would have names like
p4_1.jnl.320 and checkpoints would have names like p4_1.ckp.320.gz.

This journalPrefix value and the corresponding /p4/1/checkpoints directory should be used for the
master server. It should also be used for any replica that is a valid failover target for the master
server. This includes all completely unfiltered replicas of the master, such as standby and forwarding-
standby replicas with a P4TARGET value referencing the master server.

A standby replica, also referred to as a journalcopy replica due to the underlying
replication mechanisms, cannot be filtered. Standby replicas are commonly
deployed for High Availability (HA) and Disaster Recovery (DR) purposes.

B.2.1. Detail on "Completely Unfiltered"

A "completely unfiltered" replica is one in which:

• None of the *DataFilter fields in the replica’s server spec are used

Appendix B: The journalPrefix Standard - 137 of 156

© 2010-2021 Perforce Software, Inc. 137

https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#journalPrefix

• The p4 pull command configured to pull metadata from the the replica’s P4TARGET server, as
defined in the replica’s startup.N configurable, does not use filtering options such as -T.

• The replica is not an Edge server (i.e. one with a Services value in the server spec of edge-
server.) Edge servers are filtered by their vary nature, as they exclude various database tables
from being replicated.

• The replica’s seed checkpoint was created without the -P ServerID flag to p4d. The -P flag is used
when creating seed checkpoints for filtered replicas and edge servers.

• The replicas P4TARGET server references something other than the master server, such as an edge
server.

B.3. Second Form of journalPrefix Value
A second form of the journalPrefix is used when the replica is filtered, including edge servers. The
second form of the journalPrefix value incorporates a shortened form of the ServerID to indicate
that the data set is specific to that ServerID. Because the metadata differs from the master,
checkpoints for edge servers and filtered replicas are stored in a different directory, and use a
prefix that identifies them as separate and divergent from the master’s data set. This second form
allows checkpoints from multiple edge servers or filtered replicas to be stored on an shared (e.g.
NFS-mounted) /hxdepots volume.

The second form of journalPrefix is also used if the /hxdepots volume, on which checkpoints are
stored, is shared (as indicated when the replicas lbr.replication value is set to a value of shared).

Filtered replicas are a strict subset of the master server’s metadata. Edge servers
filter some database tables from the master, but also have their own independent
metadata (mainly workspace metadata) that varies from the master server and is
potentially larger than the master’s data set for some tables.

The "shortened form" of the ServerID removes the p4d_ prefix (per Appendix C, Server Spec Naming
Standard). So, for example an edge server with a ServerID` of p4d_edge_uk would use just the
edge_uk portion of the ServerID in the journalPrefix, which would look like:

/p4/N/checkpoints.edge_uk/p4_N.edge_uk

If the SDP instance name is the default 1, then files with a p4_1.edge_uk prefix would be stored in
the /p4/1/checkpoints.edge_uk directory on the filesystem. Journal files in that directory would have
names like p4_1.edge_uk.320.jnl and checkpoints would have names like p4_1.edge_uk.320.ckp.gz.

B.4. Scripts for Maintaining the offline_db
The following SDP scripts help maintain the offline_db:

• daily_checkpoint.sh: The daily_checkpoint.sh is used on the master server. When run on the
master server, this script rotates the active journal to a numbered journal file, and then
maintains the master’s offline_db using the numbered journal file immediately after it is

138 of 156 - Appendix B: The journalPrefix Standard

138 © 2010-2021 Perforce Software, Inc.

rotated.

The daily_checkpoint.sh is also used on edge servers and filtered replicas. When run on edge
servers and filtered replicas, this script maintains the replica’s offline_db in a manner similar to
the master, except that the journal rotation is skipped (as that can be done only on the master).

• sync_replica.sh: The SDP sync_replica.sh script is intended to be deployed on unfiltered
replicas of the master. It maintains the offline_db by copying (via rsync) the checkpoints from
the master, and then replays those checkpoints to the local offline_db. This keeps the offline_db
of the replica current, which is good to have should the replica ever need to take over for the
master.

INFO: For HA/DR and any purpose where replicas are not filtered, replicas of type standby and
forwarding-standby should displace replicas of type replica and forwarding-replica.

B.5. SDP Structure and journalPrefix
On every server machine with the SDP structure where a p4d service runs (excluding broker-only
and proxy-only hosts), a structure like the following should exist for each instance:

• A /hxdepots/p4/N/checkpoints directory

• In /p4/N, and symlink checkpoints that links to /hxdepots/p4/N/checkpoints, such that it can be
referred to as /p4/N/checkpoints.

In addition, edge servers and filtered replicas will also have a structure like the following for each
instance that runs an edge server or filtered replica:

• A /hxdepots/p4/N/checkpoints.ShortServerID directory

• In /p4/N, and symlink checkpoints.ShortServerID that links to
/hxdepots/p4/N/checkpoints.ShortServerID, such that it can be referred to as
/p4/N/checkpoints.ShortServerID.

The SDP mkdirs.sh script, which sets up the initial SDP structure, initializes this structure on initial
install.

B.6. Replicas of Edge Servers
As edge servers have unique data, they are commonly deployed with their own standby replica with
a P4TARGET value referencing a given edge server rather than the master. This enables faster
recovery option for the edge server.

As a special case, a standby replica of an edge server should have the same journalPrefix value as
the edge server it targets. Thus, the ServerID baked into the journalPrefix of a replica of an edge is
the ServerID of the target edge server, not the replica.

So for example, an edge server with a ServerID of p4d_edge_uk has a standby replica with a ServerID
of p4d_ha_edge_uk. The journalPrefix of that edge should be the same as the edge server it targets,
e.g.

Appendix B: The journalPrefix Standard - 139 of 156

© 2010-2021 Perforce Software, Inc. 139

/p4/1/checkpoints.edge_uk/p4_1.edge_uk

B.7. Goals of the journalPrefix Standard
Some design of goals this standard:

• Make it so the /p4/N/checkpoints folder is reserved to mean checkpoints created from the
master server’s full metadata set.

• Make the /p4/N/checkpoints folder be safe to rsync from the master to any machine in the
topology (as may be needed in certain recovery situations for replicas and edge servers).

• Make it so the SDP /hxdepots volume can be NFS-mounted across multiple SDP machines safely,
such that two or more edge servers (or filtered replicas) could share versioned files, while
writing to separate checkpoints directories on a per-ServerID basis.

• Support all replication uses cases, including support for 'Workspace Servers', a name referring
to a set of edge servers deployed in in the same location, typically sharing /hxdepots via NFS. Use
of Workspace Servers can be used to scale Helix Core horizontally for massive user bases
(typically several thousand users).

140 of 156 - Appendix B: The journalPrefix Standard

140 © 2010-2021 Perforce Software, Inc.

Appendix C: Server Spec Naming Standard
Perforce Helix server specs identify various Helix servers in a topology. Servers can be p4d servers
(master, replicas, edges), p4broker, p4p, etc. This standard defines the standard for the server spec
names.

C.1. General Form
The general form of a server spec name is:

<HelixServerTag>_<ReplicaTypeTag>[<N>]_<SiteTag>

C.1.1. Helix Server Tags

The HelixServerTag_ is one of:

• p4d: for a Helix Core server (including all distributed architecture usages such as
master/replica/edge).

• p4broker: A Helix Broker

• p4p: A Helix Proxy

• gconn: Helix4Git (H4G) Connector

• swarm: Helix Swarm

As a special case, the HelixServerTag is omitted for the ServerID of the master server spec.

C.1.2. Replica Type Tags

The ReplicaType is one of:

• master.<instance>: The single master-commit server for a given SDP instance. SDP instance
names are included in the ServerID for the master, as they intended to be unique within an
enterprise. They must be unique to enable certain cross-instance sharing workflows, e.g. using
remote depots and Helix native DVCS features.

• ha: High Availability. This indicates a replica that was specifically intended for HA purposes and
for use with the p4 failover command. It further implies the following:

◦ The Services field value is standby.

◦ The rpl.journalcopy.location=1 configurable is set, optimized for SDP deployment.

◦ The replica is not filtered in any way: No usage of the -T flag to p4 pull in the replicas
startup.N configurables, and no usage of *DataFilter fields in the server spec.

◦ Versioned files are replicated (with an lbr.replication value of readonly).

◦ An HA replica is assumed to be geographically near its P4TARGET server, which can be a
master server or an edge server.

Appendix C: Server Spec Naming Standard - 141 of 156

© 2010-2021 Perforce Software, Inc. 141

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.proxy.html

◦ It may or may not use the mandatory option in the server spec. The ha tag does not indicate
whether the mandatory option is used (as this is more transient thing not suitable for baking
into a server spec naming standard).

• ham: A ham replica is the same as an ha replica except it does not replicate versioned files. Thus is
a metadata-only replica that shares versioned files with its P4TARGET server (master or edge)
with an lbr.replication value of shared.

• fr: Forwarding Replica (unfiltered) that replicates versioned files.

• frm: Forwarding replica (unfiltered) that shares versioned files with its target server rather than
replicating them.

• fs: Forwarding Standby (unfiltered) that replicates versioned files. This is the same as an ha
server, except that it is not necessarily expected to be physically near its P4TARGET server. This
could be suited for Disaster Recovery (DR) purposes.

• fsm: Forwarding standby (unfiltered) that shares versioned files with its target server rather
than replicating them. This is the same as a ham, except that it is not necessarily expected to be
physically near its P4TARGET server.

• ffr: Filtered Forwarding Replica. This replica uses some of filtering, such as usage of
*DataFilter fields of the server spec or -T flag to p4 pull in the replicas startup.<N>
configurables. Filtered replicas are not viable failover targets, as the filtered data would be lost.

• ro - Read Only replica (unfiltered), replicating versioned files).

• rom - Read Only metadata-only replica (unfiltered, sharing versioned files).

• edge - Edge servers. (As edge servers are filtered by their nature, they are not valid failover
targets).

C.1.2.1. Replication Notes

If a replica does not need to be filtered, we recommend using journalcopy replication, i.e. using a
replica with a Services: field value of standby or forwarding-standby. Only use non-journalcopy
replication when using filtered replicas (and edge servers where there is no choice).

Some general tips:

• The ha, ham replicas are preferred for High Availability (HA) usage.

• The fs and ro replicas are preferred for Disaster Recovery (DR) usage.

• Since DR implies the replica is far from its master, replication of archives (rather than sharing
e.g. via NFS) may not be practical, and so rom replicas don’t have common use cases.

• The fr type replica is obsolete, and should be replaced with fs (using journalcopy replication).

C.1.3. Site Tags

The site tag needs to distinguish the data centers used by a single enterprise, and so generally short
tag names are appropriate. See Section 5.3.4.1, “SiteTags.cfg”

Each site tag may be understood to be a true data center (Tier 1, Tier 2, etc.), a computer room,
computer closet, or reserved space under a developer’s desk. In some cases organizations will

142 of 156 - Appendix C: Server Spec Naming Standard

142 © 2010-2021 Perforce Software, Inc.

already have their own familiar site tags to refer to different sites or data centers; these can be
used.

In public cloud deployments, the public cloud provider’s region names can be used (e.g. us-east-1),
or an internal short form (e.g. awsnva1 for the AWS us-east-1 data center in Northern Virginia, USA.

As a special case, the <SiteTag> is omitted for the master server spec.

C.2. Example Server Specs
Here are some sample server spec names based on this convention:

• master.1: A master server for SDP instance 1.

• p4d_ha_chi: A High Availability (HA) server, suitable for use with p4 failover, located in Chicago,
IL.

• p4d_ha2_chi: A second High Availability server, suitable for use with p4 failover, located in
Chicago, IL.

• p4d_ffr_pune: A filtered forwarding replica in Pune, India.

• p4d_edge_blr: An edge server located in Bangalore, India.

• p4d_ha_edge_blr: An HA server with P4TARGET pointing to the edge server in Bangalore, India.

• p4d_edge3_awsnva: A 3rd edge server in AWS data center in the us-east-1 (Northern Virginia)
region.

C.3. Implications of Replication Filtering
Replicas that are filtered in any way are not viable candidate servers to failover to, because any
filtered data would be lost.

C.4. Other Replica Types
The naming convention intentionally does not account for all possible server specs available with
p4d. The standard accounts only for the distilled list of server spec types supported by the SDP
mkrep.sh script, which are the most useful and commonly used ones.

C.5. The SDP mkrep.sh script
The SDP script mkrep.sh adheres to this standard. For more information on creating replicas with
this script. See: Section 5.3.4, “Using mkrep.sh”.

Appendix C: Server Spec Naming Standard - 143 of 156

© 2010-2021 Perforce Software, Inc. 143

Appendix D: Frequently Asked Questions
This FAQ lists common questions about the SDP with answers.

D.1. How do I tell what version of the SDP I have?
First, try the standard check. See: Section 1.3, “Checking the SDP Version”.

If that does not display the SDP version, as may happen with older SDP installations, run the SDP
Health Check, which will report the correct version reliably. See: Appendix H, SDP Health Checks.

144 of 156 - Appendix D: Frequently Asked Questions

144 © 2010-2021 Perforce Software, Inc.

Appendix E: Troubleshooting Guide
This appendix lists problems sometimes encountered by SDP users, with guidance on how to
analyize and resolve each issue.

Do not hesitate to contact consulting@perforce.com if additional assistance is required.

E.1. Daily_checkpoint.sh fails
1. Check the output of the log file and look for errors:

less /p4/1/logs/checkpoint.log

Possibilities include:

• Errors from verify_sdp.sh - should be self explanatory.

◦ Note that it is possible to edit /p4/common/config/p4_1.vars and set the value of
VERIFY_SDP_SKIP_TEST_LIST to include any tests you consider should be skipped - don’t overdo
this!

• See next section

E.1.1. Last checkpoint not complete. Check the backup process or contact
support.

If this error occurs it means the script has found a "semaphore" file which is used to prevent
multiple checkpoints running at the same time. This file is (for instance 1)
/p4/1/logs/ckp_running.txt.

Check if there is a current process running:

ps aux | grep daily_checkpoint

If you are CERTAIN that there is no checkpoint process running, then you can
delete this file and re-run daily_checkpoint.sh (or allow it to be run via nightly
crontab). If in doubt, contact support!

E.2. Replication appears to be stalled
This can happen for a variety of reasons, most commonly:

• Service user is not logged in to the parent

◦ Or there is a problem with ticket or ticket location

• Configurables are incorrect (p4 configure show allservers)

Appendix E: Troubleshooting Guide - 145 of 156

© 2010-2021 Perforce Software, Inc. 145

mailto:consulting@perforce.com

• Network connectivity to upstream parent

• A problem with state file

1. Check the output of p4 pull -lj, e.g. this shows all is working well:

$ p4 pull -lj
Current replica journal state is: Journal 1237, Sequence 2680510310.
Current master journal state is: Journal 1237, Sequence 2680510310.
The statefile was last modified at: 2022/03/29 14:15:16.
The replica server time is currently: 2022/03/29 14:15:18 +0000 GMT

E.2.1. Resolution

1. This example shows a password error for the service user:

$ p4 pull -lj
Perforce password (P4PASSWD) invalid or unset.
Perforce password (P4PASSWD) invalid or unset.
Current replica journal state is: Journal 1237, Sequence 2568249374.
Current master journal state is: Journal 1237, Sequence -1.
Current master journal state is: Journal 0, Sequence -1.
The statefile was last modified at: 2022/03/29 13:05:46.
The replica server time is currently: 2022/03/29 14:13:21 +0000 GMT

a. In case of a password error, try logging in again:

p4login -v 1 -service
p4 pull -lj

b. If the above reports an error, then copy and paste the command it shows as executing and
try it manually, for example (adjust the server/user ids):

/p4/1/bin/p4_1 -p p4master:1664 -u p4admin -s login svc_p4d_edge_ldn

If the above is not successful:

3. Review output of verify_sdp.sh:

/p4/common/bin/verify_sdp.sh 1
grep Error /p4/1/logs/verify_sdp.log

a. Check for errors in the resulting log file:

146 of 156 - Appendix E: Troubleshooting Guide

146 © 2010-2021 Perforce Software, Inc.

grep Error /p4/1/logs/verify_sdp.log

4. Check for errors in the p4d log file:

grep -A4 error: /p4/1/logs/log | less

5. Check permissions on the tickets file (env var $P4TICKETS):

ls -al $P4TICKETS

e.g.

ls -al /p4/1/.p4tickets

E.2.2. Make Errors Visible

If the above doesn’t help, then make errors visible/easy to find, assuming instance 1 - run this on
the replica (not commit!):

sudo systemctl stop p4d_1
cd /p4/1/logs
mv log log.old
sudo systemctl start p4d_1
grep -A4 error: log | less

Due to shortened log file, any errors should be easily found. Ask for help (email support-helix-
core@perforce.com) if not obvious.

E.2.3. Remove state file

Files state and statejcopy can usually be removed - let the server work out its current state. If you
want to know current journal counter for replica:

p4d -r /p4/1/root -k db.counters -jd - 2>/dev/null | grep @journal@ | cut -d '@' -f 8

If there is a problem with being able to pull over an old journal which no longer exists on the
master you may need to reseed the replica!

sudo systemctl stop p4d_1
cd /p4/1/root
mv state* save/
cd /p4/1/logs

Appendix E: Troubleshooting Guide - 147 of 156

© 2010-2021 Perforce Software, Inc. 147

[[-d save]] || mkdir save # Create if doesn't exist
mv journal* save/
sudo systemctl start p4d_1

E.3. Archive pull queue appears to be stalled
This manifests as the output of p4 pull -ls showing an unchanging number of files in the queue -
no progress is being made.

$ p4 pull -ls
File transfers: 3 active/29 total, bytes: 2338 active/25579 total.
Oldest change with at least one pending file transfer: 1234.

This can happen for a variety of reasons, most commonly:

• Non-existent (purged) files (where filetype includes +Sn - where n is number of revisions to
keep contents for)

• Non-existent (shelved) files

• Non-existent files with verify problem on master server

• Temporary file transfer problems which exceeded thresholds for auto-retry

E.3.1. Resolutions

1. Retry pull errors

 p4 pull -R

 <wait a short time>

 p4 pull -ls

2. If the above doesn’t fix things then we can check for errors:

p4 pull -l | grep -c failed

3. If the above is > 0 then we need to investigate in more detail.

E.3.1.1. Remove and re-queue

Save the list of files with errors to a file - like this to allow for spaces in filenames:

p4 -F "%rev% %file%" pull -l > pull.errs
cat pull.errs | while read -e r f; do p4 pull -d -r $r -f "$f"; done

148 of 156 - Appendix E: Troubleshooting Guide

148 © 2010-2021 Perforce Software, Inc.

Finally we can “re-queue” any for re-transfer (note this can take a while for files with many revs):

cut -d' ' -f 2,999 pull.errs | sort | uniq | while read -e f; do echo "$f" && p4
verify -qt --only MISSING "$f"; done

the --only MISSING option requires p4d version >= 2021.1 and is much faster - just
remove that option with older versions of p4d

Then have another look:

p4 pull -l

E.3.1.2. Check for verify errors on the parent server

On the parent server, check the most recent p4verify.log file (typically runs Saturday morning via
crontab).

Cross-check any entries in pull.errs above - if they are also verify errors on the parent server then
you need to resolve that. Consider contacting helix-core-support@perforce.com if you need help.
Resolutions may include obliterating lost revisions, or attempting to restore from backup.

E.4. Can’t login to edge server
This can happen if the edge server replication has stalled as above.

E.4.1. Resolution

• Try the resolution steps for Section E.2, “Replication appears to be stalled”

• Restart edge server

• Monitor replication and check for any errors

E.5. Updating offline_db for an edge server
If your daily_checkpoint.sh jobs on the edge server are failing due to a problem with the offline_db
or missing edge journals, AND the edge server is otherwise running fine, then consider this option.

Checkpointing the edge will take some time during which the edge will be locked!
Schedule this for a convenient time!

E.5.1. Resolution

Assuming instance 1:

• ON EDGE SERVER:

Appendix E: Troubleshooting Guide - 149 of 156

© 2010-2021 Perforce Software, Inc. 149

mailto:helix-core-support@perforce.com

source /p4/common/bin/p4_vars 1
p4 admin checkpoint -Z

• ON COMMIT SERVER (and at a convenient time to lock edge):

source /p4/common/bin/p4_vars 1
p4 admin journal

• Monitor edge server checkpoint being created (on EDGE SERVER):

p4 configure show journalPrefix

Using the output shown by the above command:

ls -lhtr /p4/1/checkpoints.<suffix>/*.ckp.*

Also you can check for edge being locked (the following may hang):

p4 monitor show -al

• Then replay the journal on the edge server to the offline_db:

cd /p4/1/offline_db
mv db.* save/
nohup /p4/1/bin/p4d_1 -r . -jr /p4/1/checkpoints.<suffix>/p4_1.ckp.NNNN.gz >
rec.out &

When the above has completed, mark as usable by creating semaphore file:

touch /p4/1/offline_db/offline_db_usable.txt

E.6. Journal out of sequence in checkpoint.log file
This error is encountered when the offline and live databases are no longer in sync, and will cause
the offline checkpoint process to fail. Because the scripts will replay all outstanding journals, this
error is much less likely to occur. This error can be fixed by:

• recreating the offline_db: Section 8.4.5, “recreate_offline_db.sh”

• alternatively if that doesn’t work - run the Section 8.4.6, “live_checkpoint.sh” script (note the
warnings about locking live database)

150 of 156 - Appendix E: Troubleshooting Guide

150 © 2010-2021 Perforce Software, Inc.

E.7. Unexpected end of file in replica daily sync
Check the start time and duration of the Section 8.4.4, “daily_checkpoint.sh” cron job on the master.
If this overlaps with the start time of the Section 8.6.31, “sync_replica.sh” cron job on a replica, a
truncated checkpoint may be rsync’d to the replica and replaying this will result in an error.

Adjust the replica’s cronjob to start later to resolve this.

Default cron job times, as installed by the SDP are initial estimates, and should be adjusted to suit
your production environment.

Appendix E: Troubleshooting Guide - 151 of 156

© 2010-2021 Perforce Software, Inc. 151

Appendix F: Starting and Stopping Services
There are a variety of init mechanisms on various Linux flavors. The following describes how to
start and stop services using different init mechanisms.

F.1. SDP Service Management with the systemd init
mechanism
On modern OS’s, like RHEL7 & 8, Rocky Linux 8, and Ubuntu >=18.04, and SuSE >=12, the systemd
init mechanism is used. The underlying SDP init scripts are used, but they are wrapped with "unit"
files in /etc/systemd/system directory, and called using the systemctl interface as root (typically
using sudo while running as the perforce user).

On systems where systemd is used, the service can only be started using the sudo systemctl
command, as in this example:

sudo systemctl status p4d_N
sudo systemctl start p4d_N
sudo systemctl status p4d_N

Note that there is no immediate indication from running the start command that it was actually
successful, hence the status command is run after. For best results, wait a few seconds after
running the start command before running the status command. (If the start was unsuccessful, a
good start to diagnostics would include running tail /p4/N/logs/log and cat
/p4/N/logs/p4d_init.log).

The service should also be stopped in the same manner:

sudo systemctl stop p4d_N

Checking for status can be done using both the systemctl command, or calling the underlying SDP
init script directly. However, there are cases where the status indication may be different. Calling
the underlying SDP init script for status will always report status accurately, as in this example:

/p4/N/bin/p4d_N_init status

That works reliably even if the service was started with systemctl start p4d_N.

Checking status using the systemctl mechanism is done like so:

sudo systemctl start p4d_N

If this reports that the service is active (running), such indication is reliable. However, the status
indication may falsely indicate that the service is down when it is actually running. This could

152 of 156 - Appendix F: Starting and Stopping Services

152 © 2010-2021 Perforce Software, Inc.

occur with older init scripts if the underlying init script was used to start the server rather than
using sudo systemctl start p4d_N as prescribed. The status indication would only indicate that the
service is running if it was started using the systemctl mechanism. As of SDP 2020.1, a safety feature
now assures that system is always used if configured.

F.1.1. Brokers and Proxies

In the above examples for starting, stopping, and status-checking of services using either the SysV
or systemd init mechanisms, p4d is the sample service managed. This can be replaced with p4p or
p4broker to manage proxy and broker services, respectively. For example, on a systemd system, the
broker service, if configured, can be started like so:

sudo systemctl status p4broker_1
sudo systemctl start p4broker_1
sudo systemctl status p4broker_1

F.1.2. Root or sudo required with systemd

For SysV, having sudo is optional, as the underlying SDP init scripts can be called safely as root or
perforce; the service runs as perforce.

If systemd is used, by default root access (often granted via sudo) is needed to start and stop the p4d
service, effectively making sudo access required for the perforce user. The systemd "unit" files
provided with the SDP handle making sure the underlying SDP init scripts start running under the
correct operating system account user (typically perforce).

F.2. SDP Service Management with SysV init
mechanism
On older OS’s, like RHEL/CentOS 6, the SysV init mechanism is used. For those, you can the
following example commands, replacing N with the actual SDP instance name

sudo service p4d_N_init status

The service can be checked for status, started and stopped by calling the underlying SDP init scripts
as either root or perforce directly:

/p4/N/bin/p4d_N_init status

Replace status with start or stop as needed. It is common to do a status check immediately before
and after a start or stop.

During installation, a symlink is setup such that /etc/init.d/p4d_N_init is a symlink to
/p4/N/bin/p4_N_init, and the proper chkconfig commands are run to register the application as a
service that will be started on boot and gracefully shutdown on reboot.

Appendix F: Starting and Stopping Services - 153 of 156

© 2010-2021 Perforce Software, Inc. 153

On systems using SysV, calling the underlying SDP init scripts is safe and completely
interchangeable with using the service command being run as root. That is, you can start a service
with the underlying SDP init script, and the SysV init mechanism will still safely detect whether the
service is running during a system shutdown, and thus will perform a graceful stop if p4d is up and
running when you go to reboot. The status indication of the underlying SDP init script is absolutely
100% reliable, regardless of how the service was started (i.e. calling the init script directly as root or
perforce, or using the service call as root.

154 of 156 - Appendix F: Starting and Stopping Services

154 © 2010-2021 Perforce Software, Inc.

Appendix G: Brokers in Stack Topology
A preferred methodology is to deploy p4broker processes to control access to p4d servers. In a
typical configuration, 100% of user activity gets to p4d thru a p4broker deployed in "stack
topology", i.e. a p4broker exists on every machine where p4d is, and access to p4d on any given
machine is only via the broker, with a typical setup using firewalls to enforce that concept. There
are typically only 3 exceptions:

1. p4d-to-p4d communication (p4 pull, p4 journalcopy) bypasses the broker

2. Triggers called from p4d run 'p4' commands against the p4d port directly.

3. Admins running 'p4' commands while on the server machine can bypass the broker if they
want.

Everything else (to include Proxies, Swarm, Jenkins, any systems integrations, etc.) must go thru the
broker.

Using brokers like this makes it straightforward to implement the "Down for Maintenance" concept
across an entire global topology. For example, when upgrade p4d services in a global topology,
doing the outer-to-inner upgrade procedure, it is best to prevent users from loading the system
during the upgrade process.

Using brokers in "stack topology" avoids the significant performance impact of brokers deployed on
a different machine than the targeted p4d. While running on the same host, the impact of brokers is
relatively small.

Brokers are preferred over p4d command triggers for certain use cases. They’re independent of p4d
and can keep p4d safe from rogue usage patterns.

Appendix G: Brokers in Stack Topology - 155 of 156

© 2010-2021 Perforce Software, Inc. 155

Appendix H: SDP Health Checks
If you need to contact Perforce Support to analyze an issue with the SDP on UNIX/Linux, you can
use the sdp_health_check.sh script. This script is not included in the SDP, as it can be used with any
and all versions of the UNIX/Linux SDP dating back to its origins 2007. This script is acquired with
the procedure below.

If your Perforce Helix server machine has outbound internet access, execute the following while
logged in as the operating system user that owns the /p4/common/bin directory (typically perforce or
p4admin):

cd

curl -L -s -O https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/download/tools/sdp_health_check.sh
chmod +x sdp_health_check.sh

./sdp_health_check.sh

If your Perforce Helix server machine does not have have outbound internet access, acquire the
sdp_health_check.sh file from a machine that does have outbound internet access, and then
somehow get that file to your Perforce Helix server machine.

If you have multiple server machines with SDP, possibly including machines running P4D replicas
or edge servers, P4Proxy or P4Broker servers, run the health on al machines of interest.

The sdp_health_check.sh script will produce a log file that can be provided to Perforce Support to
help diagnose configuration issues and other problems. The script has these characteristics:

• It is always safe to run. It does only analysis and reporting.

• It does only fast checks, and has no interactive prompts. Some log files are captured such as
checkpoint.log, but not potentially large ones such as the p4d server log.

• It requires no command line arguments.

• It works for any and all UNIX/Linux SDP version since 2007.

156 of 156 - Appendix H: SDP Health Checks

156 © 2010-2021 Perforce Software, Inc.

	Perforce Helix Core Server Deployment Package (for UNIX/Linux)
	Table of Contents
	Preface
	Chapter 1. Overview
	1.1. Using this Guide
	1.2. Getting the SDP
	1.3. Checking the SDP Version

	Chapter 2. Setting up the SDP
	2.1. Terminology Definitions

	Chapter 3. Pre-Requisites
	3.1. Volume Layout and Hardware

	Chapter 4. Installing the SDP on Unix / Linux
	4.1. Automated Install
	4.2. Manual Install
	4.2.1. Manual Install Initial setup
	4.2.1.1. Use of SSL
	4.2.1.2. Configuration script mkdirs.cfg

	4.2.2. SDP Init Scripts
	4.2.2.1. Configuring systemd
	Configuring systemd for p4d
	Configuring systemd for p4p
	Configuring systemd for p4dtg
	Configuring systemd p4broker - multiple configs

	4.2.2.2. Enabling systemd under SELinux
	4.2.2.3. Configuring SysV Init Scripts

	4.2.3. Configuring Automatic Service Start on Boot
	4.2.3.1. Automatic Start for Systems using systemd
	4.2.3.2. For systems using the SysV init mechanism

	4.2.4. SDP Crontab Templates
	4.2.5. Completing Your Server Configuration
	4.2.6. Validating your SDP installation

	4.3. Local SDP Configuration
	4.3.1. Load Order

	4.4. Setting your login environment for convenience
	4.5. Configuring protections, file types, monitoring and security
	4.6. Operating system configuration
	4.6.1. Configuring email for notifications
	4.6.2. Swarm Email Configuration
	4.6.3. Configuring PagerDuty for notifications
	4.6.3.1. Prerequisites
	4.6.3.2. SDP Configuration
	4.6.3.3. Optional variables
	Example Additional Context Configuration

	4.6.4. Configuring AWS Simple Notification Service (SNS) for notifications
	4.6.4.1. Prerequisites
	4.6.4.2. SDP Configuration
	4.6.4.3. Example IAM Policy

	4.7. Other server configurables
	4.8. Archiving configuration files
	4.9. Installing Swarm Triggers

	Chapter 5. Backup, Replication, and Recovery
	5.1. Typical Backup Procedure
	5.2. Planning for HA and DR
	5.2.1. Further Resources
	5.2.2. Creating a Failover Replica for Commit or Edge Server
	5.2.3. What is a Failover Replica?
	5.2.4. Mandatory vs Non-mandatory Standbys
	5.2.5. Server host naming conventions

	5.3. Full One-Way Replication
	5.3.1. Replication Setup
	5.3.2. Replication Setup for Failover
	5.3.3. Pre-requisites for Failover
	5.3.4. Using mkrep.sh
	5.3.4.1. SiteTags.cfg
	5.3.4.2. Output of mkrep.sh

	5.3.5. Addition Replication Setup
	5.3.6. SDP Installation
	5.3.6.1. SSH Key Setup

	5.4. Recovery Procedures
	5.4.1. Recovering a master server from a checkpoint and journal(s)
	5.4.2. Recovering a replica from a checkpoint
	5.4.3. Recovering from a tape backup
	5.4.4. Failover to a replicated standby machine

	Chapter 6. Upgrades
	6.1. Upgrade Order: SDP first, then Helix P4D
	6.2. SDP and P4D Version Compatibility
	6.3. Upgrading the SDP
	6.3.1. Sample SDP Upgrade Procedure
	6.3.2. SDP Legacy Upgrade Procedure

	6.4. Upgrading Helix Software with the SDP
	6.4.1. Get Latest Helix Binaries
	6.4.2. Upgrade Each Instance
	6.4.3. Global Topology Upgrades - Outer to Inner

	6.5. Database Modifications

	Chapter 7. Maximizing Server Performance
	7.1. Ensure Transparent Huge Pages (THP) is turned off
	7.2. Putting server.locks directory into RAM
	7.3. Installing monitoring packages
	7.4. Optimizing the database files
	7.5. P4V Performance Settings
	7.6. Proactive Performance Maintenance
	7.6.1. Limiting large requests
	7.6.2. Offloading remote syncs

	Chapter 8. Tools and Scripts
	8.1. General SDP Usage
	8.1.1. Linux
	8.1.2. Monitoring SDP activities

	8.2. Upgrade Scripts
	8.2.1. get_helix_binaries.sh
	8.2.2. upgrade.sh
	8.2.3. sdp_upgrade.sh

	8.3. Legacy Upgrade Scripts
	8.3.1. clear_depot_Map_fields.sh

	8.4. Core Scripts
	8.4.1. p4_vars
	8.4.2. p4_<instance>.vars
	8.4.3. p4master_run
	8.4.4. daily_checkpoint.sh
	8.4.5. recreate_offline_db.sh
	8.4.6. live_checkpoint.sh
	8.4.7. p4verify.sh
	8.4.8. p4login
	8.4.9. p4d_<instance>_init
	8.4.10. refresh_P4ROOT_from_offline_db.sh
	8.4.11. run_if_master.sh
	8.4.12. run_if_edge.sh
	8.4.13. run_if_replica.sh
	8.4.14. run_if_master/edge/replica.sh

	8.5. More Server Scripts
	8.5.1. p4.crontab
	8.5.2. verify_sdp.sh

	8.6. Other Scripts and Files
	8.6.1. backup_functions.sh
	8.6.2. broker_rotate.sh
	8.6.3. edge_dump.sh
	8.6.4. edge_vars
	8.6.5. edge_shelf_replicate.sh
	8.6.6. load_checkpoint.sh
	8.6.7. gen_default_broker_cfg.sh
	8.6.8. journal_watch.sh
	8.6.9. kill_idle.sh
	8.6.10. p4d_base
	8.6.11. p4broker_base
	8.6.12. p4ftpd_base
	8.6.13. p4p_base
	8.6.14. p4pcm.pl
	8.6.15. p4review.py
	8.6.16. p4review2.py
	8.6.17. proxy_rotate.sh
	8.6.18. p4sanity_check.sh
	8.6.19. p4dstate.sh
	8.6.20. ps_functions.sh
	8.6.21. pull.sh
	8.6.22. pull_test.sh
	8.6.23. purge_revisions.sh
	8.6.24. recover_edge.sh
	8.6.25. replica_cleanup.sh
	8.6.26. replica_status.sh
	8.6.27. request_replica_checkpoint.sh
	8.6.28. rotate_journal.sh
	8.6.29. submit.sh
	8.6.30. submit_test.sh
	8.6.31. sync_replica.sh
	8.6.32. templates directory
	8.6.33. update_limits.py

	Chapter 9. Sample Procedures
	9.1. Installing Python3 and P4Python
	9.2. Installing CheckCaseTrigger.py
	9.3. Swarm JIRA Link
	9.4. Reseeding an Edge Server
	9.5. Edge Reseed Scenario
	9.5.1. Step 0: Preflight Checks
	9.5.2. Step 1: Create New Edge Seed Checkpoint
	9.5.3. Step 2: Transfer Edge Seed
	9.5.4. Step 3: Reseed the Edge

	Appendix A: SDP Package Contents and Planning
	A.1. Volume Layout and Server Planning
	A.1.1. Memory and CPU
	A.1.2. Directory Structure Configuration Script for Linux/Unix
	A.1.3. P4D versions and links
	A.1.4. Case Insensitive P4D on Unix

	Appendix B: The journalPrefix Standard
	B.1. SDP Scripts that set journalPrefix
	B.2. First Form of journalPrefix Value
	B.2.1. Detail on "Completely Unfiltered"

	B.3. Second Form of journalPrefix Value
	B.4. Scripts for Maintaining the offline_db
	B.5. SDP Structure and journalPrefix
	B.6. Replicas of Edge Servers
	B.7. Goals of the journalPrefix Standard

	Appendix C: Server Spec Naming Standard
	C.1. General Form
	C.1.1. Helix Server Tags
	C.1.2. Replica Type Tags
	C.1.2.1. Replication Notes

	C.1.3. Site Tags

	C.2. Example Server Specs
	C.3. Implications of Replication Filtering
	C.4. Other Replica Types
	C.5. The SDP mkrep.sh script

	Appendix D: Frequently Asked Questions
	D.1. How do I tell what version of the SDP I have?

	Appendix E: Troubleshooting Guide
	E.1. Daily_checkpoint.sh fails
	E.1.1. Last checkpoint not complete. Check the backup process or contact support.

	E.2. Replication appears to be stalled
	E.2.1. Resolution
	E.2.2. Make Errors Visible
	E.2.3. Remove state file

	E.3. Archive pull queue appears to be stalled
	E.3.1. Resolutions
	E.3.1.1. Remove and re-queue
	E.3.1.2. Check for verify errors on the parent server

	E.4. Can’t login to edge server
	E.4.1. Resolution

	E.5. Updating offline_db for an edge server
	E.5.1. Resolution

	E.6. Journal out of sequence in checkpoint.log file
	E.7. Unexpected end of file in replica daily sync

	Appendix F: Starting and Stopping Services
	F.1. SDP Service Management with the systemd init mechanism
	F.1.1. Brokers and Proxies
	F.1.2. Root or sudo required with systemd

	F.2. SDP Service Management with SysV init mechanism

	Appendix G: Brokers in Stack Topology
	Appendix H: SDP Health Checks

