
Perforce Helix Server Deployment
Package (for UNIX/Linux)

Perforce Professional Services

Version v2020.1, 2021-04-27



Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê1

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê2

1.1. Using this Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê2

1.2. Getting the SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê2

2. Setting up the SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê4

2.1. Terminology Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê4

3. Pre-Requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê6

3.1. Volume Layout and Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê6

4. Installing the SDP on Unix / Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê8

4.1. Automated Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê8

4.2. Manual Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê8

4.2.1. Manual Install Initial setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê10

4.2.1.1. Use of SSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê15

4.2.1.2. Configuration script mkdirs.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê16

4.2.2. SDP Init Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê17

4.2.2.1. Configuring systemd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê18

Configuring systemd for p4d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê18

Configuring systemd for p4p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê19

Configuring systemd for p4dtg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê20

Configuring systemd p4broker - multiple configs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê20

4.2.2.2. Configuring SysV Init Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê22

4.2.3. Configuring Automatic Service Start on Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê23

4.2.3.1. Automatic Start for Systems using systemd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê23

4.2.3.2. For systems using the SysV init mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê23

4.2.4. SDP Crontab Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê23

4.2.5. Completing Your Server Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê23

4.2.6. Validating your SDP installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê24

4.3. Setting your login environment for convenience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê26

4.4. Configuring protections, file types, monitoring and security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê26

4.5. Operating system configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê27

4.6. Other server configurables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê27

4.7. Archiving configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê27

5. Backup, Replication, and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê28

5.1. Typical Backup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê28

5.2. Planning for HA and DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê29

5.2.1. Further Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê30

5.2.2. Creating a Failover Replica for Commit or Edge Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê30

5.2.3. What is a Failover Replica? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê30



5.2.4. Mandatory vs Non-mandatory Standbys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê31

5.2.5. Server host naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê31

5.3. Full One-Way Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê32

5.3.1. Replication Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê33

5.3.2. Replication Setup for Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê33

5.3.3. Pre-requisites for Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê33

5.3.4. Using mkrep.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê34

5.3.4.1. SiteTags.cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê38

5.3.4.2. Output of mkrep.sh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê39

5.3.5. Addition Replication Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê39

5.3.6. SDP Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê39

5.3.6.1. SSH Key Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê39

5.4. Recovery Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê39

5.4.1. Recovering a master server from a checkpoint and journal(s) . . . . . . . . . . . . . . . . . . . . . . . . Ê40

5.4.2. Recovering a replica from a checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê41

5.4.3. Recovering from a tape backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê41

5.4.4. Failover to a replicated standby machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê42

6. Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê43

6.1. Upgrade Order: SDP first, then Helix P4D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê43

6.2. SDP and P4D Version Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê43

6.3. Upgrading the SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê43

6.4. Upgrading Helix Software with the SDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê44

6.4.1. Get Latest Helix Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê44

6.4.2. Upgrade Each Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê44

6.4.3. Global Topology Upgrades - Outer to Inner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê44

7. Database Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê46

8. Maximizing Server Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê47

8.1. Ensure Transparent Huge Pages (THP) is turned off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê47

8.2. Putting server.locks directory into RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê48

8.3. Optimizing the database files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê49

8.4. P4V Performance Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê49

8.5. Proactive Performance Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê49

8.5.1. Limiting large requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê50

8.5.2. Offloading remote syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê50

9. Tools and Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê51

9.1. General SDP Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê51

9.1.1. Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê51

9.1.2. Monitoring SDP activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê52

9.2. Upgrade Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê52

9.2.1. get_helix_binaries.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê52

9.2.2. upgrade.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê54



9.3. Legacy Upgrade Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê54

9.3.1. clear_depot_Map_fields.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê54

9.4. Core Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê64

9.4.1. p4_vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê64

9.4.2. p4_<instance>.vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê64

9.4.3. p4master_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê65

9.4.4. daily_checkpoint.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê65

9.4.5. recreate_offline_db.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê65

9.4.6. live_checkpoint.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê66

9.4.7. p4verify.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê66

9.4.8. p4login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê69

9.4.9. p4d_<instance>_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê72

9.4.10. refresh_P4ROOT_from_offline_db.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê72

9.4.11. run_if_master.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê72

9.4.12. run_if_edge.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê72

9.4.13. run_if_replica.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê73

9.4.14. run_if_master/edge/replica.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê73

9.5. More Server Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê73

9.5.1. p4.crontab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê73

9.5.2. verify_sdp.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê73

9.6. Other Scripts and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê76

9.6.1. backup_functions.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê76

9.6.2. broker_rotate.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê76

9.6.3. edge_dump.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê76

9.6.4. edge_vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê77

9.6.5. edge_shelf_replicate.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê77

9.6.6. load_checkpoint.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê77

9.6.7. gen_default_broker_cfg.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê79

9.6.8. journal_watch.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê80

9.6.9. kill_idle.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê81

9.6.10. p4d_base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê81

9.6.11. p4broker_base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê81

9.6.12. p4ftpd_base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê81

9.6.13. p4p_base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê81

9.6.14. p4pcm.pl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê81

9.6.15. p4review.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê82

9.6.16. p4review2.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê82

9.6.17. p4sanity_check.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê83

9.6.18. p4dstate.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê83

9.6.19. ps_functions.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê84

9.6.20. pull.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê84



9.6.21. pull_test.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê85

9.6.22. purge_revisions.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê85

9.6.23. recover_edge.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê87

9.6.24. replica_cleanup.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê87

9.6.25. replica_status.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê87

9.6.26. request_replica_checkpoint.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê88

9.6.27. rotate_journal.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê88

9.6.28. submit.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê88

9.6.29. submit_test.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê89

9.6.30. sync_replica.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê90

9.6.31. templates directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê90

9.6.32. update_limits.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê90

Appendix A: SDP Package Contents and Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê91

A.1. Volume Layout and Server Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê91

A.1.1. Memory and CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê91

A.1.2. Directory Structure Configuration Script for Linux/Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê92

A.1.3. P4D versions and links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê93

A.1.4. Case Insensitive P4D on Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê94

Appendix B: The journalPrefix Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê96

B.1. SDP Scripts that set journalPrefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê96

B.2. First Form of journalPrefix  Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê96

B.2.1. Detail on "Completely Unfiltered" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê96

B.3. Second Form of journalPrefix  Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê97

B.4. Scripts for Maintaining the offline_db . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê97

B.5. SDP Structure and journalPrefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê98

B.6. Replicas of Edge Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê98

B.7. Goals of the journalPrefix  Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê99

Appendix C: Server Spec Naming Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê100

C.1. General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê100

C.1.1. Helix Server Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê100

C.1.2. Replica Type Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê100

C.1.2.1. Replication Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê101

C.1.3. Site Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê101

C.2. Example Server Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê102

C.3. Implications of Replication Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê103

C.4. Other Replica Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê103

C.5. The SDP mkrep.sh script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê103

Appendix D: Frequently Asked Questions/Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê104

D.1. Journal out of sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê104

D.2. Unexpected end of file in replica daily sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê104

Appendix E: Starting and Stopping Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê105



E.1. SDP Service Management with the systemd init mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê105

E.1.1. Brokers and Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê106

E.1.2. Root or sudo required with systemd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê106

E.2. SDP Service Management with SysV init mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê106



Preface
The Server Deployment Package (SDP) is the implementation of PerforceÕs recommendations for
operating and managing a production Perforce Helix Core Version Control System. It is intended to
provide the Helix Core administration team with tools to help:

¥ Simplify Management

¥ High Availability (HA)

¥ Disaster Recovery (DR)

¥ Fast and Safe Upgrades

¥ Production Focus

¥ Best Practice Configurables

¥ Optimal Performance, Data Safety, and Simplified Backup

This guide is intended to provide instructions of setting up the SDP to help provide users of Helix
Core with the above benefits.

This guide assumes some familiarity with Perforce and does not duplicate the basic information in
the Perforce user documentation. This document only relates to the Server Deployment Package
(SDP). All other Helix Core documentation can be found here: Perforce Support Documentation .

Please Give Us Feedback

Perforce welcomes feedback from our users. Please send any suggestions for improving this
document or the SDP to consulting@perforce.com .

Preface - 1 of 107

© 2010-2020 Perforce Software, Inc. 1

https://www.perforce.com/support/self-service-resources/documentation
mailto:consulting@perforce.com


Chapter 1. Overview
The SDP has four main components:

¥ Hardware and storage layout recommendations for Perforce.

¥ Scripts to automate critical maintenance activities

¥ Scripts to aid the setup and management of replication (including failover for DR/HA)

¥ Scripts to assist with routine administration tasks.

Each of these components is covered, in detail, in this guide.

1.1. Using this Guide
Chapter 2, Setting up the SDP describes concepts, terminology and pre-requisites

Chapter 4, Installing the SDP on Unix / Linux  consists of what you need to know to setup Helix Core
sever on a Unix platform.

Chapter 5, Backup, Replication, and Recovery  gives information around the Backup, Restoration and
Replication of Helix Core, including some guidance on planning for HA (High Availability) and DR
(Disaster Recovery)

Chapter 6, Upgrades  covers upgrades of p4d and related Helix Core executables.

Section 6.3, ÒUpgrading the SDPÓ covers upgrading the SDP itself.

Chapter 8, Maximizing Server Performance  covers optimizations and proactive actions.

Chapter 9, Tools and Scripts  covers all the scripts used within the SDP in detail.

Appendix A, SDP Package Contents and Planning  describes the details of the SDP package.

Appendix B, The journalPrefix Standard  describes the standard for setting the journalPrefix
configurable.

Appendix C, Server Spec Naming Standard  describes the standard for naming 'server' specs created
with the p4 server  command.

Appendix D, Frequently Asked Questions/Troubleshooting  is useful for other questions.

Appendix E, Starting and Stopping Services  gives on overview of starting and stopping services with
common init mechanisms, systemd and SysV.

1.2. Getting the SDP
The SDP is downloaded as a single zipped tar file the latest version can be found at:
https://swarm.workshop.perforce.com/projects/perforce-software-sdp/files/downloads

The file to download containing the latest SDP is consistently named sdp.Unix.tgz . A copy of this file

2 of 107 - Chapter 1. Overview

2 © 2010-2020 Perforce Software, Inc.

https://swarm.workshop.perforce.com/projects/perforce-software-sdp/files/downloads


also exists with a version-identifying name, e.g. sdp.Unix.2019.3.26571.tgz .

The direct download link to use with curl  or wget is illustrated with this command:

curl -k -O https://swarm.workshop.perforce.com/projects/perforce-software-
sdp/download/downloads/sdp.Unix.tgz

Chapter 1. Overview - 3 of 107

© 2010-2020 Perforce Software, Inc. 3



Chapter 2. Setting up the SDP
This section tells you how to configure the SDP to setup a new Helix Core server.

The SDP can be installed on multiple server machines, and each server machine can host one or
more Helix Core server instances. See Section 2.1, ÒTerminology DefinitionsÓ  for detailed definition
of terms.

The SDP implements a standard logical directory structure which can be implemented flexibly on
one or many physical server machines.

Additional relevant information is available in the System Administrator Guide .

2.1. Terminology Definitions
¥ Instance  - a running instance of a process. It should normally be qualified as to what type of

instance it is:

! p4d instance  - a running instance of p4d with itÕs own copy of db.* files. P4D instances may
be of any one of the standard types, e.g. standard or commit-server, and any of the valid
replica types: forwarding-replica, edge-server etc.

! p4p instance  Ð proxy instance talking to a single upstream p4d instance

! p4broker instance  Ð p4broker talking to a single upstream p4d instance

¥ Data set  - a logically independent set of (Helix Core) data comprising metadata (db.*) and
versioned files (archive files). A data set consists of at least one p4d instance. It may consist of a
federated set of p4d instances, one of which is a standard or commit-server and the others of
which are replicas.

! You may have more than one "data set", even if running on the same set of machines (see
below)

¥ Server machine  - this is a host machine (virtual or physical) with operating system and on
which any number of p4d or other types of instance may be running.

¥ Server spec  or server specification  - is the entity managed using p4 server  command (and the
companion p4 servers  to list all of them).

¥ Server  - this is a vague term. It needs to be fully qualified, and use on its own (unadorned)
should be avoided since depending on context it may mean any one of:

! Server machine

! P4d instance (this is usually the most common usage - tend to assume this unless otherwise
defined.)

! Any other type of instance!

!
Thus Òp4d serverÓ is unclear as to whether you are talking about a p4d instance or
a server machine or a combination of both (since there may be a single instance on
a single machine, or many instances on a machine, etcÉ). Make sure you
understand what is being referred to!

4 of 107 - Chapter 2. Setting up the SDP

4 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/Home-p4sag.html


1. The term server  refers to a Helix Core server instance , unless otherwise specified below.

2. The term metadata  refers to the Helix Core database files.

3. Instance:  a separate Helix Core instantiation, with its own data set, set of users, files and
changelists managed by a p4d service.

Chapter 2. Setting up the SDP - 5 of 107

© 2010-2020 Perforce Software, Inc. 5



Chapter 3. Pre-Requisites
1. The Helix Core binaries (p4d, p4, p4broker, p4p) have been downloaded (see Chapter 4,

Installing the SDP on Unix / Linux )

2. sudo access is required

3. System administrator available for configuration of drives / volumes (especially if on network
or SAN or similar)

4. Supported Linux version, currently these versions are fully supported - for other versions
please speak with Perforce Support.

! Ubuntu 18.04 LTS (bionic)

! Ubuntu 20.04 LTS (focal fossa)

! CentOS or Red Hat (RHEL) 7.x

! CentOS or Red Hat (RHEL) 8.x

! SUSE Linux Enterprise Server 12

! We have seen CentOS/RHEL perform noticeably better than Ubuntu with the same
storage (e.g. All Flash arrays, and SAN drives) - and thus recommend it.

3.1. Volume Layout and Hardware
As can be expected from a version control system, good disk (storage) management is key to
maximizing data integrity and performance. Perforce recommend using multiple physical volumes
for each  p4d server instance. Using three or four volumes per instance reduces the chance of
hardware failure affecting more than one instance. When naming volumes and directories the SDP
assumes the "hx" prefix is used to indicate Helix volumes (your own naming conventions/standards
can be used instead). For optimal performance on UNIX machines, the XFS file system is
recommended but not mandated.

¥ Depot data, archive files, scripts, and checkpoints : Use a large volume, with RAID 6 on its
own controller with a standard amount of cache or a SAN or NAS volume (NFS access is fine).

This volume is the only volume that must  be backed up. The SDP backup scripts place the metadata
snapshots on this volume.

+ This volume is normally called /hxdepots .

¥ Perforce metadata (database files), 1 or 2 volumes:  Use the fastest volume possible, ideally
SSD or RAID 1+0 on a dedicated controller with the maximum cache available on it. Typically a
single volume is used, /hxmetadata. In some sites with exceptionally large metadata, 2 volumes
are used for metadata, /hxmetadata and /hxmetadata2

6 of 107 - Chapter 3. Pre-Requisites

6 © 2010-2020 Perforce Software, Inc.



!
Do not run anti-virus tools or back up tools against the hxmetadata volume(s) or
hxlogs  volume(s), because they can interfere with the operation of the Perforce
server executable.

¥ Journals and logs:  a fast volume, ideally SSD or RAID 1+0 on its own controller with the
standard amount of cache on it. This volume is normally called /hxlogs  and can optionally be
backed up.

If a separate logs volume is not available, put the logs on the /hxmetadata or /hxmetadata1
volume, as metadata and logs have similar performance needs that differ from /hxdepots .

"
Storing metadata and logs on the same volume is discouraged, since the
redundancy benefit of the P4JOURNAL (stored on /hxlogs ) is greatly reduced if
P4JOURNAL is on the same volume as the metadata in the P4ROOT directory.

# If multiple controllers are not available, put the /hxlogs  and /hxdepots  volumes on
the same controller.

The SDP will create a "convenience" directory containing links to the volumes for each instance
named /p4 . The volume layout is shown in Appendix A, SDP Package Contents and Planning . This
convenience directory enables easy access to the different parts of the file system for each instance.

For example:

¥ /p4/1/root  contains the database files for instance 1

¥ /p4/1/logs  contains the log files for instance 1

¥ /p4/1/bin  contains the binaries and scripts for instance 1

¥ /p4/common/bin contains the binaries and scripts common to all instances

Chapter 3. Pre-Requisites - 7 of 107

© 2010-2020 Perforce Software, Inc. 7



Chapter 4. Installing the SDP on Unix / Linux

4.1. Automated Install
If you are doing a "green field" install, a first-time installation on a new machine that does not yet
have any Perforce Helix data, then the Helix Installer  should be used.

4.2. Manual Install
The following documentation covers internal details of how the SDP can be deployed manually.
Many of the steps below are performed by the Helix Installer.

To install Perforce Helix Server program and the SDP, perform the steps laid out below:

¥ Set up a user account, file system, and configuration scripts.

¥ Run the configuration script.

¥ Start the p4d instance and configure the required file structure for the SDP.

1. If it doesnÕt already exist, create a group called perforce :

sudo groupadd perforce

2. Create a user called perforce and set the userÕs home directory to /p4  on a local disk.

sudo useradd -d /p4 -s /bin/bash -m perforce -g perforce

3. Allow the perforce user sudo access - Option 1 (full sudo)

sudo touch /etc/sudoers.d/perforce
sudo chmod 0600 /etc/sudoers.d/perforce
sudo echo "perforce ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/perforce
sudo chmod 0400 /etc/sudoers.d/perforce

4. Allow the perforce user sudo access - Option 2 (limited sudo)

sudo touch /etc/sudoers.d/perforce
sudo chmod 0600 /etc/sudoers.d/perforce
vi /etc/sudoers.d/perforce

8 of 107 - Chapter 4. Installing the SDP on Unix / Linux

8 © 2010-2020 Perforce Software, Inc.

https://swarm.workshop.perforce.com/projects/perforce_software-helix-installer


# Make the file look like this to give limited sudo,
# replacing EDTIME_HOSTNAME with the current machine
Cmnd_Alias P4_SVC = /usr/bin/systemctl start p4d_*, \
Ê  /usr/bin/systemctl start p4d_*, \
Ê  /usr/bin/systemctl stop p4d_*, \
Ê  /usr/bin/systemctl status p4d_*, \
Ê  /usr/bin/systemctl start p4dtg_*, \
Ê  /usr/bin/systemctl stop p4dtg_*, \
Ê  /usr/bin/systemctl status p4dtg_*, \
Ê  /usr/bin/systemctl start p4broker_*, \
Ê  /usr/bin/systemctl stop p4broker_*, \
Ê  /usr/bin/systemctl status p4broker_*, \
Ê  /usr/bin/systemctl start p4p_*, \
Ê  /usr/bin/systemctl stop p4p_*, \
Ê  /usr/bin/systemctl status p4p_*
perforce  EDITME_HOSTNAME = (root) NOPASSWD: P4_SVC

sudo chmod 0600 /etc/sudoers.d/perforce

5. Create or mount the OS server file system volumes (per layout in previous section)

! /hxdepots

! /hxlogs

and either:

! /hxmetadata

or

! /hxmetadata1

! /hxmetadata2

6. These directories should be owned by: perforce:perforce

sudo chown -R perforce:perforce /hx*

7. (Optional) if you have different root directories, or are putting all files into one mounted
filesystem (only recommended for small repositories), then do something like the following:

Option 1, all under a single directory /data :

Chapter 4. Installing the SDP on Unix / Linux - 9 of 107

© 2010-2020 Perforce Software, Inc. 9



cd /data
mkdir hxmetadata hxlogs hxdepots
sudo chown -R perforce:perforce /data/hx*
cd /
ln -s /data/hx* .
sudo chown -h perforce:perforce /hx*

Option 2, different mounted root folders, e.g. /P4metadata, /P4logs , /P4depots:

sudo chown -R perforce:perforce /P4metadata /P4logs /P4depots
cd /
ln -s /P4Medata hxmetadata
ln -s /P4logs hxlogs
ln -s /P4depots hxdepots
sudo chown -h perforce:perforce /hx*

8. Extract the SDP tarball.

cd /hxdepots
tar -xzf /WhereYouDownloaded/sdp.Unix.tgz

9. Set environment variable SDP.

export SDP=/hxdepots/sdp

10. Make the entire $SDP ( /hxdepots/sdp ) directory writable:

chmod -R +w $SDP

11. Download the appropriate p4, p4d and p4broker binaries for your release and platform:

cd /hxdepots/sdp/helix_binaries
./get_helix_binaries.sh

If you want to ensure a particular release:

cd /hxdepots/sdp/helix_binaries
./get_helix_binaries.sh -r r20.2

4.2.1. Manual Install Initial setup

The next steps highlight the setup and configuration of a new Helix Core instance using the

10 of 107 - Chapter 4. Installing the SDP on Unix / Linux

10 © 2010-2020 Perforce Software, Inc.



mkdirs.sh  script included in the SDP.

Usage

USAGE for mkdirs.sh v4.5.2:

mkdirs.sh <instance> [-s <ServerID>] [-t <server_type>] [-I <svc>[,<svc2>]] [-MDD
/bigdisk] [-MLG /jnl] [-MDB1 /db1] [-MDB2 /db2] [-f] [-p] [-test [-clean]] [-n] [-L
<log>] [-d|-D]

or

mkdirs.sh [-h|-man]

DESCRIPTION:

This script initializes an SDP instance on a single machine.

This script is intended to support two scenarios:

* First time SDP installation on a given machine.
* Adding new SDP instances (separate Helix Core data sets) to an existing
Ê SDP installation on a given machine.

And SDP instance is a single Helix Core data set, with its own unique
set of one set of users, changelist numbers, jobs, labels, versioned
files, etc. An organization may run a single instance or multiple
instances.

This is intended to be run either as root or as the operating system
user account (OSUSER) that p4d is configured to run as, typically
'perforce'.  It should be run as root for the initial install.
Subsequent additions of new instances do not require root.

If an initial install as done by a user other than root, various
directories must exist and be writable and owned by 'perforce' before starting:

* /p4
* /hxdepots
* /hxlogs
* /hxmetadata

This script creates an init script in the /p4/N/bin directory.

After running this script, set up the crontab based on templates
generated in /p4/common/etc/cron.d.  For convenience, a sample cronat
is generated for the current machine in /p4/common/etc/cron.d named

crontab.<osuser>.<host>

Chapter 4. Installing the SDP on Unix / Linux - 11 of 107

© 2010-2020 Perforce Software, Inc. 11



where <osuser> is the user that services run as (typically 'perforce'),
and <host> is the short hostname (as returned by a 'hostname -s' command).

Next, put the license file in place in the P4ROOT dir, and launch the server
with the init script.

Then run /p4/common/bin/p4master_run instance /p4/common/bin/live_checkpoint.sh
and then run both the daily_checkpoint.sh and recreate_db_checkpoint.sh to
make sure everything is working before setting up the crontab.

Also run /p4/common/bin/p4master_run <instance> /p4/common/bin/p4review.py <instance>
to make sure the review script is working properly.  If you intend to use
Swarm, you can skip configuration of the review daemon, and instead configure
Swarm to handle review-style email notifications.

REQUIRED PARAMETERS:
Ê<instance>
Ê   Specify the SDP instance name to add.  This is a reference to the Perforce
Ê   Helix Core data set.

OPTIONS:
Ê-s <ServerID>
Ê   Specify the ServerID, overriding the REPLICA_ID setting in the configuration
Ê   file.

Ê-S <TargetServerID>
Ê   Specify the ServerID of the P4TARGET of the server being installed.
Ê   Use this when setting up an edge server.

Ê-t <server_type>
Ê   Specify the server type, overriding the SERVER_TYPE setting in the config
Ê   file.  Valid values are:
Ê   * p4d_master - A master/commit server.
Ê   * p4d_replica - A replica with all metadata from the master (not
Ê     filtered in any way).
Ê   * p4d_filtered_replica - A filtered replica or filtered forwarding
Ê     replica.
Ê   * p4d_edge - An edge server.
Ê   * p4d_edge_replica - Replica of an edge server. If used,
Ê     '-S <TargetServerID>' is required.
Ê   * p4broker - An SDP host running only a broker, with no p4d.
Ê   * p4proxy - An SDP host running a proxy (maybe with a broker in front),
Ê     with no p4d.

Ê-I [<svc>[,<svc2>]]
Ê   Specify additional init scripts to be added to /p4/<instance>/bin
Ê   for the instance.

Ê   By default, the p4p service is installed only if '-t p4proxy' is
Ê   specified, and p4dtg is never installed by default.  Valid values

12 of 107 - Chapter 4. Installing the SDP on Unix / Linux

12 © 2010-2020 Perforce Software, Inc.



Ê   to specify are 'p4p' and 'dtg' (for the P4DTG init script).

Ê   If services are not installed by default, they can be added later
Ê   using templates in /p4/common/etc/init.d. Also, templates for
Ê   systemd service files are supplied in /p4/common/etc/systemd/system.

Ê-MDD /bigdisk
Ê-MLG /jnl
Ê-MDB1 /db1
Ê-MDB2 /db2
Ê   Specify the '-M*' to specify mount points, overriding DD/LG/DB1/DB2
Ê   settings in the config file.  Sample:

Ê   -MDD /bigdisk -MLG /jnl -MDB1 /fast

Ê   If -MDB2 is not specified, it is set the the same value as -MDB1 if
Ê   that is set, or else it defaults to the same default value as DB1.

Ê-f Specify -f 'fast mode' to skip chown/chmod commands on depot files.
Ê   This should only be used when you are certain the ownership and
Ê   permissions are correct, and if you have large amounts of existing
Ê   data for which the chown/chmod of the directory tree would be
Ê   slow.

Ê-p Specify '-p' to halt processing after preflight checks are complete,
Ê   and before actual processing starts. By default, processing starts
Ê   immediately upon successful completion of preflight checks.

Ê-L <log>
Ê   Specify the path to a log file, or the special value 'off' to disable
Ê   logging.  By default, all output (stdout and stderr) goes to this file
Ê   in the current directory:

Ê   mkdirs.<instance>.<datestamp>.log

Ê   NOTE: This script is self-logging.  That is, output displayed on the
Ê   screen is simultaneously captured in the log file.  Do not run this
Ê   script with redirection operators like '> log' or '2>&1', and do not
Ê   use 'tee'.

DEBUGGING OPTIONS:
Ê-test
Ê   Specify '-test' to execute a simulated install to /tmp/p4 as the install
Ê   root (rather than /p4), and with the mount point directories specified in
Ê   the configuration file prefixed with /tmp/hxmounts, defaulting to:
Ê   * /tmp/hxmounts/hxdepots
Ê   * /tmp/hxmounts/hxlogs
Ê   * /tmp/hxmounts/hxmetadata

Ê-clean
Ê   Specify '-clean' with '-test' to clean up from prior test installs,

Chapter 4. Installing the SDP on Unix / Linux - 13 of 107

© 2010-2020 Perforce Software, Inc. 13



Ê   which will result in removal of files/folders installed under /tmp/hxmounts
Ê   and /tmp/p4.

Ê   Do not specify '-clean' if you want to test a series of installs.

Ê-n No-Op.  In No-Op mode, no actions that affect data or structures are
Ê   taken.  Instead, commands that would be run are displayed.  This is
Ê   an alternative to -test. Unlike '-p' which stops after the preflight
Ê   checks, with '-n' more processing logic can be exercised, with greater
Ê   detail about what commands that would be executed without '-n'.

Ê-d     Increase verbosity for debugging.

Ê-D     Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message

FILES:
Ê   The mkdirs.sh script uses a configuration file for many settings.  A
Ê   sample file, mkdirs.cfg, is included with the SDP.  After determining
Ê   your SDP instance name (e.g. '1' or 'abc'), create a configuration
Ê   file for it named mkdirs.<N>.cfg, replacing 'N' with your instance.

Ê   Running 'mkdirs.sh N' will load configuration settings from mkdirs.N.cfg.

UPGRADING SDP:
Ê   This script can be useful in testing and upgrading to new versions of
Ê   the SDP, when the '-test' flag is used.

EXAMPLES:
Ê   Example 1: Setup of first instance

Ê   Setup of the first instance on a machine using the default instance name,
Ê   '1', executed after using sudo to become root:
Ê   $ sudo su -
Ê   $ cd /hxdepots/sdp/Server/Unix/setup
Ê   $ vi mkdirs.cfg

Ê   # Adjust settings as desired, e.g P4PORT, P4BROKERPORT, etc.

Ê   $ ./mkdirs.sh 1

Ê   A log will be generated, mkdirs.1.<timestamp>.log

Ê   Example 2: Setup of additional instance named 'abc'.

Ê   Setup a second instance on the machine, which will be a separate Helix
Ê   Core instance with its own P4ROOT, its own set of users and
Ê   changelists, and its own license file (copied from the master instance).

14 of 107 - Chapter 4. Installing the SDP on Unix / Linux

14 © 2010-2020 Perforce Software, Inc.



Ê   Note that while the first run of mkdirs.sh on a given machine should be
Ê   done as root, but subsequent instance additions should be done as the
Ê   'perforce' user (or whatever operating system user accounts Perforce
Ê   Helix services run as).

Ê   $ sudo su - perforce
Ê   $ cd /hxdepots/sdp/Server/Unix/setup
Ê   $ cp -p mkdirs.cfg mkdirs.abc.cfg
Ê   $ vi mkdirs.abc.cfg

Ê   # Adjust settings in mkdirs.abc.cfg as desired, e.g P4PORT, P4BROKERPORT, etc.

Ê   $ ./mkdirs.sh abc

Ê   A log will be generated, mkdirs.abc.<timestamp>.log

Ê   Example 3: Setup of additional instance named 'alpha' to run a p4p:

Ê   $ ./mkdirs.sh alpha -t p4proxy

! If you use a "name" for the instance (not an integer) you MUST modify the P4PORT
variable in the mkdirs. name.cfg  file.

# The instance name must map to the name of the cfg file or the default file will be
used with potentially unexpected results.

For example, mkdirs.sh 1  requires mkdirs.1.cfg , or mkdirs.sh lon  requires mkdirs.lon.cfg

3. Put the Perforce license file for the p4d server instance into /p4/1/root

#
if you have multiple instances and have been provided with port-specific licenses
by Perforce, the appropriate license file must be stored in the appropriate
/p4/<instance>/root  folder.

! the license file must be renamed to simply the name license .

Your Helix Core instance is now setup, but not running. The next steps detail how to make the Helix
Core p4d instance a system service.

You are then free to start up the p4d instance as documented
[_startingstopping_perforce_server_products]

Please note that if you have configured SSL, then refer to Section 4.2.1.1, ÒUse of SSLÓ

4.2.1.1. Use of SSL

As documented in the comments in mkdirs.cfg, if you are planning to use SSL you need to set the
value of:

Chapter 4. Installing the SDP on Unix / Linux - 15 of 107

© 2010-2020 Perforce Software, Inc. 15



SSL_PREFIX=ssl:

Then you need to put certificates in /p4/ssl  after the SDP install or you can generate a self signed
certificate as follows:

Edit /p4/ssl/config.txt  to put in the info for your company. Then run:

/p4/common/bin/p4master_run <instance> /p4/<instance>/p4d_<instance> -Gc

For example using instance 1:

/p4/common/bin/p4master_run 1 /p4/1/bin/p4d_1 -Gc

In order to validate that SSL is working correctly:

source /p4/common/bin/p4_vars 1

Check that P4TRUST is appropriately set in the output of:

p4 set

Update the P4TRUST values:

p4 trust -y
p4 -p $P4MASTERPORT trust -y

Check the stored P4TRUST values:

p4 trust -l

Check you are not prompted for trust:

p4 login
p4 info

4.2.1.2. Configuration script mkdirs.cfg

The mkdirs.sh  script executed above resides in $SDP/Server/Unix/setup . It sets up the basic directory
structure used by the SDP. Carefully review the config file mkdirs. instance .cfg  for this script before
running it, and adjust the values of the variables as required. The important parameters are:

16 of 107 - Chapter 4. Installing the SDP on Unix / Linux

16 © 2010-2020 Perforce Software, Inc.



Parameter Description

DB1 Name of the hxmetadata1 volume (can be same
as DB2)

DB2 Name of the hxmetadata2 volume (can be same
as DB1)

DD Name of the hxdepots volume

LG Name of the hxlogs volume

CN Volume for /p4/common

SDP Path to SDP distribution file tree

SHAREDDATA TRUE or FALSE - whether sharing the /hxdepots
volume with a replica - normally this is FALSE

ADMINUSER P4USER value of a Perforce super user that
operates SDP scripts, typically perforce or
p4admin.

OSUSER Operating system user that will run the Perforce
instance, typically perforce.

OSGROUP Operating system group that OSUSER belongs to,
typically perforce.

CASE_SENSITIVE Indicates if p4d server instance has special case
sensitivity settings

SSL_PREFIX Set if SSL is required so either "ssl:" or blank for
no SSL

P4ADMINPASS

P4SERVICEPASS

Password to use for Perforce superuser account
- can be edited later in
/p4/common/config/.p4password.p4_1.admin

Service UserÕs password for replication - can be
edited later - same dir as above.

P4MASTERHOST Fully qualified DNS name of the Perforce master
server machine for this instance. If this p4d
instance is an HA for an edge server this should
refer to the DNS of the edge server machine.
Otherwise replicas should refer to the commit-
server machine.

For a detailed description of this config file it is fully documented with in-file comments, or see

4.2.2. SDP Init Scripts

The SDP includes templates for initialization scripts ("init scripts") that provide basic service start
/stop /status  functionality for a variety of Perforce server products, including:

Chapter 4. Installing the SDP on Unix / Linux - 17 of 107

© 2010-2020 Perforce Software, Inc. 17



¥ p4d

¥ p4broker

¥ p4p

¥ p4dtg

During initialization for an SDP instance, the SDP mkdirs.sh  script creates a set of initialization
scripts based on the templates, and writes them in the instance-specific bin folder (the "Instance
Bin" directory), /p4/ N/bin . For example, the /p4/1/bin  folder for instance 1 might contain any of the
following:

p4d_1_init
p4broker_1_init
p4p_1_init
p4dtg_1_init

The set of *_init  files in the Instance Bin directory defines which services (p4d, p4broker, p4p,
and/or p4dtg) are active for the given instance on the current machine. A common configuration is
to run both p4d and p4broker together, or only run a p4p on a machine. Unused init scripts must be
removed from the Instance Bin dir. For example, if a p4p is not needed for instance 1 on the current
machine, then /p4/1/bin/p4p_1_init  should be removed.

For example, the init script for starting p4d for instance 1 is /p4/1/bin/p4d_1_init . All init scripts
accept at least start , stop , and status  arguments. How the init scripts are called depends on
whether your operating system uses the systemd or older SysV init mechanism. This is detailed in
sections specific to each init mechanism below.

Templates for the init scripts are stored in:

/p4/common/etc/init.d

4.2.2.1. Configuring systemd

Configuring systemd for p4d

RHEL/CentOS 7 or 8, SuSE 12, Ubuntu (>= v16.04), Amazon Linux 2, and other Linux distributions
utilize systemd / systemctl  as the mechanism for controlling services, replacing the earlier SysV
init process. Templates for systemd *.service files are included in the SDP distribution in
$SDP/Server/Unix/p4/common/etc/systemd/system.

Note that using system is strongly recommended on systems that support it, for safety reasons.
However, enabling services to start automatically on boot is optional.

To configure p4d for systemd, run these commands as the root user:

I=1

18 of 107 - Chapter 4. Installing the SDP on Unix / Linux

18 © 2010-2020 Perforce Software, Inc.



Replace the 1 on the right side of the = with your SDP instance name, e.g. xyz if your P4ROOT is
/p4/xyz/root. Then:

cd /etc/systemd/system
sed -e "s:__INSTANCE__:$I:g" -e " s:__OSUSER__:perforce:g"
$SDP/Server/Unix/p4/common/etc/systemd/system/p4d_N.service.t > p4d_${I}.service
chmod 644 p4d_${I}.service
systemctl daemon-reload

If you are configuring p4d for more than one instance, repeat the I=  command with each instance
name on the right side of the =, and then repeat the block of commands above.

Once configured, the following are sample management commands to start, stop, and status the
service. These following commands are typically run as the perforce  OSUSER using sudo where
needed:

systemctl cat p4d_1
systemctl status p4d_1
sudo systemctl start p4d_1
sudo systemctl stop p4d_1

Systemd Required if Configured

If you are using systemd and you have configured services as above, then you can no longer
run the \*_init  scripts directly for normal service start /stop , though they can still be used for
status . The sudo systemctl  commands must  be used for start /stop . Attempting to run the
underlying scripts directly will result in an error message if systemd is configured. This is for
safety: systemdÕs concept of service status (up or down) is only reliable when systemd starts
and stops the service itself. The SDP init scripts require the systemd mechanism (using the
systemctl  command) to be used if it is configured. This ensures that services will gracefully
stop the service on reboot (which would otherwise present a risk of data corruption for p4d
on reboot).

The SDP requires systemd to be used if it is configured, and we strongly recommend using
system on systems that use it. We recommend this to eliminate the risk of corruption on
reboot, and also for consistency of operations. However, the SDP does not require systemd to
be used. The SDP uses systemctl cat  of the service name (e.g. p4d_1) to determine if systemd is
configured for any given service.

Configuring systemd for p4p

Configuring p4p for systemd is identical to the configuration the for p4d, except that you would
replace p4d with p4p in the sample commands above for configuring p4d.

Chapter 4. Installing the SDP on Unix / Linux - 19 of 107

© 2010-2020 Perforce Software, Inc. 19



Configuring systemd for p4dtg

Configuring p4dtg for systemd is identical to the configuration the for p4d, except that you would
replace p4d with p4dtg in the sample commands above for configuring p4d.

Configuring systemd p4broker - multiple configs

Configuring p4broker for systemd can be similar to configuration the for p4d, but there are extra
options as you may choose to run multiple broker configurations. For example, you may have:

¥ a default p4broker configuration that runs when the service is live,

¥ a "Down for Maintenance" (DFM) broker used in place of the default broker during
maintenance to help lock out users broadcasting a friendly message like "Perforce is offline for
scheduled maintenance."

¥ SSL broker config enabling an SSL-encrypted connection to a server that might not yet require
SSL encryption for all users.

The service name for the default broker configuration is always p4broker_N, where N is the instance
name, e.g. p4broker_1 for instance 1. This uses the default broker config file,
/p4/common/config/p4_1.broker.cfg .

Host Specific Broker Config

For circumstances where host-specific broker configuration is required, the default broker
will use a /p4/common/config/p4_N.broker.<short-hostname>.cfg  if it exists, where <short-
hstname> is whatever is returned by the command hostname -s. The logic in the broker init
script will favor the host-specific config if found, otherwise it will use the standard broker
config.

When alternate broker configurations are used, each alternate configuration file must have a
separate systemd unit file associated with managing that configuration. The service file must
specify a configuration tag name, such as 'dfm' or 'ssl'. That tag name is used to identify both the
broker config file and the systemd unit file for that broker. If the broker config is intended to run
concurrently with the default broker config, it must listen on a different port number than the one
specified in the default broker config. If it is only intended to run in place of the standard config, as
with a 'dfm' config, then it should listen on the same port number as the default broker if a default
broker is used, or else the same port as the p4d server if brokers are used only for dfm. The systemd
service for a broker intended to run only during maintenance should not be enabled, and thus only
manually started/stopped as part of maintenance procedures.

! If maintenance procedures involve a reboot of a server machine, you may also
want to disable all services during maintenance and re-enable them afterward.

For example, say you want a default broker, a DFM broker, and an SSL broker for instance 1. The
default and SSL brokers will run continuously, and the DFM broker only during scheduled
maintenance. The following broker config files would be needed in /p4/common/config:

¥ p4_1.broker.cfg  - default broker, targets p4d on port 1999, listens on port 1666

20 of 107 - Chapter 4. Installing the SDP on Unix / Linux

20 © 2010-2020 Perforce Software, Inc.



¥ p4_1.broker.ssl.cfg  - SSL broker, targets p4d on port 1999, listens on port 1667

¥ p4_1.broker.dfm.cfg  - DFM broker, targets p4d on port 1999 , listens on port 1666.

Then, create a systemd *.service file that references each config. For the default broker, use the
template just as with p4d above. Do the following as the root  user:

cd /etc/systemd/system
sed -e "s:__INSTANCE__:1:g" -e " s:__OSUSER__:perforce:g"
$SDP/Server/Unix/p4/common/etc/systemd/system/p4broker_N.service.t >
p4broker_1.service
chmod 644 p4broker_1.service
systemctl daemon-reload

Once configured, the following are sample management commands to start, stop, and status the
service. These following commands are typically run as the perforce  OSUSER using sudo where
needed:

systemctl cat p4broker_1
systemctl status p4broker_1
sudo systemctl start p4broker_1
sudo systemctl stop p4broker_1

For the non-default broker configs for the SSL and DFM brokers, start by copying the default broker
config to a new *.service file with _ssl  or _dfm inserted into the name, like so:

cd /etc/systemd/system
cp p4broker_1.service p4broker_1_dfm.service
cp p4broker_1.service p4broker_1_ssl.service

Next, modify the p4broker_1_dfm.service file and p4broker_1_ssl.service files with a text editor,
making the following edits:

¥ Find the string that says using default broker config , and change the word default  to dfm or ssl
as appropriate, so it reads something like using dfm broker config .

¥ Change the ExecStart and ExecStop definitions by appending the dfm or ssl  tag. For example,
change these two lines:

ExecStart=/p4/1/bin/p4broker_1_init start
ExecStop=/p4/1/bin/p4broker_1_init stop

to look like this for the dfm broker:

Chapter 4. Installing the SDP on Unix / Linux - 21 of 107

© 2010-2020 Perforce Software, Inc. 21



ExecStart=/p4/1/bin/p4broker_1_init start dfm
ExecStop=/p4/1/bin/p4broker_1_init stop dfm

After any modifications to systemd *.services files are made, reload them into with:

systemctl daemon-reload

At this point, the services p4broker_1, p4broker_1_dfm, and p4broker_1_ssl  can be started and stopped
normally.

Finally, enable those services you want to start on boot. In our example here, we will enable the
default and ssl broker services to start on boot, but not the DFM broker:

systemctl enable p4broker_1
systemctl enable p4broker_1_ssl

You must be aware of which configurations listen on the same port, and not try to runs those
configurations concurrently. In this case, ensure the default and dfm brokers donÕt run at the same
time. So, for example, you might start a maintenance window with:

sudo systemctl stop p4broker_1 p4d_1
sudo systemctl start p4broker_1_dfm

and end maintenance in the opposite order:

sudo systemctl stop p4broker_1_dfm
sudo systemctl start p4broker_1 p4d_1

Details may vary depending on what is occurring during maintenance.

4.2.2.2. Configuring SysV Init Scripts

To configure services for an instance on systems using the SysV init mechanism, run these
commands as the root  user: Repeat this step for all instance init scripts you wish to configure as
system services.

cd /etc/init.d
ln -s /p4/1/bin/p4d_1_init
chkconfig --add p4d_1_init

With that done, you can start /stop /status  the service as root  by running commands like:

22 of 107 - Chapter 4. Installing the SDP on Unix / Linux

22 © 2010-2020 Perforce Software, Inc.



service p4d_1_init status
service p4d_1_init start
service p4d_1_init stop

On SysV systems, you can also run the underlying init scripts directly as either the root  or perforce
user. If run as root , the script becomes perforce  immediately, so that no processing occurs as root.

4.2.3. Configuring Automatic Service Start on Boot

You may want to configure your server machine such that the Helix Core Server for any given
instance (and/or Proxy and/or Broker) will start automatically when the machine boots.

This is done using Systemd or Init scripts as covered below.

4.2.3.1. Automatic Start for Systems using systemd

Once systemd services are configured, you can enable the service to start on boot with a command
like this, run a s root :

systemctl enable p4d_1

The enable command configures the services to start automatically when the machine reboots, but
does not immediately start the service. Enabling services is optional ; you can start and stop the
services manually regardless of whether it is enabled for automatic start on boot.

4.2.3.2. For systems using the SysV init mechanism

Once SysV services are configured, you can enable the service to start on boot with a command like
this, run as root :

chkconfig p4d_1_init on

4.2.4. SDP Crontab Templates

The SDP includes basic crontab templates for master, replica, and edge servers in:

/p4/common/etc/cron.d

These define schedules for routine checkpoint operations, replica status checks, and email reviews.

4.2.5. Completing Your Server Configuration

1. Ensure that the admin user configured above has the correct password defined in
/p4/common/config/.p4passwd.p4_1.admin, and then run the p4login1  script (which calls the p4
login  command using the .p4passwd.p4_1.admin file).

Chapter 4. Installing the SDP on Unix / Linux - 23 of 107

© 2010-2020 Perforce Software, Inc. 23



2. For new server instances, run this script, which sets several recommended configurables:

cd /p4/sdp/Server/setup/configure_new_server.sh 1

For existing servers, examine this file, and manually apply the p4 configure  command to set
configurables on your Perforce server instance.

Initialize the perforce userÕs crontab with one of these commands:

crontab /p4/p4.crontab

and customize execution times for the commands within the crontab files to suite the specific
installation.

The SDP uses wrapper scripts in the crontab: run_if_master.sh , run_if_edge.sh , run_if_replica.sh .
We suggest you ensure these are working as desired, e.g.

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

The above should output yes if you are on the master (commit) machine (or replica/edge as
appropriate), but otherwise nothing. Any issues with the above indicate incorrect values for
$MASTER_ID, or for other values within /p4/common/config/p4_1.vars  (assuming instance 1). You can
debug this with:

bash -xv /p4/common/bin/run_if_master.sh 1 echo yes

If in doubt contact support.

4.2.6. Validating your SDP installation

Source your SDP environment variables and check that they look appropriate - for <instance> 1:

source /p4/common/bin/p4_vars 1

The output of p4 set  should be something like:

24 of 107 - Chapter 4. Installing the SDP on Unix / Linux

24 © 2010-2020 Perforce Software, Inc.



P4CONFIG=/p4/1/.p4config (config 'noconfig')
P4ENVIRO=/dev/null/.p4enviro
P4JOURNAL=/p4/1/logs/journal
P4LOG=/p4/1/logs/log
P4PCACHE=/p4/1/cache
P4PORT=ssl:1666
P4ROOT=/p4/1/root
P4SSLDIR=/p4/ssl
P4TICKETS=/p4/1/.p4tickets
P4TRUST=/p4/1/.p4trust
P4USER=perforce

There is a script /p4/common/bin/verify_sdp.sh . Run this specifying the <instance> id, e.g.

/p4/common/bin/verify_sdp.sh 1

The output should be something like:

verify_sdp.sh v5.6.1 Starting SDP verification on host helixcorevm1 at Fri 2020-08-14
17:02:45 UTC with this command line:
/p4/common/bin/verify_sdp.sh 1

If you have any questions about the output from this script, contact
support@perforce.com.
------------------------------------------------------------------------------
Doing preflight sanity checks.
Preflight Check: Ensuring these utils are in PATH: date ls grep awk id head tail
Verified: Essential tools are in the PATH.
Preflight Check: cd /p4/common/bin
Verified: cd works to: /p4/common/bin
Preflight Check: Checking current user owns /p4/common/bin
Verified: Current user [perforce] owns /p4/common/bin
Preflight Check: Checking /p4 and /p4/<instance> are local dirs.
Verified: P4HOME has expected value: /p4/1
Verified: This P4HOME path is not a symlink: /p4/1
Verified: cd to /p4 OK.
Verified: Dir /p4 is a local dir.
Verified: cd to /p4/1 OK.
Verified: P4HOME dir /p4/1 is a local dir.

Finishing with:

Verifications completed, with 0 errors and 0 warnings detected in 57 checks.

If it mentions something like:

Chapter 4. Installing the SDP on Unix / Linux - 25 of 107

© 2010-2020 Perforce Software, Inc. 25



Verifications completed, with 2 errors and 1 warnings detected in 57 checks.

then review the details. If in doubt contact Perforce Support: support@perforce.com

4.3. Setting your login environment for convenience
Consider adding this to your .bashrc  for the perforce user as a convenience for when you login:

echo "source /p4/common/bin/p4_vars 1" >> ~/.bashrc

Obviously if you have multiple instances on the same machine you might want to setup an alias or
two to quickly switch between them.

4.4. Configuring protections, file types, monitoring and
security
After the server instance is installed and configured, either with the Helix Installer or a manual
installation, most sites will want to modify server permissions ("Protections") and security settings.
Other common configuration steps include modifying the file type map and enabling process
monitoring. To configure permissions, perform the following steps:

1. To set up protections, issue the p4 protect  command. The protections table is displayed.

2. Delete the following line:

write user * * //depot/...

3. Define protections for your repository using groups. Perforce uses an inclusionary model. No
access is given by default, you must specifically grant access to users/groups in the protections
table. It is best for performance to grant users specific access to the areas of the depot that they
need rather than granting everyone open access, and then trying to remove access via
exclusionary mappings in the protect table even if that means you end up generating a larger
protect table.

4. To set the default file types, run the p4 typemap command and define typemap entries to
override PerforceÕs default behavior.

5. Add any file type entries that are specific to your site. Suggestions:

! For already-compressed file types (such as .zip , .gz , .avi , .gif ), assign a file type of
binary+Fl  to prevent p4d from attempting to compress them again before storing them.

! For regular binary files, add binary+l  to make so that only one person at a time can check
them out.

A sample file is provided in $SDP/Server/config/typemap

26 of 107 - Chapter 4. Installing the SDP on Unix / Linux

26 © 2010-2020 Perforce Software, Inc.

mailto:support@perforce.com


If you are doing things like games development with Unreal Engine  or Unity , then there are specific
recommended typemap to add in KB articles: Search the Knowledge Base

1. To make your changelists default to restricted (for high security environments):

p4 configure set defaultChangeType=restricted

4.5. Operating system configuration
Check Chapter 8, Maximizing Server Performance  for detailed recommendations.

4.6. Other server configurables
There are various configurables that you should consider setting for your server instance.

Some suggestions are in the file: $SDP/Server/setup/configure_new_server.sh

Review the contents and either apply individual settings manually, or edit the file and apply the
newly edited version. If you have any questions, please see the configurables section in Command
Reference Guide appendix  (get the right version for your server!). You can also contact support
regarding questions.

4.7. Archiving configuration files
Now that the server instance is running properly, copy the following configuration files to the
hxdepots volume for backup:

¥ Any init scripts used in /etc/init.d  or any systemd scripts to /etc/systemd/system

¥ A copy of the crontab file, obtained using crontab -l .

¥ Any other relevant configuration scripts, such as cluster configuration scripts, failover scripts,
or disk failover configuration files.

Chapter 4. Installing the SDP on Unix / Linux - 27 of 107

© 2010-2020 Perforce Software, Inc. 27

https://community.perforce.com/s/
https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html


Chapter 5. Backup, Replication, and
Recovery
Perforce server instances maintain metadata  and versioned files . The metadata contains all the
information about the files in the depots. Metadata resides in database (db.*) files in the server
instanceÕs root directory (P4ROOT). The versioned files contain the file changes that have been
submitted to the repository. Versioned files reside on the hxdepots volume.

This section assumes that you understand the basics of Perforce backup and recovery. For more
information, consult the Perforce System AdministratorÕs Guide  and failover .

5.1. Typical Backup Procedure
The SDPÕs maintenance scripts, run as cron tasks, periodically back up the metadata. The weekly
sequence is described below.

Seven nights a week, perform the following tasks:

1. Truncate the active journal.

2. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

3. Create a checkpoint from the offline database.

4. Recreate the offline database from the last checkpoint.

Once a week, perform the following tasks:

1. Verify all depot files.

Once every few months, perform the following tasks:

1. Stop the live server instance.

2. Truncate the active journal.

3. Replay the journal to the offline database. (Refer to Figure 2: SDP Runtime Structure and
Volume Layout for more information on the location of the live and offline databases.)

4. Archive the live database.

5. Move the offline database to the live database directory.

6. Start the live server instance.

7. Create a new checkpoint from the archive of the live database.

8. Recreate the offline database from the last checkpoint.

9. Verify all depots.

This normal maintenance procedure puts the checkpoints (metadata snapshots) on the hxdepots
volume, which contains the versioned files. Backing up the hxdepots volume with a normal backup
utility like robocopy  or rsync  provides you with all the data necessary to recreate the server

28 of 107 - Chapter 5. Backup, Replication, and Recovery

28 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/failover.html#Failover


instance.

To ensure that the backup does not interfere with the metadata backups (checkpoints), coordinate
backup of the hxdepots volume using the SDP maintenance scripts.

The preceding maintenance procedure minimizes server instance downtime, because checkpoints
are created from offline or saved databases while the server instance is running.

#
With no additional configuration, the normal maintenance prevents loss of more
than one dayÕs metadata changes. To provide an optimal Recovery Point Objective
(RPO), the SDP provides additional tools for replication.

5.2. Planning for HA and DR
The concepts for HA (High Availability) and DR (Disaster Recovery) are fairly similar - they are both
types of Helix Core replica.

When you have server specs with Services  field set to commit-server , standard , or edge-server  - see
deployment architectures  you should consider your requirements for how to recover from a failure
to any such servers.

See also Replica types and use cases

The key issues are around ensuring that you have have appropriate values for the following
measures for your Helix Core installation:

¥ RTO - Recovery Time Objective - how long will it take you to recover to a backup?

¥ RPO - Recovery Point Objective - how much data are you prepared to risk losing if you have to
failover to a backup server?

We need to consider planned vs unplanned failover. Planned may be due to upgrading the core
Operating System or some other dependency in your infrastructure, or a similar activity.

Unplanned covers risks you are seeking to mitigate with failover:

¥ loss of a machine, or some machine related hardware failure (e.g. network)

¥ loss of a VM cluster

¥ failure of storage

¥ loss of a data center or machine room

¥ etcÉ

So, if your main commit-server  fails, how fast should be you be able to be up and running again, and
how much data might you be prepared to lose? What is the potential disruption to your
organisation if the Helix Core repository is down? How many people would be impacted in some
way?

You also need to consider the costs of your mitigation strategies. For example, this can range from:

Chapter 5. Backup, Replication, and Recovery - 29 of 107

© 2010-2020 Perforce Software, Inc. 29

http://en.wikipedia.org/wiki/Recovery_point_objective
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/deployment-architecture.html
https://community.perforce.com/s/article/5434


¥ taking a backup once per 24 hours and requiring maybe an hour or two to restore it. Thus you
might lose up to 24 hours of work for an unplanned failure, and require several hours to
restore.

¥ having a high availability replica which is a mirror of the server hardware and ready to take
over within minutes if required

Having a replica for HA or DR is likely to reduce your RPO and RTO to well under an hour (<10
minutes if properly prepared for) - at the cost of the resources to run such a replica, and the
management overhead to monitor it appropriately.

Typically we would define:

¥ An HA replica is close to its upstream server, e.g. in the same Data Center - this minimizes the
latency for replication, and reduces RPO

¥ A DR replica is in a more remote location, so maybe risks being further behind in replication
(thus higher RPO), but mitigates against catastrophic loss of a data center or similar. Note that
"further behind" is still typically seconds for metadata, but can be minutes for submits with
many GB of files.

5.2.1. Further Resources

¥ High Reliability Solutions

5.2.2. Creating a Failover Replica for Commit or Edge Server

A commit server instance is the ultimate store for submitted data, and also for any workspace state
(WIP - work in progress) for users directly working with the commit server (part of the same "data
set")

An edge server instance maintains its own copy of workspace state (WIP). If you have people
connecting to an edge server, then any workspaces they create (and files they open for some action)
will be only stored on the edge server. Thus it is normally recommended to have an HA backup
server, so that users donÕt lose their state in case of failover.

There is a concept of a "build edge" which is an edge server which only supports build farm users.
In this scenario it may be deemed acceptable to not have an HA backup server, since in the case of
failure of the edge, it can be re-seeded from the commit server. All build farm clients would be
recreated from scratch so there would be no problems.

5.2.3. What is a Failover Replica?

As of 2018.2 release, p4d supports a p4 failover  command that performs a failover to a standby
replica (i.e. a replica with Services:  field value set to standby or forwarding-standby ). Such a replica
performs a journalcopy  replication of metadata, with a local pull thread to update its db.*  files.

See also: Configuring a Helix Core Standby .

On Unix the SDP script Section 5.3.4, ÒUsing mkrep.shÓ greatly simplifies the process of setting up a
replica suitable for use with the p4 failover  command.

30 of 107 - Chapter 5. Backup, Replication, and Recovery

30 © 2010-2020 Perforce Software, Inc.

https://community.perforce.com/s/article/3166
https://community.perforce.com/s/article/16462


5.2.4. Mandatory vs Non-mandatory Standbys

You can modify the server spec of a standby replica to make it mandatory.

When a standby server instance is configured as mandatory, the master/commit server will wait
until this server confirms it has processed journal data before allow that journal data to be released
to other replicas. This can simplify failover, since it provides a guarantee that no downstream
servers are ahead  of the replica.

Thus downstream servers can simply be re-directed to point to the standby and will carry on
working without problems.

!
If a server which is marked as mandatory goes offline for any reason, the replication
to other replicas will stop replicating. In this scenario, the server spec of the
replica can be changed to nomandatory, and then replication will immediately
resume (so long as the replication has not been offline for too long, typically
several days or weeks depending on the KEEPJNLS setting).

If set to nomandatory then there is no risk of delaying downstream replicas, however there is equally
no guarantee that they will be able to switch seamlessly over to the new server.

#
We recommend creating mandatory replica(s) if the server is local to its commit
server, and also if you have good monitoring in place to quickly detect replication
lag or other issues.

To change a server spec to be mandatory or nomandatory, modify the server spec with a command like
p4 server p4d_ha_bos to edit the form, and then change the value in the Options:  field to be as
desired, mandatory or nomandatory, and the save and exit the editor.

5.2.5. Server host naming conventions

This is recommended, but not a requirement for SDP scripts to implement failover.

¥ Use a name that does not indicate switchable roles, e.g. donÕt indicate in the name whether a
host is a master/primary or backup, or edge server and its backup. This might otherwise lead to
confusion once you have performed a failover and the host name is no longer appropriate.

¥ Use names ending numeric designators, e.g. -01 or -05. The goal is to avoid being in a post-
failover situation where a machine with master or primary  is actually the backup. Also, the
assumption is that host names will never need to change.

¥ While you donÕt want switchable roles baked into the hostname, you can have static roles, e.g.
use p4d vs. p4p in the host name (as those generally donÕt change). The p4d could be primary,
standby, edge, edgeÕs standby (switchable roles).

¥ Using a short geographic site is sometimes helpful/desirable. If used, use the same site tag used
in the ServerID, e.g. aus.

Valid site tags should be listed in: /p4/common/config/SiteTags.cfg  - see Section 5.3.4.1,
ÒSiteTags.cfgÓ

Chapter 5. Backup, Replication, and Recovery - 31 of 107

© 2010-2020 Perforce Software, Inc. 31



¥ Using a short tag to indicate the major OS version is sometimes  helpful/desirable, eg. c7 for
CentOS 7, or r8 for RHEL 8. This is based on the idea that when the major OS is upgraded, you
either move to new hardware, or change the host name (an exception to the rule above about
never changing the hostname). This option maybe overkill for many sites.

¥ End users should reference a DNS name that may include the site tag, but would exclude the
number, OS indicator, and server type ( p4d/p4p/p4broker), replacing all that with just perforce  or
optionally just p4. General idea is that users neednÕt be bothered by under-the-covers tech of
whether something is a proxy or replica.

¥ For edge servers, it is advisable to include edge in both the host and DNS name, as users and
admins needs to be aware of the functional differences due to a server being an edge server.

Examples:

¥ p4d-aus-r7-03 , a master in Austin on RHEL 7, pointed to by a DNS name like p4-aus.

¥ p4d-aus-03, a master in Austin (no indication of server OS), pointed to by a DNS name like p4-
aus.

¥ p4d-aus-r7-04 , a standby replica in Austin on RHEL 7, not pointed to by a DNS until failover, at
which point it gets pointed to by p4-aus.

¥ p4p-syd-r8-05 , a proxy in Sydney on RHEL 8, pointed to by a DNS name like p4-syd.

¥ p4d-syd-r8-04 , a replica that replaced the proxy in Sydney, on RHEL 8, pointed to by a DNS name
like p4-syd (same as the proxy it replaced).

¥ p4d-edge-tok-s12-03 , an edge in Tokyo running SuSE12, pointed to by a DNS name like p4edge-
tok .

¥ p4d-edge-tok-s12-04 , a replica of an edge in Tokyo running SuSE12, not pointed to by a DNS
name until failover, at which point it gets pointed to by p4edge-tok.

FQDNs (fully qualified DNS names) of short DNS names used in these examples would also exist,
and would be based on the same short names.

5.3. Full One-Way Replication
Perforce supports a full one-way replication  of data from a master server to a replica, including
versioned files. The p4 pull  command is the replication mechanism, and a replica server can be
configured to know it is a replica and use the replication command. The p4 pull mechanism
requires very little configuration and no additional scripting. As this replication mechanism is
simple and effective, we recommend it as the preferred replication technique. Replica servers can
also be configured to only contain metadata, which can be useful for reporting or offline
checkpointing purposes. See the Distributing Perforce Guide for details on setting up replica
servers.

If you wish to use the replica as a read-only server, you can use the P4Broker  to direct read-only
commands to the replica or you can use a forwarding replica. The broker can do load balancing to a
pool of replicas if you need more than one replica to handle your load.

32 of 107 - Chapter 5. Backup, Replication, and Recovery

32 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/replication.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_pull.html#p4_pull
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.broker.html


5.3.1. Replication Setup

To configure a replica server, first configure a machine identically to the master server (at least as
regards the link structure such as /p4 , /p4/common/bin and /p4/ instance /* ), then install the SDP on it
to match the master server installation. Once the machine and SDP install is in place, you need to
configure the master server for replication.

Perforce supports many types of replicas suited to a variety of purposes, such as:

¥ Real-time backup,

¥ Providing a disaster recovery solution,

¥ Load distribution to enhance performance,

¥ Distributed development,

¥ Dedicated resources for automated systems, such as build servers, and more.

We always recommend first setting up the replica as a read-only replica and ensuring that
everything is working. Once that is the case you can easily modify server specs and configurables to
change it to a forwarding replica, or an edge server etc.

5.3.2. Replication Setup for Failover

This is just a special case of replication, but implementing Section 5.2.3, ÒWhat is a Failover
Replica?Ó

Please note the section below Section 5.3.4, ÒUsing mkrep.shÓ which implements many details.

5.3.3. Pre-requisites for Failover

These are vital as part of your planning.

¥ Obtain and install a license for your replica(s)

Your commit or standard server has a license file (tied to IP address), while your replicas do not
require one to function as replicas.

However, in order for a replica to function as a replacement for a commit or standard server, it
must have a suitable license installed.

This should be requested when the replica is first created. See the form:
https://www.perforce.com/support/duplicate-server-request

¥ Review your authentication mechanism (LDAP etc) - is the LDAP server contactable from the
replica machine (firewalls etc configured appropriately).

¥ Review all your triggers and how they are deployed - will they work on the failover host?

Is the right version of Perl/Python etc correctly installed and configured on the failover host
with all imported libraries?

Chapter 5. Backup, Replication, and Recovery - 33 of 107

© 2010-2020 Perforce Software, Inc. 33

https://www.perforce.com/support/duplicate-server-request


!
TEST, TEST, TEST!!! It is important to test the above issues as part of your planning.
For peace of mind you donÕt want to be finding problems at the time of trying to
failover for real, which may be in the middle of the night!

On Linux:

¥ Review the configuration of options such as Section 8.1, ÒEnsure Transparent Huge Pages (THP)
is turned offÓ  and also Section 8.2, ÒPutting server.locks directory into RAMÓ  are correctly
configured for your HA server machine - otherwise you risk reduced performance  after
failover.

5.3.4. Using mkrep.sh

The SDP mkrep.sh script should be used to expand your Helix Topology, e.g. adding replicas and
edge servers.

#
When creating server machines to be used as Helix servers, the server machines
should be named following a well-designed host naming convention. The SDP has
no dependency on the convention used, and so any existing local naming
convention can be applied. The SDP includes a suggested naming convention in
Section 5.2.5, ÒServer host naming conventionsÓ

Usage

USAGE for mkrep.sh v2.7.5:

mkrep.sh -i <SDP_Instance> -t <Type> -s <Site_Tag> -r <Replica_Host> [-f
<From_Edge_ServerID>] [-p] [-L <log>] [-v<n>] [-n] [-D]

or

mkrep.sh [-h|-man|-V]

DESCRIPTION:
Ê   This script simplifies the task of creating Helix Core replicas and
Ê   edge servers, and helps ensure they are setup with best practices.

Ê   This script does all the metadata configuration to be executed on the
Ê   master server that must be baked into a seed checkpoint for creating
Ê   the replica/edge. It also provides enough information to create,
Ê   transfer, and load seed checkpoints into the replica/edge.  This
Ê   essentially captures the planning for a new replica, and can be
Ê   done before the physical infrastructure (hardware and storage) is
Ê   ready.

Ê   Before using this script, a set of geographic site tags must be defined.
Ê   See the FILES: below for details on a site tags.

34 of 107 - Chapter 5. Backup, Replication, and Recovery

34 © 2010-2020 Perforce Software, Inc.



Ê   This script adheres to the these SDP Standards:
Ê   * Server Spec Naming Standard:
https://swarm.workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/ServerSp
ecNamingStandard.html
Ê   * Journal Prefix Standard:
https://swarm.workshop.perforce.com/view/guest/perforce_software/sdp/main/doc/JournalP
refixStandard.html

Ê   This script does the following to help create a replica or edge server:
Ê   * Generates the server spec for the the replica.
Ê   * Generates a server spec for master server (if needed).
Ê   * Sets configurables ('p4 configure' settings) for replication.
Ê   * Selects the correct 'Services' based on replica type.
Ê   * Creates service user for the replica, and sets a password.
Ê   * Creates service user for the master (if needed), and sets a password.
Ê   * Adds newly created service users to the group 'ServiceUsers'.
Ê   * Verifies the group ServiceUsers is granted super access in the
Ê   protections table (and with the '-p', updates Protections).

Ê   After these steps are completed, detailed instructions are presented
Ê   to the user through the remaining steps needed to complete the
Ê   deployment of the replica.  This starts with creating a new
Ê   checkpoint to capture all the metadata changes made by this
Ê   script.

SERVICE USERS:
Ê   Service users created by this type are always of type 'service',
Ê   and so will not consume a licensed seat.

Ê   Service users also have an 'AuthMethod' of 'perforce' (not
Ê   'ldap') as is required by 'p4d' for 'service' users.  Passwords
Ê   set for service users are long 32 character random strings
Ê   that are not stored, as they are never needed.  Login tickets for
Ê   service users are generated using: p4login -service -v

OPTIONS:
Ê-i <SDP_Instance>
Ê   Specify the SDP Instance.

Ê-t <Type>
Ê   Specify the replica type tag. The type corresponds to the 'Type:' and
Ê   'Services:' field of the server spec, which describes the type of services
Ê   offered by a given replica.

Ê   Valid values are:
Ê   * ha:   High Availability standby replica, for 'p4 failover' (P4D 2018.2+)
Ê   * ham:  High Availability metadata-only standby replica, for 'p4 failover' (P4D
2018.2+)
Ê   * ro:   Read-Only standby replica.
Ê   * rom:  Read-Only standby replica, Metadata only.
Ê   * fr:   Forwarding Replica (Unfiltered).

Chapter 5. Backup, Replication, and Recovery - 35 of 107

© 2010-2020 Perforce Software, Inc. 35



Ê   * fs:   Forwarding Standby (Unfiltered).
Ê   * frm:  Forwarding Replica (Unfiltered, Metadata only).
Ê   * fsm:  Forwarding Standby (Unfiltered, Metadata only).
Ê   * ffr:  Filtered Forwarding Replica.  Not a valid failover target.
Ê   * edge: Edge Server. Filtered by definition.

Ê   Replicas with 'standby' are always unfiltered, and use the 'journalcopy'
Ê   method of replication, which copies a byte-for-byte verbatim journal file
Ê   rather than one that is merely logically equivalent.

Ê   The tag has several purposes:
Ê   1. Short Hand. Each tag represents a combination of 'Type:' and fully
Ê   qualified 'Services:' values used in server specs.

Ê   2. Distillation. Only the most useful Type/Services combinations have a
Ê   shorthand form.

Ê   3. For forwarding replicas, the name includes the critical distinction of
Ê   whether any replication filtering is used; as filtering of any kind disqualifies
Ê   a replica from being a potential failover target. (No such distinction is
Ê   needed for edge servers, which are filtered by definition).

Ê-s <Site_Tag>
Ê   Specify a geographic site tag indicating the location and/or data center where
Ê   the replica will physically be located. Valid site tags are defined in the site
Ê   tags file:

Ê   /p4/common/config/SiteTags.cfg

Ê-r <Replica_Host>
Ê   Specify the target replica host.

Ê-f <From_Edge_ServerID>
Ê   Specify ServerID of the P4TARGET server from which we are replicating.
Ê   This is used to populate the 'ReplicatingFrom' field of the server
Ê   spec. The value must be a valid ServerID.

Ê   By default, this is determined dynamically by checking the ServerID
Ê   of the master server. This option should be used if the target is
Ê   something OTHER THAN the master. For example, to create an HA replica
Ê   of an edge server, you might specify something like '-f p4d_edge_syd'.

Ê-p This script performs a check to ensure that the Protections table grants
Ê   super access to the group ServiceUsers.

Ê   By default, an error is displayed if the check fails, i.e. if super user
Ê   access for the group ServiceUsers cannot be verified. This is
Ê   because, by default, we want to avoid making changes to the Protections
Ê   table. Some sites have local policies or custom automation that requires
Ê   site-specific procedures to update the Protections table.

36 of 107 - Chapter 5. Backup, Replication, and Recovery

36 © 2010-2020 Perforce Software, Inc.



Ê   If '-p' is specified, an attempt is made to append the Protections table
Ê   an entry like:

Ê   super group ServiceUsers * //...

Ê-v<n>    Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

Ê-L <log>
Ê   Specify the path to a log file, or the special value 'off' to disable
Ê   logging. By default, all output (stdout and stderr) goes in the logs
Ê   directory referenced by $LOGS environment variable, in a file named
Ê   mkrep.<timestamp>.log

Ê   NOTE: This script is self-logging. That is, output displayed on the screen
Ê   is simultaneously captured in the log file. Do not run this script with
Ê   redirection operators like '> log' or '2>&1', and do not use 'tee.'

Ê-n No-Op. Prints commands instead of running them.

Ê-D Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message
Ê-V Display version info for this script and its libraries.

FILES:
Ê   This Site Tags file defines the list of valid geographic site tags:
Ê   /p4/common/config/SiteTags.cfg

Ê   The contains one-line entries of the form:

Ê   <tag>: <description>

Ê   where <tag> is a short alphanumeric tag name for a geographic location,
Ê   data center, or other useful distinction. This tag is incorporated into
Ê       the ServerID of replicas or edge servers created by this script.  Tag
Ê   names should be kept short, ideally no more than about 5 characters in
Ê   length.

Ê   The <description> is a one-line text description of what the tag
Ê   refers to, which may contain spaces and ASCII punctuation.

Ê   Blank lines and lines starting with a '#' are considered comments
Ê   and are ignored.

REPLICA SERVER MACHINE SETUP:
Ê   The replica/edge server machine must be have the SDP structure installed,
Ê   either using the mkdirs.sh script included in the SDP, or the Helix
Ê   Installer for 'green field' installations.

Chapter 5. Backup, Replication, and Recovery - 37 of 107

© 2010-2020 Perforce Software, Inc. 37



Ê   When setting up an edge server, a replica of an edge server, or filtered
Ê   replica, confirm that the JournaPrefix Standard (see URL above) structure
Ê   has the separate checkpoints folder as identified in the 'Second Form' in
Ê   the standard.  A baseline SDP structure can typically be extended by running
Ê   commands like like these samples (assuming a ServerID of p4d_edge_syd or
Ê   p4d_ha_edge_syd):

Ê      mkdir /hxdepots/p4/1/checkpoints.edge_syd
Ê      cd /p4/1
Ê      ln -s /hxdepots/p4/1/checkpoints.edge_syd

EXAMPLES:
Ê   EXAMPLE 1 - Set up a High Availability (HA) Replica of the master.

Ê   Add an HA replica to instance 1 to run on host bos-helix-02:
Ê   mkrep.sh -i 1 -t ha -s bos -r bos-helix-02

Ê   EXAMPLE 2 - Add an Edge Server to the topology.

Ê   Add an Edge server to instance acme to run on host syd-helix-04:

Ê   mkrep.sh -i acme -t edge -s syd -r syd-helix-04

Ê   EXAMPLE 3 - Setup an HA replica of an edge server.

Ê   Add a HA replica of the edge server to instance acme to run on host syd-helix-05:

Ê   mkrep.sh -i acme -t ha -f p4d_edge_syd -s syd -r syd-helix-05

5.3.4.1. SiteTags.cfg

The mkrep.sh documentation references a SiteTags.cfg file used to register short tag names for
geographic sites. Location is: /p4/common/config/SiteTags.cfg

38 of 107 - Chapter 5. Backup, Replication, and Recovery

38 © 2010-2020 Perforce Software, Inc.



Example/Format

# Valid Geographic site tags.

# Each is intended to indicate a geography, and optionally a specific Data
# Center (or Computer Room, or Computer Closet) within a given geographic
# location.
#
# The format is:
# Name:Description
# The Name must be alphanumeric only. The Description may contain spaces.
# Lines starting with # and blank lines are ignored.

bej: Beijing, China
bos: Boston, MA, USA
blr: Bangalore, India
chi: Chicago greater metro area
cni: Chennai, India
pune: Pune, India
lv: Las Vegas, NV, USA
mlb: Melbourne, Australia
syd: Sydney, Australia

5.3.4.2. Output of mkrep.sh

The output of mkrep.sh (which is also written to a log file in /p4/<instance>/logs/mkrep.* ) describes
a number of steps required to continue setting up the replica after the metadata configuration
performed by the script is done.

5.3.5. Addition Replication Setup

In addition to steps recommended by mkrep.sh, there are other steps to be aware of to prepare a
replica server machine.

5.3.6. SDP Installation

The SDP must first be installed on the replica server machine. If SDP already exists on the machine
but not for the current instance, then mkdirs.sh  must be used to add a new instance to the machine.

5.3.6.1. SSH Key Setup

SSH keys for the perforce  operating system user should be setup to allow the perforce  user to ssh
and rsync  among the Helix server machines in the topology. If no ~perforce/.ssh  directory exist on
a machine, it can be created with this command:

5.4. Recovery Procedures
There are three scenarios that require you to recover server data:

Chapter 5. Backup, Replication, and Recovery - 39 of 107

© 2010-2020 Perforce Software, Inc. 39



Metadata Depotdata Action required

lost or corrupt Intact Recover metadata as described
below

Intact lost or corrupt Call Perforce Support

lost or corrupt lost or corrupt Recover metadata as described
below.

Recover the hxdepots volume
using your normal backup
utilities.

Restoring the metadata from a backup also optimizes the database files.

5.4.1. Recovering a master server from a checkpoint and journal(s)

The checkpoint files are stored in the /p4/ instance /checkpoints  directory, and the most recent
checkpoint is named p4_instance .ckp. number.gz . Recreating up-to-date database files requires the
most recent checkpoint, from /p4/ instance /checkpoints  and the journal file from /p4/ instance /logs .

To recover the server database manually, perform the following steps from the root directory of the
server (/p4/instance/root).

Assuming instance 1:

1. Stop the Perforce Server by issuing the following command:

/p4/1/bin/p4_1 admin stop

2. Delete the old database files in the /p4/1/root/save  directory

3. Move the live database files (db.*) to the save directory.

4. Use the following command to restore from the most recent checkpoint.

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z /p4/1/checkpoints/p4_1.ckp.####.gz

5. To replay the transactions that occurred after the checkpoint was created, issue the following
command:

/p4/1/bin/p4d_1 -r /p4/1/root -jr /p4/1/logs/journal

6. Restart your Perforce server.

If the Perforce service starts without errors, delete the old database files from
/p4/instance/root/save .

40 of 107 - Chapter 5. Backup, Replication, and Recovery

40 © 2010-2020 Perforce Software, Inc.



If problems are reported when you attempt to recover from the most recent checkpoint, try
recovering from the preceding checkpoint and journal. If you are successful, replay the subsequent
journal. If the journals are corrupted, contact Perforce Technical Support . For full details about
backup and recovery, refer to the Perforce System AdministratorÕs Guide .

5.4.2. Recovering a replica from a checkpoint

This is very similar to creating a replica in the first place as described above.

If you have been running the replica crontab commands as suggested, then you will have the latest
checkpoints from the master already copied across to the replica through the use of Section 9.6.30,
Òsync_replica.shÓ.

See the steps in the script Section 9.6.30, Òsync_replica.shÓ for details (note that it deletes the state
and rdb.lbr files from the replica root directory so that the replica starts replicating from the start
of a journal).

Remember to ensure you have logged the service user in to the master server (and that the ticket is
stored in the correct location as described when setting up the replica).

5.4.3. Recovering from a tape backup

This section describes how to recover from a tape or other offline backup to a new server machine
if the server machine fails. The tape backup for the server is made from the hxdepots volume. The
new server machine must have the same volume layout and user/group settings as the original
server. In other words, the new server must be as identical as possible to the server that failed.

To recover from a tape backup, perform the following steps (assuming instance 1):

1. Recover the hxdepots volume from your backup tape.

2. Create the /p4  convenience directory on the OS volume.

3. Create the directories /hxmetadata/p4/1/db1/save  and /hxmetadata/p4/1/offline_db .

4. Create the directories /hxmetadata/p4/1/db2/save  and /hxmetadata/p4/2/offline_db .

5. Change ownership of these directories to the OS account that runs the Perforce processes.

6. Switch to the Perforce OS account, and create a link in the /p4  directory to /hxdepots/p4/1 .

7. Create a link in the /p4  directory to /hxdepots/p4/common.

8. As a super-user, reinstall and enable the Systemd service files or or SysV init scripts.

9. Find the last available checkpoint, under /p4/1/checkpoints

10. Recover the latest checkpoint by running:

/p4/1/bin/p4d_1 -r /p4/1/root -jr -z <last_ckp_file>

11. Recover the checkpoint to the offline_db directory (assuming instance 1):

Chapter 5. Backup, Replication, and Recovery - 41 of 107

© 2010-2020 Perforce Software, Inc. 41

mailto:support@perforce.com
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.backup.html


/p4/1/bin/p4d_1 -r /p4/1/offline_db -jr -z <last_ckp_file>

12. Reinstall the Perforce server license to the server root directory.

13. Start the perforce service by running 1/p4/1/bin/p4d_1_init start`

14. Verify that the server instance is running.

15. Reinstall the server crontab or scheduled tasks.

16. Perform any other initial server machine configuration.

17. Verify the database and versioned files by running the p4verify.sh  script. Note that files using
the +k file type modifier might be reported as BAD! after being moved. Contact Perforce
Technical Support for assistance in determining if these files are actually corrupt.

5.4.4. Failover to a replicated standby machine

See SDP Failover Guide (PDF)  or SDP Failover Guide (HTML)  for detailed steps.

42 of 107 - Chapter 5. Backup, Replication, and Recovery

42 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/file.types.synopsis.modifiers.html
SDP_Failover_Guide.pdf
SDP_Failover_Guide.html


Chapter 6. Upgrades
This section describes both upgrades of the SDP itself, as well as upgrades of Helix software such as
p4d, p4broker, p4p, and the the p4 command line client in the SDP structure.

6.1. Upgrade Order: SDP first, then Helix P4D
The SDP should be upgraded prior to the upgrade of Helix Core (P4D). If you are upgrading P4D to
or beyond P4D 2019.1 from a prior version of P4D, you must  upgrade the SDP first. If you run
multiple instances of P4D on a given machine (potentially each running different versions of P4D),
upgrade the SDP first before upgrading any of the instances.

The SDP should also be upgraded before upgrading other Helix software on machines using the
SDP, including p4d, p4p, p4broker, and p4 (the command line client).

Upgrading a Helix Core server instance in the SDP framework is a simple process involving a few
steps.

6.2. SDP and P4D Version Compatibility
Starting with the SDP 2020.1 release, the released versions of SDP match released versions of P4D.
So SDP r20.1 will be guaranteed to work with P4D r20.1.

The SDP is often forward- and backward-compatible with P4D versions, but for best results they
should be kept in sync by upgrading SDP before P4D. This is partly because the SDP contains logic
that helps upgrade P4D, which can change as P4D evolves.

The SDP is aware of the P4D version, and has backward-compatibility logic to support older
versions of P4D. This is guaranteed for supported versions of P4D. Backward compatibility of SDP
with older versions of P4D may extend farther back, though without the "officially supported"
guarantee.

6.3. Upgrading the SDP
Starting with the SDP 2021.1 release, upgrades of the SDP from 2020.1 and later will use a new
mechanism. The SDP upgrade procedure starting form 2020.1 and later will be described in detail
in 2021.1 release. Some highlights of the coming upgrade mechanisms:

¥ Automated : Upgrades from SDP 2020.1 will be automated with script(s) to be provided with
each new version of the SDP.

¥ Continuous : Each new SDP version will maintain the capability to

¥ Independent : SDP upgrades will enable upgrades to new Helix Core versions, but will not cause
Helix Core upgrades to occur immediately. Each Helix Core instance can be upgraded
independently on its own schedule.

If your current SDP is older than the 2020.1 release, see the SDP Legacy Upgrade Guide (for Unix)
for information on upgrading SDP to the SDP 2020.1 from any prior version (dating back to 2007).

Chapter 6. Upgrades - 43 of 107

© 2010-2020 Perforce Software, Inc. 43

SDP_Legacy_Upgrades.Unix.html


6.4. Upgrading Helix Software with the SDP
The following outlines the procedure for upgrading Helix binaries using the SDP scripts.

6.4.1. Get Latest Helix Binaries

Acquire the latest Perforce Helix binaries to stage them for upgrade using the
get_helix_binaries.sh  script.

If you have multiple server machines with SDP, staging can be done with this script on one machine
first, and then the /hxdepots/sdp/helix_binaries  folder can be rsyncÕd to other machines.

Alternately, this script can be run on the each machine, but as patches can be released at any time,
running it once and then distributing the helix_binaries directory internally via rsync is preferred
to ensure all machines at your site deploy with the same binaries.

See Section 9.2.1, Òget_helix_binaries.shÓ

6.4.2. Upgrade Each Instance

Use the SDP upgrade.sh script to upgrade each instance of Helix on the current machine, using the
staged binaries. The upgrade process handles all aspects of upgrading, including adjusting the
database structure, executing commands to upgrade the p4d database schema, and managing the
SDP symlinks in /p4/common/bin.

Instances can be upgraded independently of each other.

See Section 9.2.2, Òupgrade.shÓ.

6.4.3. Global Topology Upgrades - Outer to Inner

For any given instance, be aware of the Helix topology when performing upgrades, specifically
whether that instance has replicas and/or edge servers. When replicas and edge servers exist (and
are active), the order in which upgrade.sh must be run on different server machines matters.
Perform upgrades following an "outer to inner" strategy.

For example, say for SDP instance 1, your site has the following server machines:

¥ bos-helix-01 - The master (in Boston, USA)

¥ bos-helix-02 - Replica of master (in Boston, USA)

¥ nyc-helix-03 - Replica of master (in New York, USA)

¥ syd-helix-04 - Edge Server (in Sydney, AU)

¥ syd-helix-05 - Replica of Sydney edge (in Sydney)

Envision the above topology with the master server in the center, and two concentric circles.

The Replica of the Sydney edge would be done first, as it is by itself in the outermost.

The Edge server and two Replicas of the master are all at the next inner circle. So bos-helix-02, nyc-

44 of 107 - Chapter 6. Upgrades

44 © 2010-2020 Perforce Software, Inc.



helix-03, and syd-helix-04 could be upgraded in any order with respect to each other, or even
simultaneously, as they are in the same circle.

The master is the innermost, and would be upgraded last.

If the user were logged in as as the perforce  operating system user on a machine with properly
configured SSH keys, the global topology could be done something like this (after distributing
/hxddepots/sdp/helix_binaries to all machines):

ssh syd-helix-05 upgrade.sh
ssh syd-helix-04 upgrade.sh
ssh nyc-helix-03 upgrade.sh
ssh bos-helix-02 upgrade.sh
ssh bos-helix-01 upgrade.sh

Chapter 6. Upgrades - 45 of 107

© 2010-2020 Perforce Software, Inc. 45



Chapter 7. Database Modifications
Occasionally modifications are made to the Perforce database from one release to another. For
example, server upgrades and some recovery procedures modify the database.

When upgrading the server, replaying a journal patch, or performing any activity that modifies the
db.* files, you must restart the offline checkpoint process so that the files in the offline_db directory
match the ones in the live server directory. The easiest way to restart the offline checkpoint process
is to run the live_checkpoint script after modifying the db.* files, as follows:

/p4/common/bin/live_checkpoint.sh 1

This script makes a new checkpoint of the modified database files in the live root  directory, then
recovers that checkpoint to the offline_db  directory so that both directories are in sync. This script
can also be used anytime to create a checkpoint of the live database.

This command should be run when an error occurs during offline checkpointing. It restarts the
offline checkpoint process from the live database files to bring the offline copy back in sync. If the
live checkpoint script fails, contact Perforce Consulting at consulting@perforce.com .

46 of 107 - Chapter 7. Database Modifications

46 © 2010-2020 Perforce Software, Inc.

mailto:consulting@perforce.com


Chapter 8. Maximizing Server Performance
The following sections provide some guidelines for maximizing the performance of the Perforce
Helix Core Server, using tools provided by the SDP. More information on this topic can be found in
the Knowledge Base .

8.1. Ensure Transparent Huge Pages (THP) is turned
off
This is reference KB Article on Platform Notes

There is a script in the SDP which will do this:

/p4/sdp/Server/Unix/setup/os_tweaks.sh

It needs to be run as root  or using sudo. This will not persist after system is rebooted.

! We recommend the usage of tuned

Install as appropriate for your Linux distribution (so as root ):

yum install tuned

or

apt-get install tuned

1. Create a customized tuned profile with disabled THP. Create a new directory in /etc/tuned
directory with desired profile name:

mkdir /etc/tuned/nothp_profile

2. Then create a new tuned.conf  file for nothp_profile , and insert the new tuning info:

cat <<EOF > /etc/tuned/nothp_profile/tuned.conf
[main]
include= throughput-performance

[vm]
transparent_hugepages=never
EOF

Chapter 8. Maximizing Server Performance - 47 of 107

© 2010-2020 Perforce Software, Inc. 47

https://community.perforce.com/s/article/2529
https://community.perforce.com/s/article/3005


3. Make the script executable

chmod +x /etc/tuned/nothp_profile/tuned.conf

4. Enable nothp_profile  using the tuned-adm command.

tuned-adm profile nothp_profile

5. This change will immediately take effect and persist after reboots. To verify if THP are disabled
or not, run below command:

cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

8.2. Putting server.locks directory into RAM
The server.locks  directory is maintained in the $P4ROOT (so /p4/1/root ) for a running server
instance. This directory contains a tree of 17 byte long files which is used for lock co-ordination
amongst p4d processes.

This directory can be removed every time the p4d instance is restarted, so it is safe to put it into a
tmpfs filesystem.

Even on a large installation with many hundreds or thousands of users, this directory will be
unlikely to exceed 1GB, so a 2GB filesystem will be ample.

Instructions (as user root ):

1. Create directory to mount, and change ownership to perforce  user (or $OSUSER if SDP config
specifies a different name)

mkdir /hxserverlocks
chown perforce:perforce /hxserverlocks

2. Add a line to /etc/fstab  (adjusting appropriately if $OSUSER is set to another value than
perforce ):

tmpfs   /hxserverlocks  tmpfs   uid=perforce,gid=perforce,size=1G,mode=0755 0 0

3. Mount the drive:

mount -a

48 of 107 - Chapter 8. Maximizing Server Performance

48 © 2010-2020 Perforce Software, Inc.



4. Check it is looking correct and has correct ownership ( perforce  or $OSUSER):

df -h
ls -la /hxserverlocks

As user perforce  (or $OSUSER), set the configurable, specifying the serverid of your server (to ensure
it is not set globally and picked up by all replicas):

p4 configure set <serverid>#server.locks.dir=<serverlocks dir>

e.g.

p4 configure set master.1#server.locks.dir=/hxserverlocks

This will take effect immediately - it does not require a server restart.

! If you set this globally (without serverid#  prefix), then you should ensure that all
replicas have a similarly named directory available (or bad things will happen!)

!
Consider failover options - so review your HA failover server configuration and
create a similar entry - otherwise if you failover then performance will be
reduced.

8.3. Optimizing the database files
The Perforce ServerÕs database is composed of b-tree files. The server does not fully rebalance and
compress them during normal operation. To optimize the files, you must checkpoint and restore the
server. This normally only needs to be done very few months.

To minimize the size of back up files and maximize server performance, minimize the size of the
db.have and db.label files.

8.4. P4V Performance Settings
These are covered in: https://community.perforce.com/s/article/2878

8.5. Proactive Performance Maintenance
This section describes some things that can be done to proactively to enhance scalability and
maintain performance.

Chapter 8. Maximizing Server Performance - 49 of 107

© 2010-2020 Perforce Software, Inc. 49

https://community.perforce.com/s/article/2878


8.5.1. Limiting large requests

To prevent large requests from overwhelming the server, you can limit the amount of data and
time allowed per query by setting the maxresults, maxscanrows and maxlocktime parameters to
the lowest setting that does not interfere with normal daily activities. As a good starting point, set
maxscanrows to maxresults * 3; set maxresults to slightly larger than the maximum number of files
the users need to be able to sync to do their work; and set maxlocktime to 30000 milliseconds. These
values must be adjusted up as the size of your server and the number of revisions of the files grow.
To simplify administration, assign limits to groups rather than individual users.

To prevent users from inadvertently accessing large numbers of files, define their client view to be
as narrow as possible, considering the requirements of their work. Similarly, limit users' access in
the protections table to the smallest number of directories that are required for them to do their
job.

Finally, keep triggers simple. Complex triggers increase load on the server.

8.5.2. Offloading remote syncs

For remote users who need to sync large numbers of files, Perforce offers a proxy server . P4P, the
Perforce Proxy, is run on a machine that is on the remote users' local network. The Perforce Proxy
caches file revisions, serving them to the remote users and diverting that load from the main
server.

P4P is included in the Windows installer. To launch P4P on Unix machines, copy the
/p4/common/etc/init.d/p4p_1_init script  to /p4/1/bin/p4p_1_init . Then review and customize the
script to specify your server volume names and directories.

P4P does not require special hardware but it can be quite CPU intensive if it is working with binary
files, which are CPU-intensive to attempt to compress. It doesnÕt need to be backed up. If the P4P
instance isnÕt working, users can switch their port back to the main server and continue working
until the instance of P4P is fixed.

50 of 107 - Chapter 8. Maximizing Server Performance

50 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/chapter.proxy.html


Chapter 9. Tools and Scripts
This section describes the various scripts and files provided as part of the SDP package.

9.1. General SDP Usage
This section presents an overview of the SDP scripts and tools, with details covered in subsequent
sections.

9.1.1. Linux

Most scripts and tools reside in /p4/common/bin. The /p4/<instance>/bin  directory (e.g. /p4/1/bin )
contains scripts or links that are specific to that instance such as wrappers for the p4d executable.

Older versions of the SDP required you to always run important administrative commands using
the p4master_run script, and specify fully qualified paths. This script loads environment information
from /p4/common/bin/p4_vars, the central environment file of the SDP, ensuring a controlled
environment. The p4_vars file includes instance specific environment data from
/p4/common/config/p4_ instance . vars  e.g. /p4/common/config/p4_1.vars . The p4master_run script  is
still used when running p4 commands against the server unless you set up your environment first
by sourcing p4_vars with the instance as a parameter (for bash shell: source /p4/common/bin/p4_vars
1). Administrative scripts, such as daily_backup.sh , no longer need to be called with p4master_run
however, they just need you to pass the instance number to them as a parameter.

When invoking a Perforce command directly on the server machine, use the p4_ instance  wrapper
that is located in /p4/ instance /bin . This wrapper invokes the correct version of the p4 client for the
instance. The use of these wrappers enables easy upgrades, because the wrapper is a link to the
correct version of the p4 client. There is a similar wrapper for the p4d executable, called
p4d_instance .

#
This wrapper is important to handle case sensitivity in a consistent manner, e.g.
when running a Unix server in case-insensitive mode. If you just execute p4d
directly when it should be case-insensitive, then you may cause problems, or
commands will fail.

Below are some usage examples for instance 1.

Example Remarks

/p4/common/bin/p4master_run 1 /p4/1/bin/p4_1
admin stop

Run p4 admin stop  on instance 1

/p4/common/bin/live_checkpoint.sh 1 Take a checkpoint of the live database on
instance 1

/p4/common/bin/p4login 1 Log in as the perforce user (superuser) on
instance 1.

Some maintenance scripts can be run from any client workspace, if the user has administrative
access to Perforce.

Chapter 9. Tools and Scripts - 51 of 107

© 2010-2020 Perforce Software, Inc. 51



9.1.2. Monitoring SDP activities

The important SDP maintenance and backup scripts generate email notifications when they
complete.

For further monitoring, you can consider options such as:

¥ Making the SDP log files available via a password protected HTTP server.

¥ Directing the SDP notification emails to an automated system that interprets the logs.

9.2. Upgrade Scripts

9.2.1. get_helix_binaries.sh

Usage

USAGE for get_helix_binaries.sh v1.2.2:

get_helix_binaries.sh [-r <HelixMajorVersion>] [-b <Binary1>,<Binary2>,...] [-n] [-D]

Ê  or

get_helix_binaries.sh -h|-man

DESCRIPTION:
Ê   This script acquires Perforce Helix binaries from the Perforce FTP server.

Ê   The four Helix binaries that can be acquired are:

Ê   * p4, the command line client
Ê   * p4d, the Helix Core server
Ê   * p4p, the Helix Proxy
Ê   * p4broker, the Helix Broker

Ê   This script gets the latest patch of binaries for the current major Helix
Ê   version.  It is intended to acquire the latest patch for an existing install,
Ê   or to get initial binaries for a fresh new install.  It must be run from
Ê   the /hxdepots/sdp/helix_binaries directory (or similar; the /hxdepots
Ê   directory is the default but is subject to local configuration).

Ê   The helix_binaries directory is used for staging binaries for later upgrade
Ê   with the SDP 'upgrade.sh' script (documented separately).  This helix_binaries
Ê   directory is used to stage binaries on the current machine, while the
Ê   'upgrade.sh' script updates a single SDP instance (of which there might be
Ê   several on a machine).

Ê   The helix_binaries directory may not be in the PATH. As a safety feature,
Ê   the 'verify_sdp.sh' will report an error if the 'p4d' binary is found outside
Ê   /p4/common/bin in the PATH. The SDP 'upgrade.sh' check uses 'verify_sdp.sh'
Ê   as part of its preflight checks, and will refuse to upgrade if any 'p4d' is

52 of 107 - Chapter 9. Tools and Scripts

52 © 2010-2020 Perforce Software, Inc.



Ê   found outside /p4/common/bin.

Ê   When a newer major version of Helix binaries is needed, this script should not
Ê   be modified directly. Instead, the recommended approach is to upgrade the SDP
Ê   to get the latest version of SDP first, which will included a newer version of
Ê   this script, as well as the latest 'upgrade.sh'.  The 'upgrade.sh' script
Ê   is updated with each major SDP version to be aware of any changes in
Ê   the upgrade procedure for the corresponding p4d version.  Upgrading SDP first
Ê   ensures you have a version of the SDP that works with newer versions of p4d
Ê   and other Helix binaries.

OPTIONS:
Ê-r <HelixMajorVersion>
Ê   Specify the Helix Version, using the short form.  The form is rYY.N, e.g. r20.1
Ê   to denote the 2020.1 release. The default: is r20.1

Ê-b <Binary1>[,<Binary2>,...]
Ê   Specify a comma-delimited list of Helix binaries. The default is: p4 p4d p4broker
p4p

Ê-n Specify the '-n' (No Operation) option to show the commands needed
Ê   to fetch the Helix binaries from the Perforce FTP server without attempting
Ê   to execute them.

Ê-D Set extreme debugging verbosity using bash 'set -x' mode.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display this manual page

EXAMPLES:
Ê   Note: All examples assume the SDP is in the standard location, /hxdepots/sdp.

Ê   Example 1 - Typical Usage with no arguments:

Ê   cd /hxdepots/sdp/helix_binaries
Ê   ./get_helix_binaries.sh

Ê   This acquires the latest patch of all 4 binaries for the r20.1
Ê   release (aka 2020.1).

Ê   Example 2 - Specifying the major version:

Ê   cd /hxdepots/sdp/helix_binaries
Ê   ./get_helix_binaries.sh -r r19.2

Ê   This gets the latest patch of for the 2019.2 release of all 4 binaries.

Ê   Note: Only supported Helix binaries are guaranteed to be available from the
Ê   Perforce FTP server.

Chapter 9. Tools and Scripts - 53 of 107

© 2010-2020 Perforce Software, Inc. 53



Ê   Note: Only the latest patch of any given binary is available from the Perforce
Ê   FTP server.

Ê   Example 3 - Sample getting r20.1 and skipping the proxy binary (p4p):

Ê   cd /hxdepots/sdp/helix_binaries
Ê   ./get_helix_binaries.sh -r r20.1 -b p4,p4d,p4broker

DEPENDENCIES:
Ê   This script requires outbound internet access. Depending on your environment,
Ê   it may also require HTTPS_PROXY to be defined, or may not work at all.

Ê   If this script doesn't work due to lack of outbound internet access, it is
Ê   still useful illustrating the locations on the Perforce FTP server where
Ê   Helix Core binaries can be found.  If outbound internet access is not
Ê   available, use the '-n' flag to see where on the Perforce FTP server the
Ê   files must be pulled from, and then find a way to get the files from the
Ê   Perforce FTP server to the correct directory on your local machine,
Ê   /hxdepots/sdp/helix_binaries by default.

EXIT CODES:
Ê   An exit code of 0 indicates no errors were encountered. An
Ê   non-zero exit code indicates errors were encountered.

9.2.2. upgrade.sh

The upgrade.sh script is used to upgrade p4d and other Perforce Helix binaries on a given server
machine.

The links for different versions of p4d are described in Section A.1.3, ÒP4D versions and linksÓ

9.3. Legacy Upgrade Scripts

9.3.1. clear_depot_Map_fields.sh

Usage

USAGE for upgrade.sh v4.6.9:

upgrade.sh <instance> [-p|-I] [-M] [-c] [-n] [-L <log>] [-d|-D]

or

upgrade.sh [-h|-man]

DESCRIPTION:

This script upgrades the following Helix Core software:

54 of 107 - Chapter 9. Tools and Scripts

54 © 2010-2020 Perforce Software, Inc.



* p4d, the Perforce Helix Core server
* p4broker, the Helix Broker server
* p4p, the Helix Proxy server
* p4, the command line client

Details of each upgrade are described below. Prior to executing any upgrades, a
preflight check is done to help ensure upgrades will go smoothly.  Also, checks
are done to determine what (if any) of the above software products need to be
updated.

To prepare for an upgrade, new binaries must be update in the /p4/sdp/helix_binaries
directory.  This is generally done using the get_helix_binaries.sh script in
that directory.  Binaries in this directory are not referenced by live running
servers, and so it is safe to upgrade files in this directory to stage for a
future upgrade at any time. Also, the SDP standard PATH does not include this
directory, as verified by the verify_sdp.sh script.

THE INSTANCE BIN DIR

The 'instance bin' directory, /p4/<instance>/bin, (e.g. /p4/1/bin for instance
1), is expected to contain *_init scripts for services that operate on the
given machine.

For example, a typical master machine for instance 1 might have the following
in /p4/1/bin:

* p4broker_1_init script
* p4broker_1 symlink
* p4d_1_init script
* p4d_1 symlink or script
* p4_1 symlink (a reference to the 'p4' command line client)

A server machine for instance 1 that runs only the proxy server would have the
following in /p4/1/bin:

* p4p_1_init script
* p4p_1 symlink
* p4_1 symlink

The instance bin directory is never modified by the 'upgrade.sh' script.
The addition of new binaries and update of symlinks occur in .

The existence of *_init scripts for any given binary determines whether this
script attempts to manage the service on a given machine, stopping it before
upgrades, restarting it afterward, and other processing in the case of p4d.

Note that Phase 2, adding new binaries and updating symlinks, will occur for
all binaries for which new staged versions are available, regardless of
whether they are operational on the given machine.

Chapter 9. Tools and Scripts - 55 of 107

© 2010-2020 Perforce Software, Inc. 55



THE COMMON DIR

This script performs it operations in the SDP common bin dir, .

Unlike the instance bin directory, the  directory is expected
to be identical across all machines in a topology.  Scripts and symlinks
should always be the same, with only temporary differences while global
topology upgrades are in progress.

Thus, all binaries available to be upgraded will be upgraded in Phase 2, even
if the binary does not operate on the current machine. For example, if a new
version of 'p4p' binary is available, a new version will be copied to
Êand symlink references updated there. However, the p4p binary will
not be stopped/started.

GENERAL UPGRADE PROCESS

This script determines what binaries need to be upgraded, based on what new
binaries are available in the /p4/sdp/helix_binaries directory compared to what
binaries
the current instance uses.

There are 5 potential phases. Which phase execute depend on the what binaries
are being upgraded.  The phases are:

* PHASE 1 - Establish a clean rollback point.
This phase executes on the master if p4d is upgraded.

* PHASE 2 - Install new binaries and update SDP symlinks in .
This phase executes for all upgrades.

* PHASE 3 - Stop services to be upgraded.
This phase executes for all upgrades involving p4d, p4p, p4broker.
Only a 'p4' client only upgrade skips this phase.

* PHASE 4 - Perforce p4d schema upgrades
This step involves the 'p4d -xu' processing. It executes if p4d is upgraded
to a new major version, and occurs on the master as well as all replicas/edge
servers. The behavior of 'p4d -xu' differs depending on whether the server is
the master or a replica.

This phase is skipped if upgrading to a patch of the same major version, as
patches do not require 'p4d -xu' processing.

* PHASE 5 - Start upgraded services.
This phase executes for all upgrades involving p4d, p4p, p4broker.
Only a 'p4' client only upgrade skips this phase.

SPECIAL CASE - To OR THRU P4D 2019.1

If you are upgrading from a version that is older than 2019.1, services

56 of 107 - Chapter 9. Tools and Scripts

56 © 2010-2020 Perforce Software, Inc.



are NOT restarted after the upgrade in Phase 5, except on the master.
Services must be restarted manually on all other servers.

For these 'to-or-thru' 2019.1 upgrades, after ensuring all replicas/edges
are caught up (per 'p4 pull -lj'), shutdown all servers other than the
master.

Proceeding outer-to-inner, execute this script like so on all machines
except the master:
Ê  1. Deploy new executables in /p4/sdp/helix_binaries
Ê  2. Stop p4d.
Ê  3. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.
Ê  4. Run 'upgrade.sh -M' to update symlinks.
Ê  5. Do the upgrade manually with:  p4d -xu
Ê  6. Leave the server offline.

On the master, execute like this:
Ê  1. Deploy new executables in /p4/sdp/helix_binaries
Ê  2. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.
Ê  3. upgrade.sh

When the script completes (it will wait for 'p4 storage' upgrades),
restart services manually after the upgrade in the 'inner-to-outer'
direction.  Restart services on replicas/edges going inner-to-outer

This procedure requiring extra steps is specific to 'to-or-thru' P4D 2019.1
upgrades.  For upgrades starting from P4D 2019.1 or later, things are simpler.

UPGRADES FOR P4D 2019.1+

For upgrades where the P4D start version is 2019.1 and going to any subsequent
version, run this script going outer-to-inner. On each machine, it leaves the
services online and running.  Going in the outer-to-inner direction an all
servers, do:
Ê  1. Deploy new executables in /p4/sdp/helix_binaries
Ê  2. Run 'verify_sdp.sh -skip cron,version'; fix problems if needed until it reports
clean.
Ê  3. upgrade.sh

UPGRADE PREPARATION

The steps for deploying new binaries to server machines and running verify_sdp.sh
(and potentially correcting any issues it discovers) can and should be done before
the time or even day of any planned upgrade.

UPGRADING HELIX CORE - P4D

The p4d process, the Perforce Helix Core Server, is the center of the Perforce
Helix Universe, and the only server with a significant database component.

Chapter 9. Tools and Scripts - 57 of 107

© 2010-2020 Perforce Software, Inc. 57



Most of the upgrade phases above are about performing the p4d upgrade.

This 'upgrade.sh' script requires that the 'p4d' service be running at the
beginning of processing if p4d is to be upgraded, and will abort if p4d is
not running.

ORDER OF UPGRADES

Any given Perforce Helix installation will have least one p4d master server, and
may have several other p4d servers deployed on different machines as replicas and
edge servers.  When upgrading multiple p4d servers for any given instance (i.e.
any given data set, with a unique set of changelist numbers and users), the order
in which upgrades are performed matters.  Upgrades must be done in "outer to
inner" order.

The master server, at the center of the topology, is the innermost server and
must be upgraded last. Any replicas or edge servers connected directly to the
master constitute the next outer circle.  These can be upgraded in any order
relative to each other, but must be done before the master and after any
replicas farther out from the master in the topology.  So this 'upgrade.sh'
script should be run first on the server machines that are "outermost" from
the master from a replication perspective, and moving inward. The last run is
done on the master server machine.

Server machines running only proxies and brokers do not have a strict order
dependency for upgrades. These are commonly done in the same "outer to inner"
methodology as p4d for process consistency rather than strict technical need.

See the SDP_Guide.Unix.html for more information related to performing global
topology upgrades.

MASTER JOURNAL ROTATIONS

This script helps minimize downtime for upgrades by taking advantage of the SDP
offline checkpoint mechanism.  Rather than wait for a full checkpoint, a journal
is rotated and replayed to the offline_db.  This typically takes very little
time compared to a checkpoint, reducing downtime needed for the overall upgrade.

When the master server is upgraded, two rotations of the master server's journal
occur during processing.  The first journal rotation occurs before any upgrade
processing occurs, i.e. before the new binaries are added and symlinks are
updated. This gives a clean rollback point.

Later, after the p4d has started and p4d performs its journaled upgrade
processing, a second journal rotation occurs in Phase 5. This second journal
rotation captures all upgrade-related processing in a separately numbered journal.

UPGRADING HELIX BROKER

Helix Broker (p4broker) servers are commonly deployed on the same machine as a
Helix Core server, and can also be deployed on stand-alone machines (e.g.

58 of 107 - Chapter 9. Tools and Scripts

58 © 2010-2020 Perforce Software, Inc.



deployed to a DMZ host to provide secure access outside a corporate firewall).

Helix Brokers configured in the SDP environment can use a default configuration
file, and may have other configurations. The default configuration is the done
defined in /p4/common/config/p4_N.broker.cfg (or a host-specific override file
if it exists named /p4/common/config/p4_N.broker.<short_hostname>.cfg).  Other
broker configurations may exist, such as a DFM (Down for Maintenance) broker
config /p4/common/config/p4_N.broker.dfm.cfg.

During upgrade processing, this 'upgrade.sh' script only stops and restarts the
broker with the default configuration. Thus, if coordinating DFM brokers, first
manually shutdown the default broker and start the DFM brokers before calling
this script. This script will leave the DFM brokers running while adding the
new binaries and updating the symlinks.  (Note: Depending on how services
are configured, this DFM configuration might not survive a machine reboot.
typically the default broker will come online after a machine reboot).

This 'upgrade.sh' script will stop the p4broker service if it is running at the
beginning of processing.  If it was stopped, it will be restarted after the new
binaries are in place and symlinks are updated. If p4broker was not running at the
start of processing, new binaries are added and symlinks updated, but the
p4broker server will not be started.

UPGRADING HELIX PROXY

Helix Proxy (p4p) are commonly deployed on a machine by themselves, with no p4d
and no broker. It may also be run on the same machine as p4d.

This 'upgrade.sh' script will stop the p4p service if it is running at the
beginning of processing.  If it was stopped, it will be restarted after the new
binaries are in place and symlinks are updated. If p4p was not running at the
start of processing, new binaries are added and symlinks updated, but the p4p
server will not be started.

UPGRADING HELIX P4 COMMAND LINE CLIENT

The command line client, 'p4', is upgraded in Phase 2 by addition of new
binaries and updating of symlinks.

STAGING HELIX BINARIES

If your server can reach the Perforce FTP server over the public internet, a
script can be used from the /p4/sdp/helix_binaries directory to get the latest
binaries:

Ê   $ cd /p4/sdp/helix_binaries
Ê   $ ./get_helix_binaries.sh

If your server cannot reach the Perforce FTP server, perhaps due to outbound
network firewall restrictions or operating on an "air gapped" network,
use the '-n' option to see where Helix binaries can be acquired from:

Chapter 9. Tools and Scripts - 59 of 107

© 2010-2020 Perforce Software, Inc. 59



Ê   $ cd /p4/sdp/helix_binaries
Ê   $ ./get_helix_binaries.sh -n

OPTIONS:
Ê<instance>
Ê   Specify the SDP instance name to add.  This is a reference to the Perforce
Ê   Helix Core data set. This defaults to the current instance based on the
Ê   $SDP_INSTANCE shell environment variable. If the SDP shell environment is
Ê   not loaded, this option is required.

Ê-p Specify '-p' to halt processing after preflight checks are complete,
Ê   and before actual processing starts. By default, processing starts
Ê   immediately upon successful completion of preflight checks.

Ê-I Specify '-I' to ignore preflight errors. Use of this flag is STRONGLY
Ê   DISCOURAGED, as the preflight checks are essential to ensure a safe
Ê   and smooth migration. If used, preflight checks are still done so
Ê   their errors are recorded in the upgrade log, and then the migration
Ê   will attempt to proceed.

Ê   WARNING: This is an advanced option intended for use by or with the
Ê   guidance of Perforce Support or Perforce Consulting.

Ê-M Specify '-M' if you plan to do a manual upgrade. With this option,
Ê   only Phase 2 processing, adding new staged binaries and updating
Ê   symlinks, is done by this script.

Ê   WARNING: This is an advanced option intended for use by or with the
Ê   guidance of Perforce Support or Perforce Consulting.

Ê-c Specify '-c' to execute a command to upgrade the Protections table
Ê   comment format after the p4d upgrade, by using a command like:

Ê       p4 protect --convert-p4admin-comments -o | p4 -s protect -i

Ê   By default, this Protections table conversion is not performed.  In some
Ê   environments with custom policies related to update of the protections
Ê   table, this command may not work.

Ê   The new style of comments and the '--convert-p4admin-comments' option
Ê   was introduced in P4D 2016.1.

Ê-L <log>
Ê   Specify the path to a log file, or the special value 'off' to disable
Ê   logging.  By default, all output (stdout and stderr) goes to this file
Ê   in the /p4/N/logs directory (where N is the SDP instance name):

Ê   upgrade.p4_N.<datestamp>.log

Ê   NOTE: This script is self-logging.  That is, output displayed on the

60 of 107 - Chapter 9. Tools and Scripts

60 © 2010-2020 Perforce Software, Inc.



Ê   screen is simultaneously captured in the log file.  Do not run this
Ê   script with redirection operators like '> log' or '2>&1', and do not
Ê   use 'tee.'

Ê   Logging can only be disabled with '-L off' if the '-n' or '-p' flags
Ê   are used. Disabling logging for actual upgrades is not allowed.

DEBUGGING OPTIONS:
Ê-n No-Op.  In No-Op mode, no actions that affect data or structures are
Ê   taken.  Instead, commands that would be run are displayed.  This
Ê   command can also be educational, showing various steps that will occur
Ê   during an upgrade.

Ê-d     Increase verbosity for debugging.

Ê-D     Set extreme debugging verbosity, using bash '-x' mode. Also implies -d.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message

EXAMPLES:
Ê   EXAMPLE 1: Typical Usage

Ê   Typical usage is with just the SDP instance name as an argument, e.g.
Ê   instance '1', and no other parameters, as in this example:

Ê   $ cd /p4/common/bin
Ê   $ ./upgrade.sh 1

Ê   This executes the upgrade after successful completion of preflight checks,
Ê   and aborts if preflight checks detected any issues.

Ê   EXAMPLE 2: Preflight Only

Ê   To see if an upgrade is needed for this instance, based on binaries
Ê   staged in /p4/sdp/helix_binaries, use the '-p' flag to execute only the preflight
Ê   checks, and disable logging, as in this example:

Ê   $ cd /p4/common/bin
Ê   $ ./upgrade.sh 1 -p -L off

Ê   EXAMPLE 3: Simplified

Ê   If the standard SDP shell environment is loaded, upgrade.sh will be in
Ê   the path, so the 'cd' command to /p4/common/bin is not needed. Also,
Ê   the SDP_INSTANCE shell environment variable will be defined, so the
Ê   'instance' parameter can be dropped, with simply a call to the script
Ê   needed:

Ê   $ upgrade.sh

Chapter 9. Tools and Scripts - 61 of 107

© 2010-2020 Perforce Software, Inc. 61



SEE ALSO:
Ê   The /verify_sdp.sh script is used for preflight checks.

Ê   The /p4/sdp/helix_binaries/get_helix_binaries.sh script acquires new binaries
Ê   for upgrades.

Ê   Both scripts sport the same '-h' (short help) and '-man' (full manual)
Ê   usage options as this script.

LIMITATIONS:
Ê   This script does not handle upgrades of 'p4dtg', Helix Swarm,
Ê   Helix4Git, or any other software.

The clear_depot_Map_fields.sh  script is used when upgrading to SDP from versions earlier than SDP
2020.1. Its usage is discussed in SDP Legacy Upgrade Guide (for Unix) .

Usage

USAGE for clear_depot_Map_fields.sh v1.1.3:

clear_depot_Map_fields.sh [-i <instance>] [-L <log>] [-v<n>] [-p|-n] [-D]

or

clear_depot_Map_fields.sh [-h|-man|-V]

DESCRIPTION:
Ê   This script obsoletes the SetDefaultDepotSpecMapField.py trigger.

Ê   It does so by following a series of steps.  First, it ensures that
Ê   the configurable server.depot.root is set correctly, setting it
Ê   if it is not already set.

Ê   Next, the Triggers table is checked to ensure the call to the
Ê   SetDefaultDepotSpecMapField.py is not called; it is deleted from
Ê   the Triggers table if found.
Ê   Last, it resets the 'Map:' field of depot specs for depot
Ê   types where that is appropriate, setting it to the default value of
Ê   '<DepotName>/...', so that it honors the server.depot.root
Ê   configurable.  This is done for depots of these types:

Ê   * stream
Ê   * local
Ê   * spec
Ê   * unload

Ê   but not these:
Ê   * unload
Ê   * remote

62 of 107 - Chapter 9. Tools and Scripts

62 © 2010-2020 Perforce Software, Inc.

SDP_Legacy_Upgrades.Unix.html


Ê   * graph

Ê   If an unknown depot type is encountered, the 'Map:' field is reset
Ê   as well if it is set.

Ê   This script does a preflight check first, reporting any cases
Ê   where the starting conditions are not as expected.  These conditions
Ê   are treated as Errors, and will abort processing:

Ê   * Depot Map field set to something other than the default.
Ê   * Configurable server.depot.root is set, but to something other
Ê   than what it should be.

Ê   The following are treated as Warnings, and will be reported but
Ê   will not prevent processing.

Ê   * Configurable server.depot.root is already set.
Ê   * SetDefaultDepotSpecMapField.py not found in triggers.
Ê   * Depot already has 'Map:' field set to the default value:
Ê   <DepotName>/...

OPTIONS:
Ê-v<n>    Set verbosity 1-5 (-v1 = quiet, -v5 = highest).

Ê-L <log>
Ê   Specify the path to a log file, or the special value 'off' to disable
Ê   logging.  By default, all output (stdout and stderr) goes to
Ê   EDITME_DEFAULT_LOG

Ê   NOTE: This script is self-logging.  That is, output displayed on the screen
Ê   is simultaneously captured in the log file.  Do not run this script with
Ê   redirection operators like '> log' or '2>&1', and do not use 'tee.'

Ê-p Run preflight checks only, and then stop. By default, actual changes
Ê   occur if preflight checks find no issues.

Ê-n No-Op.  No actions are taken that would affect data significantly;
Ê   instead commands are displayed rather than executed.

Ê-D     Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message
Ê-V Display version info for this script and its libraries.

EXAMPLES:
Ê   A typical flow for this script is to do a preflight first, and then
Ê   a live run, for any given instance:
Ê   clear_depot_Map_fields.sh -i 1 -p

Chapter 9. Tools and Scripts - 63 of 107

© 2010-2020 Perforce Software, Inc. 63



Ê   clear_depot_Map_fields.sh -i 1

Ê   Note that if using '-n', the '-v5' flag should also be used.

9.4. Core Scripts
The core SDP scripts are those related to checkpoints and other scheduled operations, and all run
from /p4/common/bin.

If you source /p4/common/bin/p4_vars <instance>  then the /p4/common/bin directory will be added to
your $PATH.

9.4.1. p4_vars

The /p4/common/bin/p4_vars defines the SDP shell environment, as required by the Perforce Helix
server process. This script uses a specified instance number as a basis for setting environment
variables. It will look for and open the respective p4_<instance>.vars file (see next section).

This script also sets server logging options and configurables.

It is intended to be used by other scripts for common environment settings, and also by users for
setting the environment of their Bash shell.

Usage

source /p4/common/bin/p4_vars 1

See also: Section 4.3, ÒSetting your login environment for convenienceÓ

9.4.2. p4_<instance>.vars

Defines the environment variables for a specific instance, including P4PORT etc.

This script is called by Section 9.4.1, Òp4_varsÓ - it is not intended to be called directly by a user.

For instance 1:

p4_1.vars

For instance art :

p4_art.vars

Location : /p4/common/config

64 of 107 - Chapter 9. Tools and Scripts

64 © 2010-2020 Perforce Software, Inc.



9.4.3. p4master_run

The /p4/common/bin/p4master_run is a wrapper script to other SDP scripts. This ensures that the shell
environment is loaded from p4_vars before executing the script. It provides a '-c' flag for silent
operation, used in many crontab so that email is sent from the scripts themselves.

This is especially useful for calling scripts that do not set their own shell environment, such as
Python or Perl scripts. Many of the bash shell scripts in the SDP set their own environment (by
doing source /p4/common/bin/p4_vars N  for their instance); those bash shell scripts do not need to be
called with the p4master_run wrapper.

9.4.4. daily_checkpoint.sh

The /p4/common/bin/daily_checkpoint.sh  script configured by default to run six days a week using
crontab. The script:

¥ truncates the journal

¥ replays it into the offline_db  directory

¥ creates a new checkpoint from the resulting database files

¥ recreates the offline_db  database from the new checkpoint.

This procedure rebalances and compresses the database files in the offline_db  directory.

These can be rotated into the live ( root ) database, by the script Section 9.4.10,
Òrefresh_P4ROOT_from_offline_db.shÓ

Usage

/p4/common/bin/daily_checkpoint.sh <instance>
/p4/common/bin/daily_checkpoint.sh 1

9.4.5. recreate_offline_db.sh

The /p4/common/bin/recreate_offline_db.sh  recovers the offline_db database from the latest
checkpoint and replays any journals since then. If you have a problem with the offline database
then it is worth running this script first before running Section 9.4.6, Òlive_checkpoint.shÓ, as the
latter will stop the server while it is running, which can take hours for a large installation.

Run this script if an error occurs while replaying a journal during daily checkpoint process.

This script recreates offline_db files from the latest checkpoint. If it fails, then check to see if the
most recent checkpoint in the /p4/<instance>/checkpoints  directory is bad (ie doesnÕt look like the
right size compared to the others), and if so, delete it and rerun this script. If the error you are
getting is that the journal replay failed, then the only option is to run Section 9.4.6,
Òlive_checkpoint.shÓ script.

Chapter 9. Tools and Scripts - 65 of 107

© 2010-2020 Perforce Software, Inc. 65



Usage

/p4/common/bin/recreate_offline_db.sh <instance>
/p4/common/bin/recreate_offline_db.sh 1

9.4.6. live_checkpoint.sh

The /p4/common/bin/live_checkpoint.sh  is used to initialize the SDP offline_db . It must be run once,
typically manually during initial installation, before any other scripts that rely on the offline_db
can be used, such as daily_checkpoint.sh  and rotate_journal.sh .

This script can also be used in some cases to repair the offline_db  if it has has become corrupt, e.g.
due to a sudden power loss while checkpoint processing was running.

Note that when a live_checkpoint.sh  runs, the server will be unresponsive to users for a time. On a
new installation this "hang time" will be imperceptible, but over time it can grow to minutes and
eventually hours. The idea is that live_checkpoint.sh  should be used only very sparingly, and is not
scheduled as a routine operation.

This performs the following actions:

¥ Does a journal rotation, so the active P4JOURNAL file becomes numbered.

¥ Creates a checkpoint from the live database db.* files in the P4ROOT.

¥ Recovers the offline_db  database from that checkpoint to rebalance and compress the files

Run this script when creating the server instance and if an error occurs while replaying a journal
during the off-line checkpoint process.

!
Be aware it locks live database for the duration of the checkpoint which can take
hours for a large installation (please check the /p4/1/logs/checkpoint.log  for the
most recent output of daily_backup.sh  to see how long checkpoints take to
create/restore).

Usage

/p4/common/bin/live_checkpoint.sh <instance>
/p4/common/bin/live_checkpoint.sh 1

9.4.7. p4verify.sh

The /p4/common/bin/p4verify.sh  script verifies the integrity of the 'archive' files, all versioned files
in your repository. This script is run by crontab on a regular basis, typically weekly.

It verifies both shelves and ordinary archive files

Any errors in the log file (e.g. /p4/1/logs/p4verify.log ) should be handled according to KB articles:

¥ MISSING! errors from p4 verify

66 of 107 - Chapter 9. Tools and Scripts

66 © 2010-2020 Perforce Software, Inc.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_verify.html
https://community.perforce.com/s/article/3186


¥ BAD! error from p4 verify

If in doubt contact support@perforce.com

Our recommendation is that you should expect this to be without error, and you should address
errors sooner rather than later. This may involve obliterating unrecoverable errors.

#
when run on replicas, this will also append the -t  flag to the p4 verify  command
to ensure that MISSING files are scheduled for transfer. This is useful to keep
replicas (including edge servers) up-to-date.

Usage

/p4/common/bin/p4verify.sh <instance>
/p4/common/bin/p4verify.sh 1

USAGE for  v5.3.3:

p4verify.sh [<instance>] [-nu] [-nr] [-ns] [-nS] [-a] [-recent] [-L <log>] [-v] [-D]

Ê  or

p4verify.sh -h|-man

DESCRIPTION:

Ê   This script performs a 'p4 verify' of all submitted and shelved versioned
Ê   files in depots of all types except 'remote' and 'archive' type depots.

Ê   If run on a replica, it schedules archive failures for transfer to the
Ê   replica.

OPTIONS:
<instance>
Ê   Specify the SDP instance.  If not specified, the SDP_INSTANCE
Ê   environment variable is used instead.  If the instance is not
Ê   defined by a parameter and SDP_INSTANCE is not defined, p4verify.sh
Ê   exists immediately with an error message.

Ê-nu    Specify '-nu' (No Unload) to skip verification of the singleton depot
Ê   of type 'unload' (if created).  The 'unload' depot is verified
Ê   by default.

Ê-nr    Specify '-nr' (No Regular) to skip verification of regular submitted
Ê   archive files.  The '-nr' option is not compatible with '-recent'.
Ê   Regular submitted archive files are verified by default.

Ê-ns    Specify '-ns' (No Spec Depot) to skip verification of singleton depot
Ê   of type 'spec' (if created). The 'spec' depot is verified by default.

Chapter 9. Tools and Scripts - 67 of 107

© 2010-2020 Perforce Software, Inc. 67

https://community.perforce.com/s/article/2404
mailto:support@perforce.com


Ê-nS    Specify '-nS' (No Shelves) to skip verification of shelved archive
Ê   files, i.e. to skip the 'p4 verify -qS'.

Ê-a Specify '-a' (Archive Depots) to do verification of depots of type
Ê   'archive'.  Depots of type 'archive' are not verified by default, as
Ê   archive depots are often physically removed from the server's
Ê   storage subsystem for long-term cold storage.

Ê-recent
Ê   Specify that only recent changelists should be verified.
Ê   The $SDP_RECENT_CHANGES_TO_VERIFY variable defines how many
Ê   changelists are considered recent; the default is 200.

Ê   If the default is not appropriate for your site, add
Ê   "export SDP_RECENT_CHANGES_TO_VERIFY" to /p4/common/config/p4_N.vars to
Ê   change the default for an instance, or to /p4/common/bin/p4_vars to
Ê   change it globally.  If $SDP_RECENT_CHANGES_TO_VERIFY is unset, the
Ê   default is 200.

Ê   When -recent is used, neither shelves nor files in the unload depot
Ê   are verified.

Ê-v     Verbose.  Show output of verify attempts, which is suppressed by default.
Ê   Setting SDP_SHOW_LOG=1 in the shell environment has the same effect as -v.

Ê   The default behavior of this script is to generate no terminal output,
Ê   but instead to write output into a log file -- see LOGGING below.  If
Ê   '-v' is specified, the generated log is sent to stdout at the end of
Ê   processing.  This flag is not recommended for routine cron operation or
Ê   for large data sets.

Ê-L <log>
Ê   Specify the log file to use.  The default is /p4/N/logs/p4verify.log

Ê   Log rotation and old log cleanup logic does not apply to log files
Ê   specified with -L.  Thus, using -L is not recommended for routine scheduled
Ê   operation, e.g. via crontab.

Ê-D     Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message

EXAMPLES:
Ê   This script is typically called via cron with only the instance
Ê   parameter as an argument, e.g.:
Ê   p4verify.sh N

LOGGING:

68 of 107 - Chapter 9. Tools and Scripts

68 © 2010-2020 Perforce Software, Inc.



Ê   This script generates no output by default.  All (stdout and stderr) is
Ê   logged to /p4/N/logs/p4verify.log.

Ê   The exception is usage errors, which result an error being sent to
Ê   stderr followed usage info on stdout, followed by an immediate exit.

Ê   If the '-v' flag is used, the contents of the log are displayed to
Ê   stdout at the end of processing.

EXIT CODES:
Ê   An exit code of 0 indicates no errors were encountered attempting to
Ê   perform verifications, AND that all verifications attempted
Ê   reported no problems.

Ê   A exit status of 1 indicates that verifications could not be
Ê   attempted for some reason.

Ê   A exit status of 2 indicates that verifications were successfully
Ê   performed, but that problems such as BAD or MISSING files
Ê   were detected, or else system limits prevented verification.

9.4.8. p4login

The /p4/common/bin/p4login  script is a convenience wrapper to execute a series of p4 login
commands, using the administration password configured in mkdirs.cfg  and subsequently stored in
a text file: /p4/common/config/.p4passwd .p4_<instance>.admin .

Usage

USAGE for p4login v4.4.2:

p4login [<instance>] [-p <port> | -service] [-automation] [-all]

Ê  or

p4login -h|-man

DESCRIPTION:

Ê   In its simplest form, this script simply logs in P4USER to P4PORT
Ê   using the defined password access mechanism.

Ê   It generates a login ticket for the SDP super user, defined by
Ê   P4USER when sourcing the SDP standard shell environment.  It is
Ê   called from cron scripts, and so does not normally generate any
Ê   output.

Ê   If run on a replica with the -service option, the serviceUser defined
Ê   for the given replica is logged in.

Chapter 9. Tools and Scripts - 69 of 107

© 2010-2020 Perforce Software, Inc. 69



Ê   The $SDP_AUTOMATION_USERS variable can be defined in
Ê   /p4_N.vars. If defined, this should contain a
Ê   comma-delimited list of automation users to be logged in when the
Ê   -automation option is used.  A definition might look like:

Ê   export SDP_AUTOMATION_USERS=builder,trigger-admin,p4review

Ê   Login behavior is affected by external factors:
Ê   1. P4AUTH, if defined, affects login behavior on replicas.

Ê   2. The auth.id setting, if defined, affects login behaviors (and
Ê   generally simplifies them).

Ê   3. The $SDP_ALWAYS_LOGIN variable.  If set to 1, this causes p4login
Ê   to always execute a 'p4 login' command to generate a login ticket,
Ê   even if a 'p4 login -s' test indicates none is needed.  By default,
Ê   the login is skipped if a 'p4 login  -s' test indicates a long-term
Ê   ticket is available that expires 31+days in the future.
Ê   Add "export SDP_ALWYAYS_LOGIN=1" to /p4_N.vars to
Ê   change the default for an instance, or to /p4/common/bin/p4_vars to
Ê   change it globally.  If unset, the default is 0.

Ê   4. If the P4PORT contains an ssl: prefix, the P4TRUST relationship
Ê   is checked, and if necessary, a p4 trust -f -y is done to establish
Ê   trust.

OPTIONS:
<instance>
Ê   Specify the SDP instances.  If not specified, the SDP_INSTANCE
Ê   environment variable is used instead.  If the instance is not
Ê   defined by a parameter and SDP_INSTANCE is not defined, p4login
Ê   exists immediately with an error message.

Ê-service
Ê   Specify -service when run on a replica or edge server to login
Ê   the super user and the replication service user.

Ê   This option is not compatible with '-p <port>'.

Ê-p <port>
Ê   Specify a P4PORT value to login to, overriding the default
Ê   defined by P4PORT setting in the environment.  If operating
Ê   on a host other than the master, and auth.id is set, this
Ê   flag is ignored; the P4TARGET for the replica is used
Ê   instead.

Ê   This option is not compatible with '-service'.

Ê-automation
Ê   Specify -automation to login external automation users defined
Ê   by the $SDP_AUTOMATION_USERS variable.

70 of 107 - Chapter 9. Tools and Scripts

70 © 2010-2020 Perforce Software, Inc.



Ê-v     Show output of login attempts, which is suppressed by default.
Ê   Setting SDP_SHOW_LOG=1 in the shell environment has the same
Ê   effect as -v.

Ê-L <log>
Ê   Specify the log file to use.  The default is /p4/N/logs/p4login.log

Ê-d     Set debugging verbosity.

Ê-D     Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message

EXAMPLES:
Ê   1. Typical usage for automation, with instance SDP_INSTANCE defined
Ê   in the environment by sourcing p4_vars, and logging in only the super
Ê   user P4USER to P4PORT:
Ê   source /p4/common/bin/p4_vars abc
Ê   p4login

Ê   Login in only P4USER to the specified port, P4MASTERPORT in this example:
Ê   p4login -p $P4MASTERPORT

Ê   Login the super user P4USER, and then login the replication serviceUser
Ê   for the current ServerID:
Ê   p4login -service

Ê   Login external automation users (see SDP_AUTOMATION_USERS above):
Ê   p4login -automation

Ê   Login all users:
Ê   p4login -all

Ê   Or: p4login -service -automation

LOGGING:
Ê   This script generates no output by default.  All (stdout and stderr) is
Ê   logged to /p4/N/logs/p4login.log.

Ê   The exception is usage errors, which result an error being sent to
Ê   stderr followed usage info on stdout, followed by an immediate exit.

Ê   If the '-v' flag is used, the contents of the log are displayed to
Ê   stdout at the end of processing.

EXIT CODES:
Ê   An exit code of 0 indicates a valid login ticket exists, while a
Ê   non-zero exit code indicates a failure to login.

Chapter 9. Tools and Scripts - 71 of 107

© 2010-2020 Perforce Software, Inc. 71



9.4.9. p4d_<instance>_init

Starts the Perforce server instance. Can be called directly or as describe in Section 4.2.3,
ÒConfiguring Automatic Service Start on BootÓ  - it is created by mkdirs.sh  when SDP is installed.

!
Do not use directly if you have configured systemctl for systemd Linux
distributions such as CentOS 7.x. This risks database corruption if systemd does not
think the service is running when it actually is running (for example on shutdown
systemd will just kill processes without waiting for them).

This script sources /p4/common/bin/p4_vars, then runs /p4/common/bin/p4d_base (Section 9.6.10,
Òp4d_baseÓ).

Usage

/p4/<instance>/bin/p4d_<instance>_init [ start | stop | status | restart ]
/p4/1/bin/p4d_1_init start

9.4.10. refresh_P4ROOT_from_offline_db.sh

The /p4/common/bin/refresh_P4ROOT_from_offline_db.sh script is intended to be used occasionally,
perhaps monthly, quarterly, or on-demand, to help ensure that your live ( root ) database files are
defragmented.

It will:

¥ stop p4d

¥ truncate/rotate live journal

¥ replay journals to offline_db

¥ switch the links between root  and offline_db

¥ restart p4d

It also knows how to do similar processes on edge servers and standby servers or other replicas.

Usage

/p4/common/bin/refresh_P4ROOT_from_offline_db.sh <instance>
/p4/common/bin/refresh_P4ROOT_from_offline_db.sh 1

9.4.11. run_if_master.sh

The /p4/common/bin/run_if_master.sh  script is explained in Section 9.4.14,
Òrun_if_master/edge/replica.shÓ

9.4.12. run_if_edge.sh

The /p4/common/bin/run_if_edge.sh  script is explained in Section 9.4.14,

72 of 107 - Chapter 9. Tools and Scripts

72 © 2010-2020 Perforce Software, Inc.



Òrun_if_master/edge/replica.shÓ

9.4.13. run_if_replica.sh

The /p4/common/bin/run_if_replica.sh  script is explained in Section 9.4.14,
Òrun_if_master/edge/replica.shÓ

9.4.14. run_if_master/edge/replica.sh

The SDP uses wrapper scripts in the crontab: run_if_master.sh , run_if_edge.sh , run_if_replica.sh .
We suggest you ensure these are working as desired, e.g.

Usage

/p4/common/bin/run_if_master.sh 1 echo yes
/p4/common/bin/run_if_replica.sh 1 echo yes
/p4/common/bin/run_if_edge.sh 1 echo yes

It is important to ensure these are returning the valid results for the server machine you are on.

Any issues with these scripts are likely configuration issues with /p4/common/config/p4_1.vars  (for
instance 1)

9.5. More Server Scripts
These scripts are helpful components of the SDP that run on the server machine, but are not
included in the default crontab schedules.

9.5.1. p4.crontab

Contains crontab entries to run the server maintenance scripts.

Location : /p4/sdp/Server/Unix/p4/common/etc/cron.d

9.5.2. verify_sdp.sh

The /p4/common/bin/verify_sdp.sh  does basic verification of SDP setup.

Usage

USAGE for verify_sdp.sh v5.17.3:

verify_sdp.sh [<instance>] [-online] [-skip <test>[,<test2>,...]] [-si] [-L <log>|off
] [-D]

Ê  or

verify_sdp.sh -h|-man

Chapter 9. Tools and Scripts - 73 of 107

© 2010-2020 Perforce Software, Inc. 73



DESCRIPTION:

Ê   This script verifies the current SDP setup for the specified instance,
Ê   and also performs basic health checks of configured servers.

Ê   This uses the SDP instance bin directory /p4/N/bin to determine
Ê   what server binaries (p4d, p4broker, p4p) are expected to be configured
Ê   on this machine.

Ê   Existence of the '*_init' script indicates the given binary is
Ê   expected. For example, for instance 1, if /p4/1/bin/p4d_1_init
Ê   exists, a p4d server is expected to run on this machine.

Ê   Checks may be executed or skipped depending on what servers are
Ê   configured. For example, if a p4d is configured, the $P4ROOT/server.id
Ê   file should exist. If p4p is configured, the 'cache' directory
Ê   should exist.

OPTIONS:
Ê<instance>
Ê   Specify the SDP instances.  If not specified, the SDP_INSTANCE
Ê   environment variable is used instead.  If the instance is not
Ê   defined by a parameter and SDP_INSTANCE is not defined,
Ê   exits immediately with an error message.

Ê-online
Ê   Online mode.  Does additional checks that requires p4d, p4broker,
Ê   and/or p4p to be online. Any servers for which there are
Ê   *_init scripts in the Instance Bin directory must be online.
Ê   The Instance Bin directory is the /p4/N/bin directory, where N
Ê   is the SDP instance name.

Ê-skip <test>[,<test2>,...]

Ê   Specify a comma-delimited list of test names to skip.

Ê   Valid test names:

Ê   * cron|crontab: Skip crontab check. Use this if you do not expect crontab to
Ê   be configured, perhaps if you use a different scheduler.
Ê   * excess: Skip checks for excess copies of p4d/p4p/p4broker in PATH.
Ê   * license: Skip license related checks.
Ê   * masterid: Skip check ensuring ServerID of master starts with 'master'.
Ê   * offline_db: Skip checks that require a healthy offline_db.
Ê   * p4root: Skip checks that require healthy P4ROOT db files.
Ê   * p4t_files: Skip checks for existence of P4TICKETS and P4TRUST files.
Ê   * passwd|password: Skip SDP password checks.
Ê   * version: Skip version checks.

Ê   As an alternative to using the '-skip' command, the shell environment
Ê   variable VERIFY_SDP_SKIP_TEST_LIST can be set to a comma-separated

74 of 107 - Chapter 9. Tools and Scripts

74 © 2010-2020 Perforce Software, Inc.



Ê   list of test names to skip.  Using the command line parameter is the
Ê   best choice for temporarily skipping tests, while specifying the
Ê   environment variable is better for making permanent exceptions (e.g.
Ê   always excluding the crontab check if crontabs are not used at this
Ê   site).  The variable should be set in /p4/common/config/p4_N.vars.

Ê   If the '-skip' option is provided, the VERIFY_SDP_SKIP_TEST_LIST
Ê   variable is ignored (not appended to). So it may make sense to
Ê   reference the variable on the command line. For example, if the
Ê   value of the variable is 'crontab', to skip crontab and license
Ê   checks, you could specify:

Ê   -skip $VERIFY_SDP_SKIP_TEST_LIST,license

Ê-si    Silent mode, useful for cron operation.  Both stdout and stderr
Ê   are still captured in the log.  The '-si' option cannot be used
Ê   with '-L off'.

Ê-L <log>
Ê   Specify the log file to use.  The default is /p4/N/logs/verify_sdp.log
Ê   The special value 'off' disables logging to a file.

Ê   Note that '-L off' and '-si' are mutually exclusive.

Ê-D Set extreme debugging verbosity.

HELP OPTIONS:
Ê-h Display short help message
Ê-man   Display man-style help message

EXAMPLES:
Ê   Example 1: Typical usage:

Ê   This script is typically called after SDP update with only the instance
Ê   name or number as an argument, e.g.:

Ê   verify_sdp.sh 1

Ê   Example 2: Skipping some checks.

Ê   verify_sdp.sh 1 -skip crontab

Ê   Example 3: Automation Usage

Ê   If used from automation already doing its own logging, use -L off:

Ê   verify_sdp.sh 1 -L off

LOGGING:
Ê   This script generates a log file and also displays it to stdout at the
Ê   end of processing.  By default, the log is:

Chapter 9. Tools and Scripts - 75 of 107

© 2010-2020 Perforce Software, Inc. 75



Ê   /p4/N/logs/verify_sdp.log.

Ê   The exception is usage errors, which result an error being sent to
Ê   stderr followed usage info on stdout, followed by an immediate exit.

Ê   If the '-si' (silent) flag is used, the log is generated, but its
Ê   contents are not displayed to stdout at the end of processing.

EXIT CODES:
Ê   An exit code of 0 indicates no errors were encountered attempting to
Ê   perform verifications, and that all checks verified cleanly.

9.6. Other Scripts and Files
The following table describes other files in the SDP distribution. These files are usually not invoked
directly by you; rather, they are invoked by higher-level scripts.

9.6.1. backup_functions.sh

The /p4/common/bin/backup_functions.sh  script contains Bash functions used in other SDP scripts.

It is sourced  (source /p4/common/bin/backup_functions.sh ) by other scripts that use the common
shared functions.

It is not intended to be called directly by the user.

9.6.2. broker_rotate.sh

The /p4/common/bin/broker_rotate.sh  rotates the broker log file on an instance that only has the
broker running.

It can be added to a crontab for e.g. daily log rotation.

Usage

/p4/common/bin/broker_rotate.sh <instance>
/p4/common/bin/broker_rotate.sh 1

9.6.3. edge_dump.sh

The /p4/common/bin/edge_dump.sh script is designed to create a seed checkpoint for an Edge server.

An edge server is naturally filtered, with certain database tables (e.g. db.have) excluded. In addition
to implicit filtering, the server spec may specify additional tables to be excluded, e.g. by using the
ArchiveDataFilter field of the server spec.

The script requires the SDP instance and the edge ServerID.

76 of 107 - Chapter 9. Tools and Scripts

76 © 2010-2020 Perforce Software, Inc.



Usage

/p4/common/bin/edge_dump.sh <instance> <edge server id>
/p4/common/bin/edge_dump.sh 1 p4d_edge_syd

It will output the full path of the checkpoint to be copied to the edge server and used with Section
9.6.23, Òrecover_edge.shÓ

9.6.4. edge_vars

The /p4/common/bin/edge_vars file is sourced by scripts that work on edge servers.

It sets the correct list db.* files that are edge-specific in the federated architecture. This version is
dependent on the version of p4d in use; this script accounts for the P4D version.

It is not intended for users to call directly.

9.6.5. edge_shelf_replicate.sh

The /p4/common/bin/edge_shelf_replicate.sh  script is intended to be run on an edge server and will
ensure that all shelves are replicated to that edge server (by running p4 print  on them).

Only use if directed to by Perforce Support or Perforce Consulting.

9.6.6. load_checkpoint.sh

The /p4/common/bin/load_checkpoint.sh  script loads a checkpoint for commit/edge/replica instance.

Usage

USAGE for load_checkpoint.sh v2.3.7:

load_checkpoint.sh <checkpoint> [-i <instance>] [-s <ServerID>] [-c] [-l] [-r] [-b] [-
y] [-L <log>] [-si] [-v<n>] [-D]

or

load_checkpoint.sh [-h|-man|-V]

DESCRIPTION:
Ê   This script loads a specified checkpoint into /p4/N/root and /p4/N/offline_db,
Ê   where 'N' is the SDP instance name.

Ê   At the start of processing, preflight checks are done. Preflight checks
Ê   include:
Ê   * The specified checkpoint and corresponding *.md5 file must exist.
Ê   * The $P4ROOT/server.id file must exist, unless '-s' is specified.
Ê   * The $P4ROOT/license file must exist, unless '-l' is specified.
Ê   * Basic SDP structure and key files must exist.

Chapter 9. Tools and Scripts - 77 of 107

© 2010-2020 Perforce Software, Inc. 77


