//===== Copyright 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: // // $NoKeywords: $ // // Interface to the client system responsible for dealing with shadows // // Boy is this complicated. OK, lets talk about how this works at the moment // // The ClientShadowMgr contains all of the highest-level state for rendering // shadows, and it controls the ShadowMgr in the engine which is the central // clearing house for rendering shadows. // // There are two important types of objects with respect to shadows: // the shadow receiver, and the shadow caster. How is the association made // between casters + the receivers? Turns out it's done slightly differently // depending on whether the receiver is the world, or if it's an entity. // // In the case of the world, every time the engine's ProjectShadow() is called, // any previous receiver state stored (namely, which world surfaces are // receiving shadows) are cleared. Then, when ProjectShadow is called, // the engine iterates over all nodes + leaves within the shadow volume and // marks front-facing surfaces in them as potentially being affected by the // shadow. Later on, if those surfaces are actually rendered, the surfaces // are clipped by the shadow volume + rendered. // // In the case of entities, there are slightly different methods depending // on whether the receiver is a brush model or a studio model. However, there // are a couple central things that occur with both. // // Every time a shadow caster is moved, the ClientLeafSystem's ProjectShadow // method is called to tell it to remove the shadow from all leaves + all // renderables it's currently associated with. Then it marks each leaf in the // shadow volume as being affected by that shadow, and it marks every renderable // in that volume as being potentially affected by the shadow (the function // AddShadowToRenderable is called for each renderable in leaves affected // by the shadow volume). // // Every time a shadow receiver is moved, the ClientLeafSystem first calls // RemoveAllShadowsFromRenderable to have it clear out its state, and then // the ClientLeafSystem calls AddShadowToRenderable() for all shadows in all // leaves the renderable has moved into. // // Now comes the difference between brush models + studio models. In the case // of brush models, when a shadow is added to the studio model, it's done in // the exact same way as for the world. Surfaces on the brush model are marked // as potentially being affected by the shadow, and if those surfaces are // rendered, the surfaces are clipped to the shadow volume. When ProjectShadow() // is called, turns out the same operation that removes the shadow that moved // from the world surfaces also works to remove the shadow from brush surfaces. // // In the case of studio models, we need a separate operation to remove // the shadow from all studio models //===========================================================================// #include "cbase.h" #include "engine/IShadowMgr.h" #include "model_types.h" #include "bitmap/imageformat.h" #include "materialsystem/IMaterialProxy.h" #include "materialsystem/IMaterialVar.h" #include "materialsystem/IMaterial.h" #include "materialsystem/IMesh.h" #include "materialsystem/ITexture.h" #include "utlmultilist.h" #include "CollisionUtils.h" #include "IVRenderView.h" #include "tier0/vprof.h" #include "engine/ivmodelinfo.h" #include "view_shared.h" #include "engine/IVDebugOverlay.h" #include "engine/IStaticPropMgr.h" #include "datacache/imdlcache.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" static ConVar r_flashlightdrawfrustum( "r_flashlightdrawfrustum", "0" ); static ConVar r_flashlightmodels( "r_flashlightmodels", "1" ); static ConVar r_shadowrendertotexture( "r_shadowrendertotexture", "1" ); #ifdef DOSHADOWEDFLASHLIGHT static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "0" ); static ConVar r_flashlightdepthres( "r_flashlightdepthres", "512" ); #endif #ifdef _WIN32 #pragma warning( disable: 4701 ) #endif //----------------------------------------------------------------------------- // A texture allocator used to batch textures together // At the moment, the implementation simply allocates blocks of max 256x256 // and each block stores an array of uniformly-sized textures //----------------------------------------------------------------------------- typedef unsigned short TextureHandle_t; enum { INVALID_TEXTURE_HANDLE = (TextureHandle_t)~0 }; class CTextureAllocator { public: // Initialize the allocator with something that knows how to refresh the bits void Init(); void Shutdown(); // Resets the allocator void Reset(); // Deallocates everything void DeallocateAllTextures(); // Allocate, deallocate texture TextureHandle_t AllocateTexture( int w, int h ); void DeallocateTexture( TextureHandle_t h ); // Mark texture as being used... (return true if re-render is needed) bool UseTexture( TextureHandle_t h, bool bWillRedraw, float flArea ); // Advance frame... void AdvanceFrame(); // Get at the location of the texture void GetTextureRect(TextureHandle_t handle, int& x, int& y, int& w, int& h ); // Get at the texture it's a part of ITexture* GetTexture(); // Get at the total texture size. void GetTotalTextureSize( int& w, int& h ); void DebugPrintCache( void ); private: typedef unsigned short FragmentHandle_t; enum { INVALID_FRAGMENT_HANDLE = (FragmentHandle_t)~0, #ifndef _XBOX TEXTURE_PAGE_SIZE = 1024, MAX_TEXTURE_POWER = 8, MIN_TEXTURE_POWER = 4, #else TEXTURE_PAGE_SIZE = 512, MAX_TEXTURE_POWER = 7, MIN_TEXTURE_POWER = 3, #endif MAX_TEXTURE_SIZE = (1 << MAX_TEXTURE_POWER), MIN_TEXTURE_SIZE = (1 << MIN_TEXTURE_POWER), BLOCK_SIZE = MAX_TEXTURE_SIZE, BLOCKS_PER_ROW = (TEXTURE_PAGE_SIZE / MAX_TEXTURE_SIZE), BLOCK_COUNT = (BLOCKS_PER_ROW * BLOCKS_PER_ROW), }; struct TextureInfo_t { FragmentHandle_t m_Fragment; unsigned short m_Size; unsigned short m_Power; }; struct FragmentInfo_t { unsigned short m_Block; unsigned short m_Index; TextureHandle_t m_Texture; // Makes sure we don't overflow unsigned int m_FrameUsed; }; struct BlockInfo_t { unsigned short m_FragmentPower; }; struct Cache_t { unsigned short m_List; }; // Adds a block worth of fragments to the LRU void AddBlockToLRU( int block ); // Unlink fragment from cache void UnlinkFragmentFromCache( Cache_t& cache, FragmentHandle_t fragment ); // Mark something as being used (MRU).. void MarkUsed( FragmentHandle_t fragment ); // Mark something as being unused (LRU).. void MarkUnused( FragmentHandle_t fragment ); // Disconnect texture from fragment void DisconnectTextureFromFragment( FragmentHandle_t f ); // Returns the size of a particular fragment int GetFragmentPower( FragmentHandle_t f ) const; // Stores the actual texture we're writing into CTextureReference m_TexturePage; CUtlLinkedList< TextureInfo_t, TextureHandle_t > m_Textures; CUtlMultiList< FragmentInfo_t, FragmentHandle_t > m_Fragments; Cache_t m_Cache[MAX_TEXTURE_POWER+1]; BlockInfo_t m_Blocks[BLOCK_COUNT]; unsigned int m_CurrentFrame; }; //----------------------------------------------------------------------------- // Allocate/deallocate the texture page //----------------------------------------------------------------------------- void CTextureAllocator::Init() { for ( int i = 0; i <= MAX_TEXTURE_POWER; ++i ) { m_Cache[i].m_List = m_Fragments.InvalidIndex(); } #ifndef _XBOX // GR: don't need depth buffer for shadows m_TexturePage.InitRenderTarget( TEXTURE_PAGE_SIZE, TEXTURE_PAGE_SIZE, RT_SIZE_NO_CHANGE, IMAGE_FORMAT_ARGB8888, MATERIAL_RT_DEPTH_NONE, false ); #else // xboxissue - has to be linear format because swizzled render targets cannot be subrect cleared. // can use a 16 bit format, and use rgb channel instead of alpha for shadow info m_TexturePage.InitRenderTarget( TEXTURE_PAGE_SIZE, TEXTURE_PAGE_SIZE, RT_SIZE_NO_CHANGE, IMAGE_FORMAT_LINEAR_BGRX5551, MATERIAL_RT_DEPTH_NONE, false ); #endif } void CTextureAllocator::Shutdown() { m_TexturePage.Shutdown( ); } //----------------------------------------------------------------------------- // Initialize the allocator with something that knows how to refresh the bits //----------------------------------------------------------------------------- void CTextureAllocator::Reset() { DeallocateAllTextures(); m_Textures.EnsureCapacity(256); m_Fragments.EnsureCapacity(256); // Set up the block sizes.... // FIXME: Improve heuristic?!? #ifndef _XBOX m_Blocks[0].m_FragmentPower = 4; // 128 x 16 m_Blocks[1].m_FragmentPower = 5; // 64 x 32 m_Blocks[2].m_FragmentPower = 6; // 32 x 64 m_Blocks[3].m_FragmentPower = 6; m_Blocks[4].m_FragmentPower = 7; // 24 x 128 m_Blocks[5].m_FragmentPower = 7; m_Blocks[6].m_FragmentPower = 7; m_Blocks[7].m_FragmentPower = 7; m_Blocks[8].m_FragmentPower = 7; m_Blocks[9].m_FragmentPower = 7; m_Blocks[10].m_FragmentPower = 8; // 6 x 256 m_Blocks[11].m_FragmentPower = 8; m_Blocks[12].m_FragmentPower = 8; m_Blocks[13].m_FragmentPower = 8; m_Blocks[14].m_FragmentPower = 8; m_Blocks[15].m_FragmentPower = 8; #else m_Blocks[0].m_FragmentPower = MAX_TEXTURE_POWER-4; // 128 cells at ExE m_Blocks[1].m_FragmentPower = MAX_TEXTURE_POWER-3; // 64 cells at DxD m_Blocks[2].m_FragmentPower = MAX_TEXTURE_POWER-2; // 32 cells at CxC m_Blocks[3].m_FragmentPower = MAX_TEXTURE_POWER-2; m_Blocks[4].m_FragmentPower = MAX_TEXTURE_POWER-1; // 24 cells at BxB m_Blocks[5].m_FragmentPower = MAX_TEXTURE_POWER-1; m_Blocks[6].m_FragmentPower = MAX_TEXTURE_POWER-1; m_Blocks[7].m_FragmentPower = MAX_TEXTURE_POWER-1; m_Blocks[8].m_FragmentPower = MAX_TEXTURE_POWER-1; m_Blocks[9].m_FragmentPower = MAX_TEXTURE_POWER-1; m_Blocks[10].m_FragmentPower = MAX_TEXTURE_POWER; // 6 cells at AxA m_Blocks[11].m_FragmentPower = MAX_TEXTURE_POWER; m_Blocks[12].m_FragmentPower = MAX_TEXTURE_POWER; m_Blocks[13].m_FragmentPower = MAX_TEXTURE_POWER; m_Blocks[14].m_FragmentPower = MAX_TEXTURE_POWER; m_Blocks[15].m_FragmentPower = MAX_TEXTURE_POWER; #endif // Initialize the LRU int i; for ( i = 0; i <= MAX_TEXTURE_POWER; ++i ) { m_Cache[i].m_List = m_Fragments.CreateList(); } // Now that the block sizes are allocated, create LRUs for the various block sizes for ( i = 0; i < BLOCK_COUNT; ++i) { // Initialize LRU AddBlockToLRU( i ); } m_CurrentFrame = 0; } void CTextureAllocator::DeallocateAllTextures() { m_Textures.Purge(); m_Fragments.Purge(); for ( int i = 0; i <= MAX_TEXTURE_POWER; ++i ) { m_Cache[i].m_List = m_Fragments.InvalidIndex(); } } //----------------------------------------------------------------------------- // Dump the state of the cache to debug out //----------------------------------------------------------------------------- void CTextureAllocator::DebugPrintCache( void ) { // For each fragment int nNumFragments = m_Fragments.TotalCount(); int nNumInvalidFragments = 0; Warning("Fragments (%d):\n===============\n", nNumFragments); for ( int f = 0; f < nNumFragments; f++ ) { if ( ( m_Fragments[f].m_FrameUsed != 0 ) && ( m_Fragments[f].m_Texture != INVALID_TEXTURE_HANDLE ) ) Warning("Fragment %d, Block: %d, Index: %d, Texture: %d Frame Used: %d\n", f, m_Fragments[f].m_Block, m_Fragments[f].m_Index, m_Fragments[f].m_Texture, m_Fragments[f].m_FrameUsed ); else nNumInvalidFragments++; } Warning("Invalid Fragments: %d\n", nNumInvalidFragments); // for ( int c = 0; c <= MAX_TEXTURE_POWER; ++c ) // { // Warning("Cache Index (%d)\n", m_Cache[c].m_List); // } } //----------------------------------------------------------------------------- // Adds a block worth of fragments to the LRU //----------------------------------------------------------------------------- void CTextureAllocator::AddBlockToLRU( int block ) { int power = m_Blocks[block].m_FragmentPower; int size = (1 << power); // Compute the number of fragments in this block int fragmentCount = MAX_TEXTURE_SIZE / size; fragmentCount *= fragmentCount; // For each fragment, indicate which block it's a part of (and the index) // and then stick in at the top of the LRU while (--fragmentCount >= 0 ) { FragmentHandle_t f = m_Fragments.Alloc( ); m_Fragments[f].m_Block = block; m_Fragments[f].m_Index = fragmentCount; m_Fragments[f].m_Texture = INVALID_TEXTURE_HANDLE; m_Fragments[f].m_FrameUsed = 0xFFFFFFFF; m_Fragments.LinkToHead( m_Cache[power].m_List, f ); } } //----------------------------------------------------------------------------- // Unlink fragment from cache //----------------------------------------------------------------------------- void CTextureAllocator::UnlinkFragmentFromCache( Cache_t& cache, FragmentHandle_t fragment ) { m_Fragments.Unlink( cache.m_List, fragment); } //----------------------------------------------------------------------------- // Mark something as being used (MRU).. //----------------------------------------------------------------------------- void CTextureAllocator::MarkUsed( FragmentHandle_t fragment ) { int block = m_Fragments[fragment].m_Block; int power = m_Blocks[block].m_FragmentPower; // Hook it at the end of the LRU Cache_t& cache = m_Cache[power]; m_Fragments.LinkToTail( cache.m_List, fragment ); m_Fragments[fragment].m_FrameUsed = m_CurrentFrame; } //----------------------------------------------------------------------------- // Mark something as being unused (LRU).. //----------------------------------------------------------------------------- void CTextureAllocator::MarkUnused( FragmentHandle_t fragment ) { int block = m_Fragments[fragment].m_Block; int power = m_Blocks[block].m_FragmentPower; // Hook it at the end of the LRU Cache_t& cache = m_Cache[power]; m_Fragments.LinkToHead( cache.m_List, fragment ); } //----------------------------------------------------------------------------- // Allocate, deallocate texture //----------------------------------------------------------------------------- TextureHandle_t CTextureAllocator::AllocateTexture( int w, int h ) { // Implementational detail for now Assert( w == h ); // Clamp texture size if (w < MIN_TEXTURE_SIZE) w = MIN_TEXTURE_SIZE; else if (w > MAX_TEXTURE_SIZE) w = MAX_TEXTURE_SIZE; TextureHandle_t handle = m_Textures.AddToTail(); m_Textures[handle].m_Fragment = INVALID_FRAGMENT_HANDLE; m_Textures[handle].m_Size = w; // Find the power of two int power = 0; int size = 1; while(size < w) { size <<= 1; ++power; } Assert( size == w ); m_Textures[handle].m_Power = power; return handle; } void CTextureAllocator::DeallocateTexture( TextureHandle_t h ) { // Warning("Beginning of DeallocateTexture\n"); // DebugPrintCache(); if (m_Textures[h].m_Fragment != INVALID_FRAGMENT_HANDLE) { MarkUnused(m_Textures[h].m_Fragment); m_Fragments[m_Textures[h].m_Fragment].m_FrameUsed = 0xFFFFFFFF; // non-zero frame DisconnectTextureFromFragment( m_Textures[h].m_Fragment ); } m_Textures.Remove(h); // Warning("End of DeallocateTexture\n"); // DebugPrintCache(); } //----------------------------------------------------------------------------- // Disconnect texture from fragment //----------------------------------------------------------------------------- void CTextureAllocator::DisconnectTextureFromFragment( FragmentHandle_t f ) { // Warning( "Beginning of DisconnectTextureFromFragment\n" ); // DebugPrintCache(); FragmentInfo_t& info = m_Fragments[f]; if (info.m_Texture != INVALID_TEXTURE_HANDLE) { m_Textures[info.m_Texture].m_Fragment = INVALID_FRAGMENT_HANDLE; info.m_Texture = INVALID_TEXTURE_HANDLE; } // Warning( "End of DisconnectTextureFromFragment\n" ); // DebugPrintCache(); } //----------------------------------------------------------------------------- // Mark texture as being used... //----------------------------------------------------------------------------- bool CTextureAllocator::UseTexture( TextureHandle_t h, bool bWillRedraw, float flArea ) { // Warning( "Top of UseTexture\n" ); // DebugPrintCache(); TextureInfo_t& info = m_Textures[h]; // 4 is the minimum power we have allocated int nDesiredPower = 4; int nDesiredWidth = 16; while ( (nDesiredWidth * nDesiredWidth) < flArea ) { if ( nDesiredPower >= info.m_Power ) { nDesiredPower = info.m_Power; break; } ++nDesiredPower; nDesiredWidth *= 2; } // If we've got a valid fragment for this texture, no worries! int nCurrentPower = -1; FragmentHandle_t currentFragment = info.m_Fragment; if (currentFragment != INVALID_FRAGMENT_HANDLE) { // If the current fragment is at or near the desired power, we're done nCurrentPower = GetFragmentPower(info.m_Fragment); Assert( nCurrentPower <= info.m_Power ); bool bShouldKeepTexture = (!bWillRedraw) && (nDesiredPower < 8) && (nDesiredPower - nCurrentPower <= 1); if ((nCurrentPower == nDesiredPower) || bShouldKeepTexture) { // Move to the back of the LRU MarkUsed( currentFragment ); return false; } } // Warning( "\n\nUseTexture B\n" ); // DebugPrintCache(); // Grab the LRU fragment from the appropriate cache // If that fragment is connected to a texture, disconnect it. int power = nDesiredPower; FragmentHandle_t f = INVALID_FRAGMENT_HANDLE; bool done = false; while (!done && power >= 0) { f = m_Fragments.Head( m_Cache[power].m_List ); // This represents an overflow condition (used too many textures of // the same size in a single frame). It that happens, just use a texture // of lower res. if ( (f != m_Fragments.InvalidIndex()) && (m_Fragments[f].m_FrameUsed != m_CurrentFrame) ) { done = true; } else { --power; } } // Warning( "\n\nUseTexture C\n" ); // DebugPrintCache(); // Ok, lets see if we're better off than we were... if (currentFragment != INVALID_FRAGMENT_HANDLE) { if (power <= nCurrentPower) { // Oops... we're not. Let's leave well enough alone // Move to the back of the LRU MarkUsed( currentFragment ); return false; } else { // Clear out the old fragment DisconnectTextureFromFragment(currentFragment); } } if ( f == INVALID_FRAGMENT_HANDLE ) { return false; } // Disconnect existing texture from this fragment (if necessary) DisconnectTextureFromFragment(f); // Connnect new texture to this fragment info.m_Fragment = f; m_Fragments[f].m_Texture = h; // Move to the back of the LRU MarkUsed( f ); // Indicate we need a redraw return true; } //----------------------------------------------------------------------------- // Returns the size of a particular fragment //----------------------------------------------------------------------------- int CTextureAllocator::GetFragmentPower( FragmentHandle_t f ) const { return m_Blocks[m_Fragments[f].m_Block].m_FragmentPower; } //----------------------------------------------------------------------------- // Advance frame... //----------------------------------------------------------------------------- void CTextureAllocator::AdvanceFrame() { // Be sure that this is called as infrequently as possible (i.e. once per frame, // NOT once per view) to prevent cache thrash when rendering multiple views in a single frame m_CurrentFrame++; } //----------------------------------------------------------------------------- // Prepare to render into texture... //----------------------------------------------------------------------------- ITexture* CTextureAllocator::GetTexture() { return m_TexturePage; } //----------------------------------------------------------------------------- // Get at the total texture size. //----------------------------------------------------------------------------- void CTextureAllocator::GetTotalTextureSize( int& w, int& h ) { w = h = TEXTURE_PAGE_SIZE; } //----------------------------------------------------------------------------- // Returns the rectangle the texture lives in.. //----------------------------------------------------------------------------- void CTextureAllocator::GetTextureRect(TextureHandle_t handle, int& x, int& y, int& w, int& h ) { TextureInfo_t& info = m_Textures[handle]; Assert( info.m_Fragment != INVALID_FRAGMENT_HANDLE ); // Compute the position of the fragment in the page FragmentInfo_t& fragment = m_Fragments[info.m_Fragment]; int blockY = fragment.m_Block / BLOCKS_PER_ROW; int blockX = fragment.m_Block - blockY * BLOCKS_PER_ROW; int fragmentSize = (1 << m_Blocks[fragment.m_Block].m_FragmentPower); int fragmentsPerRow = BLOCK_SIZE / fragmentSize; int fragmentY = fragment.m_Index / fragmentsPerRow; int fragmentX = fragment.m_Index - fragmentY * fragmentsPerRow; x = blockX * BLOCK_SIZE + fragmentX * fragmentSize; y = blockY * BLOCK_SIZE + fragmentY * fragmentSize; w = fragmentSize; h = fragmentSize; } //----------------------------------------------------------------------------- // Defines how big of a shadow texture we should be making per caster... //----------------------------------------------------------------------------- #define TEXEL_SIZE_PER_CASTER_SIZE 2.0f #define MAX_FALLOFF_AMOUNT 240 #define MAX_CLIP_PLANE_COUNT 4 #define SHADOW_CULL_TOLERANCE 0.5f static ConVar r_shadows( "r_shadows", "1" ); // hook into engine's cvars.. static ConVar r_shadowmaxrendered("r_shadowmaxrendered", "32"); static ConVar r_shadows_gamecontrol( "r_shadows_gamecontrol", "-1" ); // hook into engine's cvars.. //----------------------------------------------------------------------------- // The class responsible for dealing with shadows on the client side // Oh, and let's take a moment and notice how happy Robin and John must be // owing to the lack of space between this lovely comment and the class name =) //----------------------------------------------------------------------------- class CClientShadowMgr : public IClientShadowMgr { public: CClientShadowMgr(); virtual char const *Name() { return "CCLientShadowMgr"; } // Inherited from IClientShadowMgr virtual bool Init(); virtual void Shutdown(); virtual void LevelInitPreEntity(); virtual void LevelInitPostEntity() {} virtual void LevelShutdownPreEntity() {} virtual void LevelShutdownPostEntity(); virtual bool IsPerFrame() { return true; } virtual void PreRender(); virtual void Update( float frametime ) { } virtual void PostRender() {} virtual void OnSave() {} virtual void OnRestore() {} virtual void SafeRemoveIfDesired() {} virtual ClientShadowHandle_t CreateShadow( ClientEntityHandle_t entity, int flags ); virtual void DestroyShadow( ClientShadowHandle_t handle ); // Create flashlight (projected texture light source) virtual ClientShadowHandle_t CreateFlashlight( const FlashlightState_t &lightState ); virtual void UpdateFlashlightState( ClientShadowHandle_t shadowHandle, const FlashlightState_t &lightState ); virtual void DestroyFlashlight( ClientShadowHandle_t shadowHandle ); // Update a shadow virtual void UpdateProjectedTexture( ClientShadowHandle_t handle, bool force ); void ComputeBoundingSphere( IClientRenderable* pRenderable, Vector& origin, float& radius ); virtual void AddToDirtyShadowList( ClientShadowHandle_t handle, bool bForce ); virtual void AddToDirtyShadowList( IClientRenderable *pRenderable, bool force ); // Marks the render-to-texture shadow as needing to be re-rendered virtual void MarkRenderToTextureShadowDirty( ClientShadowHandle_t handle ); // deals with shadows being added to shadow receivers void AddShadowToReceiver( ClientShadowHandle_t handle, IClientRenderable* pRenderable, ShadowReceiver_t type ); // deals with shadows being added to shadow receivers void RemoveAllShadowsFromReceiver( IClientRenderable* pRenderable, ShadowReceiver_t type ); // Re-renders all shadow textures for shadow casters that lie in the leaf list void ComputeShadowTextures( const CViewSetup *pView, int leafCount, LeafIndex_t* pLeafList ); // Returns the shadow texture ITexture* GetShadowTexture( unsigned short h ); // Returns shadow information const ShadowInfo_t& GetShadowInfo( ClientShadowHandle_t h ); // Renders the shadow texture to screen... void RenderShadowTexture( int w, int h ); // Sets the shadow direction virtual void SetShadowDirection( const Vector& dir ); const Vector &GetShadowDirection() const; // Sets the shadow color virtual void SetShadowColor( unsigned char r, unsigned char g, unsigned char b ); void GetShadowColor( unsigned char *r, unsigned char *g, unsigned char *b ) const; // Sets the shadow distance virtual void SetShadowDistance( float flMaxDistance ); float GetShadowDistance( ) const; // Sets the screen area at which blobby shadows are always used virtual void SetShadowBlobbyCutoffArea( float flMinArea ); float GetBlobbyCutoffArea( ) const; // Set the darkness falloff bias virtual void SetFalloffBias( ClientShadowHandle_t handle, unsigned char ucBias ); void RestoreRenderState(); // Computes a rough bounding box encompassing the volume of the shadow void ComputeShadowBBox( IClientRenderable *pRenderable, const Vector &vecAbsCenter, float flRadius, Vector *pAbsMins, Vector *pAbsMaxs ); // Returns true if the shadow is far enough to want to use blobby shadows bool ShouldUseBlobbyShadows( float flRadius, float flScreenArea ); bool WillParentRenderBlobbyShadow( IClientRenderable *pRenderable ); // Are we the child of a shadow with render-to-texture? bool ShouldUseParentShadow( IClientRenderable *pRenderable ); void SetShadowsDisabled( bool bDisabled ) { r_shadows_gamecontrol.SetValue( bDisabled != 1 ); } private: enum { SHADOW_FLAGS_TEXTURE_DIRTY = (CLIENT_SHADOW_FLAGS_LAST_FLAG << 1), SHADOW_FLAGS_BRUSH_MODEL = (CLIENT_SHADOW_FLAGS_LAST_FLAG << 2), SHADOW_FLAGS_USING_LOD_SHADOW = (CLIENT_SHADOW_FLAGS_LAST_FLAG << 3), }; struct ClientShadow_t { ClientEntityHandle_t m_Entity; ShadowHandle_t m_ShadowHandle; ClientLeafShadowHandle_t m_ClientLeafShadowHandle; unsigned short m_Flags; VMatrix m_WorldToShadow; Vector2D m_WorldSize; Vector m_LastOrigin; QAngle m_LastAngles; TextureHandle_t m_ShadowTexture; CTextureReference m_ShadowDepthTexture; int m_nRenderFrame; EHANDLE m_hTargetEntity; bool m_bLightWorld; }; private: // Shadow update functions void UpdateStudioShadow( IClientRenderable *pRenderable, ClientShadowHandle_t handle ); void UpdateBrushShadow( IClientRenderable *pRenderable, ClientShadowHandle_t handle ); void UpdateShadow( ClientShadowHandle_t handle, bool force ); // Gets the entity whose shadow this shadow will render into IClientRenderable *GetParentShadowEntity( ClientShadowHandle_t handle ); // Adds the child bounds to the bounding box void AddChildBounds( matrix3x4_t &worldToBBox, IClientRenderable* pParent, Vector &vecMins, Vector &vecMaxs ); // Compute a bounds for the entity + children void ComputeHierarchicalBounds( IClientRenderable *pRenderable, Vector &vecMins, Vector &vecMaxs ); // Builds matrices transforming from world space to shadow space void BuildGeneralWorldToShadowMatrix( VMatrix& worldToShadow, const Vector& origin, const Vector& dir, const Vector& xvec, const Vector& yvec ); void BuildOrthoWorldToShadowMatrix( VMatrix& worldToShadow, const Vector& origin, const Vector& dir, const Vector& xvec, const Vector& yvec ); void BuildPerspectiveWorldToFlashlightMatrix( VMatrix& worldToShadow, const Vector& origin, const Vector& dir, const Vector& xvec, const Vector& yvec, float fovDegrees, float zNear, float zFar ); // Update a shadow void UpdateProjectedTextureInternal( ClientShadowHandle_t handle, bool force ); // Compute the shadow origin and attenuation start distance float ComputeLocalShadowOrigin( IClientRenderable* pRenderable, const Vector& mins, const Vector& maxs, const Vector& localShadowDir, float backupFactor, Vector& origin ); // Remove a shadow from the dirty list void RemoveShadowFromDirtyList( ClientShadowHandle_t handle ); // NOTE: this will ONLY return SHADOWS_NONE, SHADOWS_SIMPLE, or SHADOW_RENDER_TO_TEXTURE. ShadowType_t GetActualShadowCastType( ClientShadowHandle_t handle ) const; ShadowType_t GetActualShadowCastType( IClientRenderable *pRenderable ) const; // Builds a simple blobby shadow void BuildOrthoShadow( IClientRenderable* pRenderable, ClientShadowHandle_t handle, const Vector& mins, const Vector& maxs); // Builds a more complex shadow... void BuildRenderToTextureShadow( IClientRenderable* pRenderable, ClientShadowHandle_t handle, const Vector& mins, const Vector& maxs ); // Build a projected-texture flashlight void BuildFlashlight( ClientShadowHandle_t handle ); // Does all the lovely stuff we need to do to have render-to-texture shadows void SetupRenderToTextureShadow( ClientShadowHandle_t h ); void CleanUpRenderToTextureShadow( ClientShadowHandle_t h ); void CleanUpDepthTextureShadow( ClientShadowHandle_t h ); // Compute the extra shadow planes void ComputeExtraClipPlanes( IClientRenderable* pRenderable, ClientShadowHandle_t handle, const Vector* vec, const Vector& mins, const Vector& maxs, const Vector& localShadowDir ); // Set extra clip planes related to shadows... void ClearExtraClipPlanes( ClientShadowHandle_t h ); void AddExtraClipPlane( ClientShadowHandle_t h, const Vector& normal, float dist ); // Cull if the origin is on the wrong side of a shadow clip plane.... bool CullReceiver( ClientShadowHandle_t handle, IClientRenderable* pRenderable, IClientRenderable* pSourceRenderable ); bool ComputeSeparatingPlane( IClientRenderable* pRend1, IClientRenderable* pRend2, cplane_t* pPlane ); // Causes all shadows to be re-updated void UpdateAllShadows(); // One of these gets called with every shadow that potentially will need to re-render bool DrawRenderToTextureShadow( unsigned short clientShadowHandle, float flArea ); void DrawRenderToTextureShadowLOD( unsigned short clientShadowHandle ); // Draws all children shadows into our own bool DrawShadowHierarchy( IClientRenderable *pRenderable, const ClientShadow_t &shadow, bool bChild = false ); // Computes + sets the render-to-texture texcoords void SetRenderToTextureShadowTexCoords( ShadowHandle_t handle, int x, int y, int w, int h ); // Visualization.... void DrawRenderToTextureDebugInfo( IClientRenderable* pRenderable, const Vector& mins, const Vector& maxs ); // Advance frame void AdvanceFrame(); // Returns renderable-specific shadow info float GetShadowDistance( IClientRenderable *pRenderable ) const; const Vector &GetShadowDirection( IClientRenderable *pRenderable ) const; // Initialize, shutdown render-to-texture shadows void InitDepthTextureShadows(); void ShutdownDepthTextureShadows(); // Initialize, shutdown render-to-texture shadows void InitRenderToTextureShadows(); void ShutdownRenderToTextureShadows(); static bool ShadowHandleCompareFunc( const ClientShadowHandle_t& lhs, const ClientShadowHandle_t& rhs ) { return lhs < rhs; } ClientShadowHandle_t CreateProjectedTexture( ClientEntityHandle_t entity, int flags ); // Allocate/deallocate a depth buffer for use by a shadow map bool AllocateDepthBuffer( CTextureReference &depthBuffer ); void DeallocateDepthBuffer( CTextureReference &depthBuffer ); // Set and clear flashlight target renderable void SetFlashlightTarget( ClientShadowHandle_t shadowHandle, EHANDLE targetEntity ); // Set flashlight light world flag void SetFlashlightLightWorld( ClientShadowHandle_t shadowHandle, bool bLightWorld ); bool IsFlashlightTarget( ClientShadowHandle_t shadowHandle, IClientRenderable *pRenderable ); private: Vector m_SimpleShadowDir; color32 m_AmbientLightColor; CMaterialReference m_SimpleShadow; CMaterialReference m_RenderShadow; CMaterialReference m_RenderModelShadow; CUtlLinkedList< ClientShadow_t, ClientShadowHandle_t > m_Shadows; CTextureAllocator m_ShadowAllocator; bool m_RenderToTextureActive; bool m_bRenderTargetNeedsClear; bool m_bUpdatingDirtyShadows; float m_flShadowCastDist; float m_flMinShadowArea; CUtlRBTree< ClientShadowHandle_t, unsigned short > m_DirtyShadows; bool m_DepthTextureActive; CUtlVector< CTextureReference > m_DepthTextureCache; int m_nMaxDepthTextureShadows; friend class CVisibleShadowList; }; //----------------------------------------------------------------------------- // Singleton //----------------------------------------------------------------------------- static CClientShadowMgr s_ClientShadowMgr; IClientShadowMgr* g_pClientShadowMgr = &s_ClientShadowMgr; CClientShadowMgr::CClientShadowMgr() : m_DirtyShadows( 0, 0, ShadowHandleCompareFunc ), m_DepthTextureActive( false ) { } //----------------------------------------------------------------------------- // Changes the shadow direction... //----------------------------------------------------------------------------- static void ShadowDir_f() { Vector dir; if (engine->Cmd_Argc() == 1) { Vector dir = s_ClientShadowMgr.GetShadowDirection(); Msg( "%.2f %.2f %.2f\n", dir.x, dir.y, dir.z ); return; } if (engine->Cmd_Argc() == 4) { dir.x = atof( engine->Cmd_Argv(1) ); dir.y = atof( engine->Cmd_Argv(2) ); dir.z = atof( engine->Cmd_Argv(3) ); s_ClientShadowMgr.SetShadowDirection(dir); } } static void ShadowAngles_f() { Vector dir; QAngle angles; if (engine->Cmd_Argc() == 1) { Vector dir = s_ClientShadowMgr.GetShadowDirection(); QAngle angles; VectorAngles( dir, angles ); Msg( "%.2f %.2f %.2f\n", angles.x, angles.y, angles.z ); return; } if (engine->Cmd_Argc() == 4) { angles.x = atof( engine->Cmd_Argv(1) ); angles.y = atof( engine->Cmd_Argv(2) ); angles.z = atof( engine->Cmd_Argv(3) ); AngleVectors( angles, &dir ); s_ClientShadowMgr.SetShadowDirection(dir); } } static void ShadowColor_f() { if (engine->Cmd_Argc() == 1) { unsigned char r, g, b; s_ClientShadowMgr.GetShadowColor( &r, &g, &b ); Msg( "Shadow color %d %d %d\n", r, g, b ); return; } if (engine->Cmd_Argc() == 4) { int r = atoi( engine->Cmd_Argv(1) ); int g = atoi( engine->Cmd_Argv(2) ); int b = atoi( engine->Cmd_Argv(3) ); s_ClientShadowMgr.SetShadowColor(r, g, b); } } static void ShadowDistance_f() { if (engine->Cmd_Argc() == 1) { float flDist = s_ClientShadowMgr.GetShadowDistance( ); Msg( "Shadow distance %.2f\n", flDist ); return; } if (engine->Cmd_Argc() == 2) { float flDistance = atof( engine->Cmd_Argv(1) ); s_ClientShadowMgr.SetShadowDistance( flDistance ); } } static void ShadowBlobbyCutoff_f() { if (engine->Cmd_Argc() == 1) { float flArea = s_ClientShadowMgr.GetBlobbyCutoffArea( ); Msg( "Cutoff area %.2f\n", flArea ); return; } if (engine->Cmd_Argc() == 2) { float flArea = atof( engine->Cmd_Argv(1) ); s_ClientShadowMgr.SetShadowBlobbyCutoffArea( flArea ); } } static ConCommand r_shadowdir("r_shadowdir", ShadowDir_f, "Set shadow direction", FCVAR_CHEAT ); static ConCommand r_shadowangles("r_shadowangles", ShadowAngles_f, "Set shadow angles", FCVAR_CHEAT ); static ConCommand r_shadowcolor("r_shadowcolor", ShadowColor_f, "Set shadow color", FCVAR_CHEAT ); static ConCommand r_shadowdist("r_shadowdist", ShadowDistance_f, "Set shadow distance", FCVAR_CHEAT ); static ConCommand r_shadowblobbycutoff("r_shadowblobbycutoff", ShadowBlobbyCutoff_f, "some shadow stuff", FCVAR_CHEAT ); static void ShadowRestoreFunc( int nChangeFlags ) { s_ClientShadowMgr.RestoreRenderState(); } //----------------------------------------------------------------------------- // Initialization, shutdown //----------------------------------------------------------------------------- bool CClientShadowMgr::Init() { m_bRenderTargetNeedsClear = false; m_SimpleShadow.Init( "decals/simpleshadow", TEXTURE_GROUP_DECAL ); Vector dir( 0.1, 0.1, -1 ); SetShadowDirection(dir); SetShadowDistance( 50 ); #ifndef _XBOX SetShadowBlobbyCutoffArea( 0.005 ); #else SetShadowBlobbyCutoffArea( 5000 ); #endif m_nMaxDepthTextureShadows = 4; if ( r_shadowrendertotexture.GetBool() ) { InitRenderToTextureShadows(); } #ifdef DOSHADOWEDFLASHLIGHT if ( r_flashlightdepthtexture.GetBool() ) { InitDepthTextureShadows(); } #endif materials->AddRestoreFunc( ShadowRestoreFunc ); return true; } void CClientShadowMgr::Shutdown() { m_SimpleShadow.Shutdown(); m_Shadows.RemoveAll(); ShutdownRenderToTextureShadows(); ShutdownDepthTextureShadows(); materials->RemoveRestoreFunc( ShadowRestoreFunc ); } //----------------------------------------------------------------------------- // Initialize, shutdown depth-texture shadows //----------------------------------------------------------------------------- void CClientShadowMgr::InitDepthTextureShadows() { #ifdef DOSHADOWEDFLASHLIGHT if( !m_DepthTextureActive ) { m_DepthTextureActive = true; materials->BeginRenderTargetAllocation(); m_DepthTextureCache.Purge(); for( int i=0;i<m_nMaxDepthTextureShadows;i++ ) { CTextureReference depthTex; depthTex.InitRenderTarget( r_flashlightdepthres.GetInt(), r_flashlightdepthres.GetInt(), RT_SIZE_DEFAULT, IMAGE_FORMAT_RGBA16161616F, MATERIAL_RT_DEPTH_SEPARATE, false ); m_DepthTextureCache.AddToTail( depthTex ); } materials->EndRenderTargetAllocation(); } #endif } void CClientShadowMgr::ShutdownDepthTextureShadows() { if( m_DepthTextureActive ) { while( m_DepthTextureCache.Count() ) { m_DepthTextureCache[ m_DepthTextureCache.Count()-1 ].Shutdown(); m_DepthTextureCache.Remove( m_DepthTextureCache.Count()-1 ); } m_DepthTextureActive = false; } } //----------------------------------------------------------------------------- // Initialize, shutdown render-to-texture shadows //----------------------------------------------------------------------------- void CClientShadowMgr::InitRenderToTextureShadows() { if (!m_RenderToTextureActive) { m_RenderToTextureActive = true; m_RenderShadow.Init( "decals/rendershadow", TEXTURE_GROUP_DECAL ); m_RenderModelShadow.Init( "decals/rendermodelshadow", TEXTURE_GROUP_DECAL ); m_ShadowAllocator.Init(); m_ShadowAllocator.Reset(); m_bRenderTargetNeedsClear = true; float fr = (float)m_AmbientLightColor.r / 255.0f; float fg = (float)m_AmbientLightColor.g / 255.0f; float fb = (float)m_AmbientLightColor.b / 255.0f; m_RenderShadow->ColorModulate( fr, fg, fb ); m_RenderModelShadow->ColorModulate( fr, fg, fb ); // Iterate over all existing textures and allocate shadow textures for (ClientShadowHandle_t i = m_Shadows.Head(); i != m_Shadows.InvalidIndex(); i = m_Shadows.Next(i) ) { ClientShadow_t& shadow = m_Shadows[i]; if ( shadow.m_Flags & SHADOW_FLAGS_USE_RENDER_TO_TEXTURE ) { SetupRenderToTextureShadow( i ); MarkRenderToTextureShadowDirty( i ); // Switch the material to use render-to-texture shadows shadowmgr->SetShadowMaterial( shadow.m_ShadowHandle, m_RenderShadow, m_RenderModelShadow, (void*)i ); } } } } void CClientShadowMgr::ShutdownRenderToTextureShadows() { if (m_RenderToTextureActive) { // Iterate over all existing textures and deallocate shadow textures for (ClientShadowHandle_t i = m_Shadows.Head(); i != m_Shadows.InvalidIndex(); i = m_Shadows.Next(i) ) { CleanUpRenderToTextureShadow( i ); // Switch the material to use blobby shadows ClientShadow_t& shadow = m_Shadows[i]; shadowmgr->SetShadowMaterial( shadow.m_ShadowHandle, m_SimpleShadow, m_SimpleShadow, (void*)CLIENTSHADOW_INVALID_HANDLE ); shadowmgr->SetShadowTexCoord( shadow.m_ShadowHandle, 0, 0, 1, 1 ); ClearExtraClipPlanes( i ); } m_RenderShadow.Shutdown(); m_RenderModelShadow.Shutdown(); m_ShadowAllocator.DeallocateAllTextures(); m_ShadowAllocator.Shutdown(); // Cause the render target to go away materials->UncacheUnusedMaterials(); m_RenderToTextureActive = false; } } //----------------------------------------------------------------------------- // Sets the shadow color //----------------------------------------------------------------------------- void CClientShadowMgr::SetShadowColor( unsigned char r, unsigned char g, unsigned char b ) { float fr = (float)r / 255.0f; float fg = (float)g / 255.0f; float fb = (float)b / 255.0f; // Hook the shadow color into the shadow materials m_SimpleShadow->ColorModulate( fr, fg, fb ); if (m_RenderToTextureActive) { m_RenderShadow->ColorModulate( fr, fg, fb ); m_RenderModelShadow->ColorModulate( fr, fg, fb ); } m_AmbientLightColor.r = r; m_AmbientLightColor.g = g; m_AmbientLightColor.b = b; } void CClientShadowMgr::GetShadowColor( unsigned char *r, unsigned char *g, unsigned char *b ) const { *r = m_AmbientLightColor.r; *g = m_AmbientLightColor.g; *b = m_AmbientLightColor.b; } //----------------------------------------------------------------------------- // Level init... get the shadow color //----------------------------------------------------------------------------- void CClientShadowMgr::LevelInitPreEntity() { m_bUpdatingDirtyShadows = false; Vector ambientColor; engine->GetAmbientLightColor( ambientColor ); ambientColor *= 3; ambientColor += Vector( 0.3f, 0.3f, 0.3f ); unsigned char r = ambientColor[0] > 1.0 ? 255 : 255 * ambientColor[0]; unsigned char g = ambientColor[1] > 1.0 ? 255 : 255 * ambientColor[1]; unsigned char b = ambientColor[2] > 1.0 ? 255 : 255 * ambientColor[2]; SetShadowColor(r, g, b); // Set up the texture allocator if (m_RenderToTextureActive) { m_ShadowAllocator.Reset(); m_bRenderTargetNeedsClear = true; } } //----------------------------------------------------------------------------- // Clean up all shadows //----------------------------------------------------------------------------- void CClientShadowMgr::LevelShutdownPostEntity() { // All shadows *should* have been cleaned up when the entities went away // but, just in case.... Assert( m_Shadows.Count() == 0 ); ClientShadowHandle_t h = m_Shadows.Head(); while (h != CLIENTSHADOW_INVALID_HANDLE) { ClientShadowHandle_t next = m_Shadows.Next(h); DestroyShadow( h ); h = next; } // Deallocate all textures if (m_RenderToTextureActive) { m_ShadowAllocator.DeallocateAllTextures(); } r_shadows_gamecontrol.SetValue( -1 ); } //----------------------------------------------------------------------------- // Deals with alt-tab //----------------------------------------------------------------------------- void CClientShadowMgr::RestoreRenderState() { // Mark all shadows dirty; they need to regenerate their state ClientShadowHandle_t h; for ( h = m_Shadows.Head(); h != m_Shadows.InvalidIndex(); h = m_Shadows.Next(h) ) { m_Shadows[h].m_Flags |= SHADOW_FLAGS_TEXTURE_DIRTY; } SetShadowColor(m_AmbientLightColor.r, m_AmbientLightColor.g, m_AmbientLightColor.b); m_bRenderTargetNeedsClear = true; } //----------------------------------------------------------------------------- // Does all the lovely stuff we need to do to have render-to-texture shadows //----------------------------------------------------------------------------- void CClientShadowMgr::SetupRenderToTextureShadow( ClientShadowHandle_t h ) { // First, compute how much texture memory we want to use. ClientShadow_t& shadow = m_Shadows[h]; IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( shadow.m_Entity ); if ( !pRenderable ) return; Vector mins, maxs; pRenderable->GetShadowRenderBounds( mins, maxs, GetActualShadowCastType( h ) ); // Compute the maximum dimension Vector size; VectorSubtract( maxs, mins, size ); float maxSize = max( size.x, size.y ); maxSize = max( maxSize, size.z ); // Figure out the texture size // For now, we're going to assume a fixed number of shadow texels // per shadow-caster size; add in some extra space at the boundary. int texelCount = TEXEL_SIZE_PER_CASTER_SIZE * maxSize; // Pick the first power of 2 larger... int textureSize = 1; while (textureSize < texelCount) { textureSize <<= 1; } shadow.m_ShadowTexture = m_ShadowAllocator.AllocateTexture( textureSize, textureSize ); } void CClientShadowMgr::CleanUpRenderToTextureShadow( ClientShadowHandle_t h ) { ClientShadow_t& shadow = m_Shadows[h]; if (m_RenderToTextureActive && (shadow.m_Flags & SHADOW_FLAGS_USE_RENDER_TO_TEXTURE)) { m_ShadowAllocator.DeallocateTexture( shadow.m_ShadowTexture ); shadow.m_ShadowTexture = INVALID_TEXTURE_HANDLE; } } void CClientShadowMgr::CleanUpDepthTextureShadow( ClientShadowHandle_t h ) { ClientShadow_t& shadow = m_Shadows[h]; if( m_DepthTextureActive && (shadow.m_Flags & SHADOW_FLAGS_USE_DEPTH_TEXTURE ) ) { DeallocateDepthBuffer( shadow.m_ShadowDepthTexture ); } } //----------------------------------------------------------------------------- // Causes all shadows to be re-updated //----------------------------------------------------------------------------- void CClientShadowMgr::UpdateAllShadows() { m_bUpdatingDirtyShadows = true; for (ClientShadowHandle_t i = m_Shadows.Head(); i != m_Shadows.InvalidIndex(); i = m_Shadows.Next(i) ) { UpdateProjectedTextureInternal( i, true ); } m_DirtyShadows.RemoveAll(); m_bUpdatingDirtyShadows = false; } //----------------------------------------------------------------------------- // Sets the shadow direction //----------------------------------------------------------------------------- void CClientShadowMgr::SetShadowDirection( const Vector& dir ) { VectorCopy( dir, m_SimpleShadowDir ); VectorNormalize( m_SimpleShadowDir ); if ( m_RenderToTextureActive ) { UpdateAllShadows(); } } const Vector &CClientShadowMgr::GetShadowDirection() const { // This will cause blobby shadows to always project straight down static Vector s_vecDown( 0, 0, -1 ); if ( !m_RenderToTextureActive ) return s_vecDown; return m_SimpleShadowDir; } //----------------------------------------------------------------------------- // Gets shadow information for a particular renderable //----------------------------------------------------------------------------- float CClientShadowMgr::GetShadowDistance( IClientRenderable *pRenderable ) const { float flDist = m_flShadowCastDist; // Allow the renderable to override the default pRenderable->GetShadowCastDistance( &flDist, GetActualShadowCastType( pRenderable ) ); return flDist; } const Vector &CClientShadowMgr::GetShadowDirection( IClientRenderable *pRenderable ) const { Vector &vecResult = AllocTempVector(); vecResult = GetShadowDirection(); // Allow the renderable to override the default pRenderable->GetShadowCastDirection( &vecResult, GetActualShadowCastType( pRenderable ) ); return vecResult; } //----------------------------------------------------------------------------- // Sets the shadow distance //----------------------------------------------------------------------------- void CClientShadowMgr::SetShadowDistance( float flMaxDistance ) { m_flShadowCastDist = flMaxDistance; UpdateAllShadows(); } float CClientShadowMgr::GetShadowDistance( ) const { return m_flShadowCastDist; } //----------------------------------------------------------------------------- // Sets the screen area at which blobby shadows are always used //----------------------------------------------------------------------------- void CClientShadowMgr::SetShadowBlobbyCutoffArea( float flMinArea ) { m_flMinShadowArea = flMinArea; } float CClientShadowMgr::GetBlobbyCutoffArea( ) const { return m_flMinShadowArea; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CClientShadowMgr::SetFalloffBias( ClientShadowHandle_t handle, unsigned char ucBias ) { shadowmgr->SetFalloffBias( m_Shadows[handle].m_ShadowHandle, ucBias ); } //----------------------------------------------------------------------------- // Returns the shadow texture //----------------------------------------------------------------------------- ITexture* CClientShadowMgr::GetShadowTexture( unsigned short h ) { return m_ShadowAllocator.GetTexture(); } //----------------------------------------------------------------------------- // Returns information needed by the model proxy //----------------------------------------------------------------------------- const ShadowInfo_t& CClientShadowMgr::GetShadowInfo( ClientShadowHandle_t h ) { return shadowmgr->GetInfo( m_Shadows[h].m_ShadowHandle ); } //----------------------------------------------------------------------------- // Renders the shadow texture to screen... //----------------------------------------------------------------------------- void CClientShadowMgr::RenderShadowTexture( int w, int h ) { if (m_RenderToTextureActive) { float flTexWidth, flTexHeight; #ifdef _XBOX // xboxissue - need non-normalized texture coords int textureW, textureH; m_ShadowAllocator.GetTotalTextureSize( textureW, textureH ); flTexWidth = textureW; flTexHeight = textureH; #else flTexWidth = 1.0f; flTexHeight = 1.0f; #endif materials->Bind( m_RenderShadow ); IMesh* pMesh = materials->GetDynamicMesh( true ); CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_QUADS, 1 ); meshBuilder.Position3f( 0.0f, 0.0f, 0.0f ); meshBuilder.TexCoord2f( 0, 0.0f, 0.0f ); meshBuilder.Color4ub( 0, 0, 0, 0 ); meshBuilder.AdvanceVertex(); meshBuilder.Position3f( w, 0.0f, 0.0f ); meshBuilder.TexCoord2f( 0, flTexWidth, 0.0f ); meshBuilder.Color4ub( 0, 0, 0, 0 ); meshBuilder.AdvanceVertex(); meshBuilder.Position3f( w, h, 0.0f ); meshBuilder.TexCoord2f( 0, flTexWidth, flTexHeight ); meshBuilder.Color4ub( 0, 0, 0, 0 ); meshBuilder.AdvanceVertex(); meshBuilder.Position3f( 0.0f, h, 0.0f ); meshBuilder.TexCoord2f( 0, 0.0f, flTexHeight ); meshBuilder.Color4ub( 0, 0, 0, 0 ); meshBuilder.AdvanceVertex(); meshBuilder.End(); pMesh->Draw(); } } //----------------------------------------------------------------------------- // Create/destroy a shadow //----------------------------------------------------------------------------- ClientShadowHandle_t CClientShadowMgr::CreateProjectedTexture( ClientEntityHandle_t entity, int flags ) { // We need to know if it's a brush model for shadows if( !( flags & SHADOW_FLAGS_FLASHLIGHT ) ) { IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( entity ); int modelType = modelinfo->GetModelType( pRenderable->GetModel() ); if (modelType == mod_brush) { flags |= SHADOW_FLAGS_BRUSH_MODEL; } } ClientShadowHandle_t h = m_Shadows.AddToTail(); ClientShadow_t& shadow = m_Shadows[h]; shadow.m_Entity = entity; shadow.m_ClientLeafShadowHandle = ClientLeafSystem()->AddShadow( h, flags ); shadow.m_Flags = flags; shadow.m_nRenderFrame = -1; shadow.m_LastOrigin.Init( FLT_MAX, FLT_MAX, FLT_MAX ); shadow.m_LastAngles.Init( FLT_MAX, FLT_MAX, FLT_MAX ); Assert( ( ( shadow.m_Flags & SHADOW_FLAGS_FLASHLIGHT ) == 0 ) != ( ( shadow.m_Flags & SHADOW_FLAGS_SHADOW ) == 0 ) ); // Set up the flags.... IMaterial* pShadowMaterial = m_SimpleShadow; IMaterial* pShadowModelMaterial = m_SimpleShadow; void* pShadowProxyData = (void*)CLIENTSHADOW_INVALID_HANDLE; if ( m_RenderToTextureActive && (flags & SHADOW_FLAGS_USE_RENDER_TO_TEXTURE) ) { SetupRenderToTextureShadow(h); pShadowMaterial = m_RenderShadow; pShadowModelMaterial = m_RenderModelShadow; pShadowProxyData = (void*)h; } if( flags & SHADOW_FLAGS_USE_DEPTH_TEXTURE ) { // This should be changed to handle the error more gracefully AllocateDepthBuffer( shadow.m_ShadowDepthTexture ); pShadowMaterial = m_RenderShadow; pShadowModelMaterial = m_RenderModelShadow; pShadowProxyData = (void*)h; } int createShadowFlags; if( flags & SHADOW_FLAGS_FLASHLIGHT ) { // don't use SHADOW_CACHE_VERTS with projective lightsources since we expect that they will change every frame. // FIXME: might want to make it cache optionally if it's an entity light that is static. createShadowFlags = SHADOW_FLASHLIGHT; } else { createShadowFlags = SHADOW_CACHE_VERTS; } shadow.m_ShadowHandle = shadowmgr->CreateShadowEx( pShadowMaterial, pShadowModelMaterial, pShadowProxyData, createShadowFlags, shadow.m_ShadowDepthTexture ); return h; } ClientShadowHandle_t CClientShadowMgr::CreateFlashlight( const FlashlightState_t &lightState ) { // We don't really need a model entity handle for a projective light source, so use an invalid one. static ClientEntityHandle_t invalidHandle = INVALID_CLIENTENTITY_HANDLE; int shadowFlags = SHADOW_FLAGS_FLASHLIGHT; #ifdef DOSHADOWEDFLASHLIGHT if( lightState.m_bEnableShadows && r_flashlightdepthtexture.GetBool() ) shadowFlags |= SHADOW_FLAGS_USE_DEPTH_TEXTURE; #endif ClientShadowHandle_t shadowHandle = CreateProjectedTexture( invalidHandle, shadowFlags ); m_Shadows[ shadowHandle ].m_bLightWorld = true; UpdateFlashlightState( shadowHandle, lightState ); UpdateProjectedTexture( shadowHandle, true ); return shadowHandle; } ClientShadowHandle_t CClientShadowMgr::CreateShadow( ClientEntityHandle_t entity, int flags ) { // We don't really need a model entity handle for a projective light source, so use an invalid one. flags &= ~SHADOW_FLAGS_PROJECTED_TEXTURE_TYPE_MASK; flags |= SHADOW_FLAGS_SHADOW | SHADOW_FLAGS_TEXTURE_DIRTY; ClientShadowHandle_t shadowHandle = CreateProjectedTexture( entity, flags ); IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( entity ); if ( pRenderable ) { Assert( !pRenderable->IsShadowDirty( ) ); pRenderable->MarkShadowDirty( true ); } // NOTE: We *have * to call the version that takes a shadow handle // even if we have an entity because this entity hasn't set its shadow handle yet AddToDirtyShadowList( shadowHandle, true ); return shadowHandle; } //----------------------------------------------------------------------------- // Updates the flashlight direction and re-computes surfaces it should lie on //----------------------------------------------------------------------------- void CClientShadowMgr::UpdateFlashlightState( ClientShadowHandle_t shadowHandle, const FlashlightState_t &flashlightState ) { Vector lightXVec; Vector lightYVec( 0.0f, 0.0f, 1.0f ); if( fabs( DotProduct( lightYVec, flashlightState.m_vecLightDirection ) ) > 0.9f ) { // Don't want lightYVec and m_vecLightDirection to be parallel lightYVec.Init( 0.0f, 1.0f, 0.0f ); } CrossProduct( lightYVec, flashlightState.m_vecLightDirection, lightXVec ); VectorNormalize( lightXVec ); CrossProduct( flashlightState.m_vecLightDirection, lightXVec, lightYVec ); VectorNormalize( lightYVec ); BuildPerspectiveWorldToFlashlightMatrix( m_Shadows[shadowHandle].m_WorldToShadow, flashlightState.m_vecLightOrigin, flashlightState.m_vecLightDirection, lightXVec, lightYVec, flashlightState.m_fVerticalFOVDegrees, flashlightState.m_NearZ, flashlightState.m_FarZ ); shadowmgr->UpdateFlashlightStateEx( m_Shadows[shadowHandle].m_ShadowHandle, flashlightState, m_Shadows[shadowHandle].m_ShadowDepthTexture ); } void CClientShadowMgr::DestroyFlashlight( ClientShadowHandle_t shadowHandle ) { DestroyShadow( shadowHandle ); } //----------------------------------------------------------------------------- // Remove a shadow from the dirty list //----------------------------------------------------------------------------- void CClientShadowMgr::RemoveShadowFromDirtyList( ClientShadowHandle_t handle ) { int idx = m_DirtyShadows.Find( handle ); if ( idx != m_DirtyShadows.InvalidIndex() ) { // Clean up the shadow update bit. IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( m_Shadows[handle].m_Entity ); if ( pRenderable ) { pRenderable->MarkShadowDirty( false ); } m_DirtyShadows.RemoveAt( idx ); } } //----------------------------------------------------------------------------- // Remove a shadow //----------------------------------------------------------------------------- void CClientShadowMgr::DestroyShadow( ClientShadowHandle_t handle ) { Assert( m_Shadows.IsValidIndex(handle) ); RemoveShadowFromDirtyList( handle ); shadowmgr->DestroyShadow( m_Shadows[handle].m_ShadowHandle ); ClientLeafSystem()->RemoveShadow( m_Shadows[handle].m_ClientLeafShadowHandle ); CleanUpRenderToTextureShadow( handle ); CleanUpDepthTextureShadow( handle ); m_Shadows.Remove(handle); } //----------------------------------------------------------------------------- // Build the worldtotexture matrix //----------------------------------------------------------------------------- void CClientShadowMgr::BuildGeneralWorldToShadowMatrix( VMatrix& worldToShadow, const Vector& origin, const Vector& dir, const Vector& xvec, const Vector& yvec ) { // We're assuming here that xvec + yvec aren't necessary perpendicular // The shadow->world matrix is pretty simple: // Just stick the origin in the translation component // and the vectors in the columns... worldToShadow.SetBasisVectors( xvec, yvec, dir ); worldToShadow.SetTranslation( origin ); worldToShadow[3][0] = worldToShadow[3][1] = worldToShadow[3][2] = 0.0f; worldToShadow[3][3] = 1.0f; // Now do a general inverse to get worldToShadow MatrixInverseGeneral( worldToShadow, worldToShadow ); } void CClientShadowMgr::BuildOrthoWorldToShadowMatrix( VMatrix& worldToShadow, const Vector& origin, const Vector& dir, const Vector& xvec, const Vector& yvec ) { // This version is faster and assumes dir, xvec, yvec are perpendicular AssertFloatEquals( DotProduct( dir, xvec ), 0.0f, 1e-3 ); AssertFloatEquals( DotProduct( dir, yvec ), 0.0f, 1e-3 ); AssertFloatEquals( DotProduct( xvec, yvec ), 0.0f, 1e-3 ); // The shadow->world matrix is pretty simple: // Just stick the origin in the translation component // and the vectors in the columns... // The inverse of this transposes the rotational component // and the translational component = - (rotation transpose) * origin worldToShadow.SetBasisVectors( xvec, yvec, dir ); MatrixTranspose( worldToShadow, worldToShadow ); Vector translation; Vector3DMultiply( worldToShadow, origin, translation ); translation *= -1.0f; worldToShadow.SetTranslation( translation ); // The the bottom row. worldToShadow[3][0] = worldToShadow[3][1] = worldToShadow[3][2] = 0.0f; worldToShadow[3][3] = 1.0f; } void CClientShadowMgr::BuildPerspectiveWorldToFlashlightMatrix( VMatrix& worldToShadow, const Vector& origin, const Vector& dir, const Vector& xvec, const Vector& yvec, float fovDegrees, float zNear, float zFar ) { // build the ortho shadow matrix to get us from world to shadow space. We'll build the perspective // part separately and concatenate. VMatrix worldToShadowView; BuildOrthoWorldToShadowMatrix( worldToShadowView, origin, dir, xvec, yvec ); VMatrix perspective; MatrixBuildPerspective( perspective, fovDegrees, fovDegrees, zNear, zFar ); MatrixMultiply( perspective, worldToShadowView, worldToShadow ); } //----------------------------------------------------------------------------- // Compute the shadow origin and attenuation start distance //----------------------------------------------------------------------------- float CClientShadowMgr::ComputeLocalShadowOrigin( IClientRenderable* pRenderable, const Vector& mins, const Vector& maxs, const Vector& localShadowDir, float backupFactor, Vector& origin ) { // Compute the centroid of the object... Vector vecCentroid; VectorAdd( mins, maxs, vecCentroid ); vecCentroid *= 0.5f; Vector vecSize; VectorSubtract( maxs, mins, vecSize ); float flRadius = vecSize.Length() * 0.5f; // NOTE: The *origin* of the shadow cast is a point on a line passing through // the centroid of the caster. The direction of this line is the shadow cast direction, // and the point on that line corresponds to the endpoint of the box that is // furthest *back* along the shadow direction // For the first point at which the shadow could possibly start falling off, // we need to use the point at which the ray described above leaves the // bounding sphere surrounding the entity. This is necessary because otherwise, // tall, thin objects would have their shadows appear + disappear as then spun about their origin // Figure out the corner corresponding to the min + max projection // along the shadow direction // We're basically finding the point on the cube that has the largest and smallest // dot product with the local shadow dir. Then we're taking the dot product // of that with the localShadowDir. lastly, we're subtracting out the // centroid projection to give us a distance along the localShadowDir to // the front and back of the cube along the direction of the ray. float centroidProjection = DotProduct( vecCentroid, localShadowDir ); float minDist = -centroidProjection; for (int i = 0; i < 3; ++i) { if ( localShadowDir[i] > 0.0f ) { minDist += localShadowDir[i] * mins[i]; } else { minDist += localShadowDir[i] * maxs[i]; } } minDist *= backupFactor; VectorMA( vecCentroid, minDist, localShadowDir, origin ); return flRadius - minDist; } //----------------------------------------------------------------------------- // Sorts the components of a vector //----------------------------------------------------------------------------- static inline void SortAbsVectorComponents( const Vector& src, int* pVecIdx ) { Vector absVec( fabs(src[0]), fabs(src[1]), fabs(src[2]) ); int maxIdx = (absVec[0] > absVec[1]) ? 0 : 1; if (absVec[2] > absVec[maxIdx]) { maxIdx = 2; } // always choose something right-handed.... switch( maxIdx ) { case 0: pVecIdx[0] = 1; pVecIdx[1] = 2; pVecIdx[2] = 0; break; case 1: pVecIdx[0] = 2; pVecIdx[1] = 0; pVecIdx[2] = 1; break; case 2: pVecIdx[0] = 0; pVecIdx[1] = 1; pVecIdx[2] = 2; break; } } //----------------------------------------------------------------------------- // Build the worldtotexture matrix //----------------------------------------------------------------------------- static void BuildWorldToTextureMatrix( const VMatrix& worldToShadow, const Vector2D& size, VMatrix& worldToTexture ) { // Build a matrix that maps from shadow space to (u,v) coordinates VMatrix shadowToUnit; MatrixBuildScale( shadowToUnit, 1.0f / size.x, 1.0f / size.y, 1.0f ); shadowToUnit[0][3] = shadowToUnit[1][3] = 0.5f; // Store off the world to (u,v) transformation MatrixMultiply( shadowToUnit, worldToShadow, worldToTexture ); } //----------------------------------------------------------------------------- // Set extra clip planes related to shadows... //----------------------------------------------------------------------------- void CClientShadowMgr::ClearExtraClipPlanes( ClientShadowHandle_t h ) { shadowmgr->ClearExtraClipPlanes( m_Shadows[h].m_ShadowHandle ); } void CClientShadowMgr::AddExtraClipPlane( ClientShadowHandle_t h, const Vector& normal, float dist ) { shadowmgr->AddExtraClipPlane( m_Shadows[h].m_ShadowHandle, normal, dist ); } //----------------------------------------------------------------------------- // Compute the extra shadow planes //----------------------------------------------------------------------------- void CClientShadowMgr::ComputeExtraClipPlanes( IClientRenderable* pRenderable, ClientShadowHandle_t handle, const Vector* vec, const Vector& mins, const Vector& maxs, const Vector& localShadowDir ) { // Compute the world-space position of the corner of the bounding box // that's got the highest dotproduct with the local shadow dir... Vector origin = pRenderable->GetRenderOrigin( ); float dir[3]; int i; for ( i = 0; i < 3; ++i ) { if (localShadowDir[i] < 0.0f) { VectorMA( origin, maxs[i], vec[i], origin ); dir[i] = 1; } else { VectorMA( origin, mins[i], vec[i], origin ); dir[i] = -1; } } // Now that we have it, create 3 planes... Vector normal; ClearExtraClipPlanes(handle); for ( i = 0; i < 3; ++i ) { VectorMultiply( vec[i], dir[i], normal ); float dist = DotProduct( normal, origin ); AddExtraClipPlane( handle, normal, dist ); } } inline ShadowType_t CClientShadowMgr::GetActualShadowCastType( ClientShadowHandle_t handle ) const { if ( handle == CLIENTSHADOW_INVALID_HANDLE ) { return SHADOWS_NONE; } if ( m_Shadows[handle].m_Flags & SHADOW_FLAGS_USE_RENDER_TO_TEXTURE ) { return ( m_RenderToTextureActive ? SHADOWS_RENDER_TO_TEXTURE : SHADOWS_SIMPLE ); } else if( m_Shadows[handle].m_Flags & SHADOW_FLAGS_USE_DEPTH_TEXTURE ) { return SHADOWS_RENDER_TO_DEPTH_TEXTURE; } else { return SHADOWS_SIMPLE; } } inline ShadowType_t CClientShadowMgr::GetActualShadowCastType( IClientRenderable *pEnt ) const { return GetActualShadowCastType( pEnt->GetShadowHandle() ); } //----------------------------------------------------------------------------- // Builds a simple blobby shadow //----------------------------------------------------------------------------- void CClientShadowMgr::BuildOrthoShadow( IClientRenderable* pRenderable, ClientShadowHandle_t handle, const Vector& mins, const Vector& maxs) { // Get the object's basis Vector vec[3]; AngleVectors( pRenderable->GetRenderAngles(), &vec[0], &vec[1], &vec[2] ); vec[1] *= -1.0f; Vector vecShadowDir = GetShadowDirection( pRenderable ); // Project the shadow casting direction into the space of the object Vector localShadowDir; localShadowDir[0] = DotProduct( vec[0], vecShadowDir ); localShadowDir[1] = DotProduct( vec[1], vecShadowDir ); localShadowDir[2] = DotProduct( vec[2], vecShadowDir ); // Figure out which vector has the largest component perpendicular // to the shadow handle... // Sort by how perpendicular it is int vecIdx[3]; SortAbsVectorComponents( localShadowDir, vecIdx ); // Here's our shadow basis vectors; namely the ones that are // most perpendicular to the shadow casting direction Vector xvec = vec[vecIdx[0]]; Vector yvec = vec[vecIdx[1]]; // Project them into a plane perpendicular to the shadow direction xvec -= vecShadowDir * DotProduct( vecShadowDir, xvec ); yvec -= vecShadowDir * DotProduct( vecShadowDir, yvec ); VectorNormalize( xvec ); VectorNormalize( yvec ); // Compute the box size Vector boxSize; VectorSubtract( maxs, mins, boxSize ); // We project the two longest sides into the vectors perpendicular // to the projection direction, then add in the projection of the perp direction Vector2D size( boxSize[vecIdx[0]], boxSize[vecIdx[1]] ); size.x *= fabs( DotProduct( vec[vecIdx[0]], xvec ) ); size.y *= fabs( DotProduct( vec[vecIdx[1]], yvec ) ); // Add the third component into x and y size.x += boxSize[vecIdx[2]] * fabs( DotProduct( vec[vecIdx[2]], xvec ) ); size.y += boxSize[vecIdx[2]] * fabs( DotProduct( vec[vecIdx[2]], yvec ) ); // Bloat a bit, since the shadow wants to extend outside the model a bit size.x += 10.0f; size.y += 10.0f; // Clamp the minimum size Vector2DMax( size, Vector2D(10.0f, 10.0f), size ); // Place the origin at the point with min dot product with shadow dir Vector org; float falloffStart = ComputeLocalShadowOrigin( pRenderable, mins, maxs, localShadowDir, 2.0f, org ); // Transform the local origin into world coordinates Vector worldOrigin = pRenderable->GetRenderOrigin( ); VectorMA( worldOrigin, org.x, vec[0], worldOrigin ); VectorMA( worldOrigin, org.y, vec[1], worldOrigin ); VectorMA( worldOrigin, org.z, vec[2], worldOrigin ); // FUNKY: A trick to reduce annoying texelization artifacts!? float dx = 1.0f / TEXEL_SIZE_PER_CASTER_SIZE; worldOrigin.x = (int)(worldOrigin.x / dx) * dx; worldOrigin.y = (int)(worldOrigin.y / dx) * dx; worldOrigin.z = (int)(worldOrigin.z / dx) * dx; // NOTE: We gotta use the general matrix because xvec and yvec aren't perp VMatrix worldToShadow, worldToTexture; BuildGeneralWorldToShadowMatrix( m_Shadows[handle].m_WorldToShadow, worldOrigin, vecShadowDir, xvec, yvec ); BuildWorldToTextureMatrix( m_Shadows[handle].m_WorldToShadow, size, worldToTexture ); Vector2DCopy( size, m_Shadows[handle].m_WorldSize ); // Compute the falloff attenuation // Area computation isn't exact since xvec is not perp to yvec, but close enough // float shadowArea = size.x * size.y; // The entity may be overriding our shadow cast distance float flShadowCastDistance = GetShadowDistance( pRenderable ); float maxHeight = flShadowCastDistance + falloffStart; //3.0f * sqrt( shadowArea ); shadowmgr->ProjectShadow( m_Shadows[handle].m_ShadowHandle, worldOrigin, vecShadowDir, worldToTexture, size, maxHeight, falloffStart, MAX_FALLOFF_AMOUNT, pRenderable->GetRenderOrigin() ); // Compute extra clip planes to prevent poke-thru // FIXME!!!!!!!!!!!!!! Removing this for now since it seems to mess up the blobby shadows. // ComputeExtraClipPlanes( pEnt, handle, vec, mins, maxs, localShadowDir ); // Add the shadow to the client leaf system so it correctly marks // leafs as being affected by a particular shadow ClientLeafSystem()->ProjectShadow( m_Shadows[handle].m_ClientLeafShadowHandle, worldOrigin, vecShadowDir, size, maxHeight ); } //----------------------------------------------------------------------------- // Visualization.... //----------------------------------------------------------------------------- void CClientShadowMgr::DrawRenderToTextureDebugInfo( IClientRenderable* pRenderable, const Vector& mins, const Vector& maxs ) { // Get the object's basis Vector vec[3]; AngleVectors( pRenderable->GetRenderAngles(), &vec[0], &vec[1], &vec[2] ); vec[1] *= -1.0f; Vector vecSize; VectorSubtract( maxs, mins, vecSize ); Vector vecOrigin = pRenderable->GetRenderOrigin(); Vector start, end, end2; VectorMA( vecOrigin, mins.x, vec[0], start ); VectorMA( start, mins.y, vec[1], start ); VectorMA( start, mins.z, vec[2], start ); VectorMA( start, vecSize.x, vec[0], end ); VectorMA( end, vecSize.z, vec[2], end2 ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); debugoverlay->AddLineOverlay( end2, end, 255, 0, 0, true, 0.01 ); VectorMA( start, vecSize.y, vec[1], end ); VectorMA( end, vecSize.z, vec[2], end2 ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); debugoverlay->AddLineOverlay( end2, end, 255, 0, 0, true, 0.01 ); VectorMA( start, vecSize.z, vec[2], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); start = end; VectorMA( start, vecSize.x, vec[0], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); VectorMA( start, vecSize.y, vec[1], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); VectorMA( end, vecSize.x, vec[0], start ); VectorMA( start, -vecSize.x, vec[0], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); VectorMA( start, -vecSize.y, vec[1], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); VectorMA( start, -vecSize.z, vec[2], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); start = end; VectorMA( start, -vecSize.x, vec[0], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); VectorMA( start, -vecSize.y, vec[1], end ); debugoverlay->AddLineOverlay( start, end, 255, 0, 0, true, 0.01 ); C_BaseEntity *pEnt = pRenderable->GetIClientUnknown()->GetBaseEntity(); if ( pEnt ) { debugoverlay->AddTextOverlay( vecOrigin, 0, "%d", pEnt->entindex() ); } else { debugoverlay->AddTextOverlay( vecOrigin, 0, "%X", (size_t)pRenderable ); } } //----------------------------------------------------------------------------- // Builds a more complex shadow... //----------------------------------------------------------------------------- void CClientShadowMgr::BuildRenderToTextureShadow( IClientRenderable* pRenderable, ClientShadowHandle_t handle, const Vector& mins, const Vector& maxs) { // DrawRenderToTextureDebugInfo( pRenderable, mins, maxs ); // Get the object's basis Vector vec[3]; AngleVectors( pRenderable->GetRenderAngles(), &vec[0], &vec[1], &vec[2] ); vec[1] *= -1.0f; Vector vecShadowDir = GetShadowDirection( pRenderable ); // Project the shadow casting direction into the space of the object Vector localShadowDir; localShadowDir[0] = DotProduct( vec[0], vecShadowDir ); localShadowDir[1] = DotProduct( vec[1], vecShadowDir ); localShadowDir[2] = DotProduct( vec[2], vecShadowDir ); // Figure out which vector has the largest component perpendicular // to the shadow handle... // Sort by how perpendicular it is int vecIdx[3]; SortAbsVectorComponents( localShadowDir, vecIdx ); // Here's our shadow basis vectors; namely the ones that are // most perpendicular to the shadow casting direction Vector yvec = vec[vecIdx[0]]; // Project it into a plane perpendicular to the shadow direction yvec -= vecShadowDir * DotProduct( vecShadowDir, yvec ); VectorNormalize( yvec ); // Compute the x vector Vector xvec; CrossProduct( yvec, vecShadowDir, xvec ); // Compute the box size Vector boxSize; VectorSubtract( maxs, mins, boxSize ); // We project the two longest sides into the vectors perpendicular // to the projection direction, then add in the projection of the perp direction Vector2D size; size.x = boxSize.x * fabs( DotProduct( vec[0], xvec ) ) + boxSize.y * fabs( DotProduct( vec[1], xvec ) ) + boxSize.z * fabs( DotProduct( vec[2], xvec ) ); size.y = boxSize.x * fabs( DotProduct( vec[0], yvec ) ) + boxSize.y * fabs( DotProduct( vec[1], yvec ) ) + boxSize.z * fabs( DotProduct( vec[2], yvec ) ); size.x += 2.0f * TEXEL_SIZE_PER_CASTER_SIZE; size.y += 2.0f * TEXEL_SIZE_PER_CASTER_SIZE; // Place the origin at the point with min dot product with shadow dir Vector org; float falloffStart = ComputeLocalShadowOrigin( pRenderable, mins, maxs, localShadowDir, 1.0f, org ); // Transform the local origin into world coordinates Vector worldOrigin = pRenderable->GetRenderOrigin( ); VectorMA( worldOrigin, org.x, vec[0], worldOrigin ); VectorMA( worldOrigin, org.y, vec[1], worldOrigin ); VectorMA( worldOrigin, org.z, vec[2], worldOrigin ); VMatrix worldToTexture; BuildOrthoWorldToShadowMatrix( m_Shadows[handle].m_WorldToShadow, worldOrigin, vecShadowDir, xvec, yvec ); BuildWorldToTextureMatrix( m_Shadows[handle].m_WorldToShadow, size, worldToTexture ); Vector2DCopy( size, m_Shadows[handle].m_WorldSize ); // Compute the falloff attenuation // Area computation isn't exact since xvec is not perp to yvec, but close enough // Extra factor of 4 in the maxHeight due to the size being half as big // float shadowArea = size.x * size.y; // The entity may be overriding our shadow cast distance float flShadowCastDistance = GetShadowDistance( pRenderable ); float maxHeight = flShadowCastDistance + falloffStart; //3.0f * sqrt( shadowArea ); shadowmgr->ProjectShadow( m_Shadows[handle].m_ShadowHandle, worldOrigin, vecShadowDir, worldToTexture, size, maxHeight, falloffStart, MAX_FALLOFF_AMOUNT, pRenderable->GetRenderOrigin() ); // Compute extra clip planes to prevent poke-thru ComputeExtraClipPlanes( pRenderable, handle, vec, mins, maxs, localShadowDir ); // Add the shadow to the client leaf system so it correctly marks // leafs as being affected by a particular shadow ClientLeafSystem()->ProjectShadow( m_Shadows[handle].m_ClientLeafShadowHandle, worldOrigin, vecShadowDir, size, maxHeight ); } static void LineDrawHelper( const Vector &startShadowSpace, const Vector &endShadowSpace, const VMatrix &shadowToWorld, unsigned char r = 255, unsigned char g = 255, unsigned char b = 255 ) { Vector startWorldSpace, endWorldSpace; Vector3DMultiplyPositionProjective( shadowToWorld, startShadowSpace, startWorldSpace ); Vector3DMultiplyPositionProjective( shadowToWorld, endShadowSpace, endWorldSpace ); debugoverlay->AddLineOverlay( startWorldSpace + Vector( 0.0f, 0.0f, 1.0f ), endWorldSpace + Vector( 0.0f, 0.0f, 1.0f ), r, g, b, false , 0.0 ); } static void DebugDrawFrustum( const VMatrix &worldToFlashlight ) { VMatrix flashlightToWorld; MatrixInverseGeneral( worldToFlashlight, flashlightToWorld ); LineDrawHelper( Vector( 0.0f, 0.0f, 0.0f ), Vector( 0.0f, 0.0f, 1.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 0.0f, 1.0f ), Vector( 0.0f, 1.0f, 1.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 1.0f, 1.0f ), Vector( 0.0f, 1.0f, 0.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 1.0f, 0.0f ), Vector( 0.0f, 0.0f, 0.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 1.0f, 0.0f, 0.0f ), Vector( 1.0f, 0.0f, 1.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 1.0f, 0.0f, 1.0f ), Vector( 1.0f, 1.0f, 1.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 1.0f, 1.0f, 1.0f ), Vector( 1.0f, 1.0f, 0.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 1.0f, 1.0f, 0.0f ), Vector( 1.0f, 0.0f, 0.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 0.0f, 0.0f ), Vector( 1.0f, 0.0f, 0.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 0.0f, 1.0f ), Vector( 1.0f, 0.0f, 1.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 1.0f, 1.0f ), Vector( 1.0f, 1.0f, 1.0f ), flashlightToWorld, 255, 0, 0 ); LineDrawHelper( Vector( 0.0f, 1.0f, 0.0f ), Vector( 1.0f, 1.0f, 0.0f ), flashlightToWorld, 255, 0, 0 ); } void CClientShadowMgr::BuildFlashlight( ClientShadowHandle_t handle ) { ClientShadow_t &shadow = m_Shadows[handle]; if( r_flashlightdrawfrustum.GetBool() ) { DebugDrawFrustum( shadow.m_WorldToShadow ); } if( shadow.m_bLightWorld ) { shadowmgr->ProjectFlashlight( shadow.m_ShadowHandle, shadow.m_WorldToShadow ); } else { // This should clear all models and surfaces from this shadow shadowmgr->EnableShadow( shadow.m_ShadowHandle, false ); shadowmgr->EnableShadow( shadow.m_ShadowHandle, true ); } if( r_flashlightmodels.GetBool() ) { if( shadow.m_hTargetEntity==NULL ) { // Add the shadow to the client leaf system so it correctly marks // leafs as being affected by a particular shadow ClientLeafSystem()->ProjectFlashlight( shadow.m_ClientLeafShadowHandle, shadow.m_WorldToShadow ); } else { // We know what we are focused on, so just add the shadow directly to that receiver Assert( shadow.m_hTargetEntity->GetModel() ); C_BaseEntity *pChild = shadow.m_hTargetEntity->FirstMoveChild(); while( pChild ) { int modelType = modelinfo->GetModelType( pChild->GetModel() ); if (modelType == mod_brush) { AddShadowToReceiver( handle, pChild, SHADOW_RECEIVER_BRUSH_MODEL ); } else if ( modelType == mod_studio ) { AddShadowToReceiver( handle, pChild, SHADOW_RECEIVER_STUDIO_MODEL ); } pChild = pChild->NextMovePeer(); } int modelType = modelinfo->GetModelType( shadow.m_hTargetEntity->GetModel() ); if (modelType == mod_brush) { AddShadowToReceiver( handle, shadow.m_hTargetEntity, SHADOW_RECEIVER_BRUSH_MODEL ); } else if ( modelType == mod_studio ) { AddShadowToReceiver( handle, shadow.m_hTargetEntity, SHADOW_RECEIVER_STUDIO_MODEL ); } } } } //----------------------------------------------------------------------------- // Adds the child bounds to the bounding box //----------------------------------------------------------------------------- void CClientShadowMgr::AddChildBounds( matrix3x4_t &worldToBBox, IClientRenderable* pParent, Vector &vecMins, Vector &vecMaxs ) { Vector vecChildMins, vecChildMaxs; Vector vecNewChildMins, vecNewChildMaxs; matrix3x4_t childToBBox; IClientRenderable *pChild = pParent->FirstShadowChild(); while( pChild ) { // Transform the child bbox into the space of the main bbox // FIXME: Optimize this? if ( GetActualShadowCastType( pChild ) != SHADOWS_NONE) { pChild->GetShadowRenderBounds( vecChildMins, vecChildMaxs, SHADOWS_RENDER_TO_TEXTURE ); ConcatTransforms( worldToBBox, pChild->RenderableToWorldTransform(), childToBBox ); TransformAABB( childToBBox, vecChildMins, vecChildMaxs, vecNewChildMins, vecNewChildMaxs ); VectorMin( vecMins, vecNewChildMins, vecMins ); VectorMax( vecMaxs, vecNewChildMaxs, vecMaxs ); } AddChildBounds( worldToBBox, pChild, vecMins, vecMaxs ); pChild = pChild->NextShadowPeer(); } } //----------------------------------------------------------------------------- // Compute a bounds for the entity + children //----------------------------------------------------------------------------- void CClientShadowMgr::ComputeHierarchicalBounds( IClientRenderable *pRenderable, Vector &vecMins, Vector &vecMaxs ) { ShadowType_t shadowType = GetActualShadowCastType( pRenderable ); pRenderable->GetShadowRenderBounds( vecMins, vecMaxs, shadowType ); // We could use a good solution for this in the regular PC build, since // it causes lots of extra bone setups for entities you can't see. if ( IsPC() ) { IClientRenderable *pChild = pRenderable->FirstShadowChild(); // Don't recurse down the tree when we hit a blobby shadow if ( pChild && shadowType != SHADOWS_SIMPLE ) { matrix3x4_t worldToBBox; MatrixInvert( pRenderable->RenderableToWorldTransform(), worldToBBox ); AddChildBounds( worldToBBox, pRenderable, vecMins, vecMaxs ); } } } //----------------------------------------------------------------------------- // Shadow update functions //----------------------------------------------------------------------------- void CClientShadowMgr::UpdateStudioShadow( IClientRenderable *pRenderable, ClientShadowHandle_t handle ) { if( !( m_Shadows[handle].m_Flags & SHADOW_FLAGS_FLASHLIGHT ) ) { Vector mins, maxs; ComputeHierarchicalBounds( pRenderable, mins, maxs ); ShadowType_t shadowType = GetActualShadowCastType( handle ); if ( shadowType != SHADOWS_RENDER_TO_TEXTURE ) { BuildOrthoShadow( pRenderable, handle, mins, maxs ); } else { BuildRenderToTextureShadow( pRenderable, handle, mins, maxs ); } } else { BuildFlashlight( handle ); } } void CClientShadowMgr::UpdateBrushShadow( IClientRenderable *pRenderable, ClientShadowHandle_t handle ) { if( !( m_Shadows[handle].m_Flags & SHADOW_FLAGS_FLASHLIGHT ) ) { // Compute the bounding box in the space of the shadow... Vector mins, maxs; ComputeHierarchicalBounds( pRenderable, mins, maxs ); ShadowType_t shadowType = GetActualShadowCastType( handle ); if ( shadowType != SHADOWS_RENDER_TO_TEXTURE ) { BuildOrthoShadow( pRenderable, handle, mins, maxs ); } else { BuildRenderToTextureShadow( pRenderable, handle, mins, maxs ); } } else { BuildFlashlight( handle ); } } #ifdef _DEBUG static bool s_bBreak = false; void ShadowBreak_f() { s_bBreak = true; } static ConCommand r_shadowbreak("r_shadowbreak", ShadowBreak_f); #endif // _DEBUG bool CClientShadowMgr::WillParentRenderBlobbyShadow( IClientRenderable *pRenderable ) { if ( !pRenderable ) return false; IClientRenderable *pShadowParent = pRenderable->GetShadowParent(); if ( !pShadowParent ) return false; // If there's *no* shadow casting type, then we want to see if we can render into its parent ShadowType_t shadowType = GetActualShadowCastType( pShadowParent ); if ( shadowType == SHADOWS_NONE ) return WillParentRenderBlobbyShadow( pShadowParent ); return shadowType == SHADOWS_SIMPLE; } //----------------------------------------------------------------------------- // Are we the child of a shadow with render-to-texture? //----------------------------------------------------------------------------- bool CClientShadowMgr::ShouldUseParentShadow( IClientRenderable *pRenderable ) { if ( !pRenderable ) return false; IClientRenderable *pShadowParent = pRenderable->GetShadowParent(); if ( !pShadowParent ) return false; // Can't render into the parent if the parent is blobby ShadowType_t shadowType = GetActualShadowCastType( pShadowParent ); if ( shadowType == SHADOWS_SIMPLE ) return false; // If there's *no* shadow casting type, then we want to see if we can render into its parent if ( shadowType == SHADOWS_NONE ) return ShouldUseParentShadow( pShadowParent ); // Here, the parent uses a render-to-texture shadow return true; } //----------------------------------------------------------------------------- // Before we render any view, make sure all shadows are re-projected vs world //----------------------------------------------------------------------------- void CClientShadowMgr::PreRender() { VPROF_BUDGET( "CClientShadowMgr::PreRender", VPROF_BUDGETGROUP_SHADOW_RENDERING ); MDLCACHE_CRITICAL_SECTION(); bool bRenderToTextureActive = r_shadowrendertotexture.GetBool(); if ( bRenderToTextureActive != m_RenderToTextureActive ) { if ( m_RenderToTextureActive ) { ShutdownRenderToTextureShadows(); } else { InitRenderToTextureShadows(); } UpdateAllShadows(); return; } #ifdef DOSHADOWEDFLASHLIGHT bool bDepthTextureActive = r_flashlightdepthtexture.GetBool(); if ( bDepthTextureActive != m_DepthTextureActive ) { if( m_DepthTextureActive ) { ShutdownDepthTextureShadows(); } else { InitDepthTextureShadows(); } UpdateAllShadows(); return; } #endif m_bUpdatingDirtyShadows = true; unsigned short i = m_DirtyShadows.FirstInorder(); while ( i != m_DirtyShadows.InvalidIndex() ) { ClientShadowHandle_t& handle = m_DirtyShadows[ i ]; Assert( m_Shadows.IsValidIndex( handle ) ); UpdateProjectedTextureInternal( handle, false ); i = m_DirtyShadows.NextInorder(i); } m_DirtyShadows.RemoveAll(); m_bUpdatingDirtyShadows = false; } //----------------------------------------------------------------------------- // Gets the entity whose shadow this shadow will render into //----------------------------------------------------------------------------- IClientRenderable *CClientShadowMgr::GetParentShadowEntity( ClientShadowHandle_t handle ) { ClientShadow_t& shadow = m_Shadows[handle]; IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( shadow.m_Entity ); if ( pRenderable ) { if ( ShouldUseParentShadow( pRenderable ) ) { IClientRenderable *pParent = pRenderable->GetShadowParent(); while ( GetActualShadowCastType( pParent ) == SHADOWS_NONE ) { pParent = pParent->GetShadowParent(); Assert( pParent ); } return pParent; } } return NULL; } //----------------------------------------------------------------------------- // Marks a shadow as needing re-projection //----------------------------------------------------------------------------- void CClientShadowMgr::AddToDirtyShadowList( ClientShadowHandle_t handle, bool bForce ) { // Don't add to the dirty shadow list while we're iterating over it // The only way this can happen is if a child is being rendered into a parent // shadow, and we don't need it to be added to the dirty list in that case. if ( m_bUpdatingDirtyShadows ) return; if ( handle == CLIENTSHADOW_INVALID_HANDLE ) return; Assert( m_DirtyShadows.Find( handle ) == m_DirtyShadows.InvalidIndex() ); m_DirtyShadows.Insert( handle ); // This pretty much guarantees we'll recompute the shadow if ( bForce ) { m_Shadows[handle].m_LastAngles.Init( FLT_MAX, FLT_MAX, FLT_MAX ); } // If we use our parent shadow, then it's dirty too... IClientRenderable *pParent = GetParentShadowEntity( handle ); if ( pParent ) { AddToDirtyShadowList( pParent, bForce ); } } //----------------------------------------------------------------------------- // Marks a shadow as needing re-projection //----------------------------------------------------------------------------- void CClientShadowMgr::AddToDirtyShadowList( IClientRenderable *pRenderable, bool bForce ) { // Don't add to the dirty shadow list while we're iterating over it // The only way this can happen is if a child is being rendered into a parent // shadow, and we don't need it to be added to the dirty list in that case. if ( m_bUpdatingDirtyShadows ) return; // Are we already in the dirty list? if ( pRenderable->IsShadowDirty( ) ) return; ClientShadowHandle_t handle = pRenderable->GetShadowHandle(); if ( handle == CLIENTSHADOW_INVALID_HANDLE ) return; #ifdef _DEBUG // Make sure everything's consistent if ( pRenderable->GetShadowHandle() != CLIENTSHADOW_INVALID_HANDLE ) { IClientRenderable *pShadowRenderable = ClientEntityList().GetClientRenderableFromHandle( m_Shadows[handle].m_Entity ); Assert( pRenderable == pShadowRenderable ); } #endif pRenderable->MarkShadowDirty( true ); AddToDirtyShadowList( handle, bForce ); } //----------------------------------------------------------------------------- // Marks the render-to-texture shadow as needing to be re-rendered //----------------------------------------------------------------------------- void CClientShadowMgr::MarkRenderToTextureShadowDirty( ClientShadowHandle_t handle ) { // Don't add bogus handles! if (handle != CLIENTSHADOW_INVALID_HANDLE) { // Mark the shadow has having a dirty renter-to-texture ClientShadow_t& shadow = m_Shadows[handle]; shadow.m_Flags |= SHADOW_FLAGS_TEXTURE_DIRTY; // If we use our parent shadow, then it's dirty too... IClientRenderable *pParent = GetParentShadowEntity( handle ); if ( pParent ) { ClientShadowHandle_t parentHandle = pParent->GetShadowHandle(); if ( parentHandle != CLIENTSHADOW_INVALID_HANDLE ) { m_Shadows[parentHandle].m_Flags |= SHADOW_FLAGS_TEXTURE_DIRTY; } } } } //----------------------------------------------------------------------------- // Update a shadow //----------------------------------------------------------------------------- void CClientShadowMgr::UpdateShadow( ClientShadowHandle_t handle, bool force ) { ClientShadow_t& shadow = m_Shadows[handle]; // Get the client entity.... IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( shadow.m_Entity ); if ( !pRenderable ) { // Retire the shadow if the entity is gone DestroyShadow( handle ); return; } if ( !pRenderable->GetModel() ) { pRenderable->MarkShadowDirty( false ); return; } #ifdef _DEBUG if (s_bBreak) { s_bBreak = false; } #endif // Hierarchical children shouldn't be projecting shadows... // Check to see if it's a child of an entity with a render-to-texture shadow... if ( ShouldUseParentShadow( pRenderable ) || WillParentRenderBlobbyShadow( pRenderable ) ) { shadowmgr->EnableShadow( shadow.m_ShadowHandle, false ); pRenderable->MarkShadowDirty( false ); return; } shadowmgr->EnableShadow( shadow.m_ShadowHandle, true ); // Figure out if the shadow moved... // Even though we have dirty bits, some entities // never clear those dirty bits const Vector& origin = pRenderable->GetRenderOrigin(); const QAngle& angles = pRenderable->GetRenderAngles(); if (force || (origin != shadow.m_LastOrigin) || (angles != shadow.m_LastAngles)) { // Store off the new pos/orientation VectorCopy( origin, shadow.m_LastOrigin ); VectorCopy( angles, shadow.m_LastAngles ); const model_t *pModel = pRenderable->GetModel(); MaterialFogMode_t fogMode = materials->GetFogMode(); materials->FogMode( MATERIAL_FOG_NONE ); switch( modelinfo->GetModelType( pModel ) ) { case mod_brush: UpdateBrushShadow( pRenderable, handle ); break; case mod_studio: UpdateStudioShadow( pRenderable, handle ); break; default: // Shouldn't get here if not a brush or studio Assert(0); break; } materials->FogMode( fogMode ); } // NOTE: We can't do this earlier because pEnt->GetRenderOrigin() can // provoke a recomputation of render origin, which, for aiments, can cause everything // to be marked as dirty. So don't clear the flag until this point. pRenderable->MarkShadowDirty( false ); } //----------------------------------------------------------------------------- // Update a shadow //----------------------------------------------------------------------------- void CClientShadowMgr::UpdateProjectedTextureInternal( ClientShadowHandle_t handle, bool force ) { ClientShadow_t& shadow = m_Shadows[handle]; if( shadow.m_Flags & SHADOW_FLAGS_FLASHLIGHT ) { Assert( ( shadow.m_Flags & SHADOW_FLAGS_SHADOW ) == 0 ); ClientShadow_t& shadow = m_Shadows[handle]; shadowmgr->EnableShadow( shadow.m_ShadowHandle, true ); // Make sure to allocate/deallocated shadow depth texture here // if they are out of sync with flags #ifdef DOSHADOWEDFLASHLIGHT if( shadow.m_Flags & SHADOW_FLAGS_USE_DEPTH_TEXTURE ) { if( !shadow.m_ShadowDepthTexture && r_flashlightdepthtexture.GetBool() ) { AllocateDepthBuffer( shadow.m_ShadowDepthTexture ); } } else #endif { if( shadow.m_ShadowDepthTexture ) { DeallocateDepthBuffer( shadow.m_ShadowDepthTexture ); } } // FIXME: What's the difference between brush and model shadows for light projectors? Answer: nothing. UpdateBrushShadow( NULL, handle ); } else { Assert( shadow.m_Flags & SHADOW_FLAGS_SHADOW ); Assert( ( shadow.m_Flags & SHADOW_FLAGS_FLASHLIGHT ) == 0 ); UpdateShadow( handle, force ); } } //----------------------------------------------------------------------------- // Update a shadow //----------------------------------------------------------------------------- void CClientShadowMgr::UpdateProjectedTexture( ClientShadowHandle_t handle, bool force ) { if (handle == CLIENTSHADOW_INVALID_HANDLE) return; UpdateProjectedTextureInternal( handle, force ); RemoveShadowFromDirtyList( handle ); } //----------------------------------------------------------------------------- // Computes bounding sphere //----------------------------------------------------------------------------- void CClientShadowMgr::ComputeBoundingSphere( IClientRenderable* pRenderable, Vector& origin, float& radius ) { Assert( pRenderable ); Vector mins, maxs; pRenderable->GetShadowRenderBounds( mins, maxs, GetActualShadowCastType( pRenderable ) ); Vector size; VectorSubtract( maxs, mins, size ); radius = size.Length() * 0.5f; // Compute centroid (local space) Vector centroid; VectorAdd( mins, maxs, centroid ); centroid *= 0.5f; // Transform centroid into world space Vector vec[3]; AngleVectors( pRenderable->GetRenderAngles(), &vec[0], &vec[1], &vec[2] ); vec[1] *= -1.0f; VectorCopy( pRenderable->GetRenderOrigin(), origin ); VectorMA( origin, centroid.x, vec[0], origin ); VectorMA( origin, centroid.y, vec[1], origin ); VectorMA( origin, centroid.z, vec[2], origin ); } //----------------------------------------------------------------------------- // Computes a rough AABB encompassing the volume of the shadow //----------------------------------------------------------------------------- void CClientShadowMgr::ComputeShadowBBox( IClientRenderable *pRenderable, const Vector &vecAbsCenter, float flRadius, Vector *pAbsMins, Vector *pAbsMaxs ) { // This is *really* rough. Basically we simply determine the // maximum shadow casting length and extrude the box by that distance Vector vecShadowDir = GetShadowDirection( pRenderable ); for (int i = 0; i < 3; ++i) { float flShadowCastDistance = GetShadowDistance( pRenderable ); float flDist = flShadowCastDistance * vecShadowDir[i]; if (vecShadowDir[i] < 0) { (*pAbsMins)[i] = vecAbsCenter[i] - flRadius + flDist; (*pAbsMaxs)[i] = vecAbsCenter[i] + flRadius; } else { (*pAbsMins)[i] = vecAbsCenter[i] - flRadius; (*pAbsMaxs)[i] = vecAbsCenter[i] + flRadius + flDist; } } } //----------------------------------------------------------------------------- // Compute a separating axis... //----------------------------------------------------------------------------- bool CClientShadowMgr::ComputeSeparatingPlane( IClientRenderable* pRend1, IClientRenderable* pRend2, cplane_t* pPlane ) { Vector min1, max1, min2, max2; pRend1->GetShadowRenderBounds( min1, max1, GetActualShadowCastType( pRend1 ) ); pRend2->GetShadowRenderBounds( min2, max2, GetActualShadowCastType( pRend2 ) ); return ::ComputeSeparatingPlane( pRend1->GetRenderOrigin(), pRend1->GetRenderAngles(), min1, max1, pRend2->GetRenderOrigin(), pRend2->GetRenderAngles(), min2, max2, 3.0f, pPlane ); } //----------------------------------------------------------------------------- // Cull shadows based on rough bounding volumes //----------------------------------------------------------------------------- bool CClientShadowMgr::CullReceiver( ClientShadowHandle_t handle, IClientRenderable* pRenderable, IClientRenderable* pSourceRenderable ) { // check flags here instead and assert !pSourceRenderable if( m_Shadows[handle].m_Flags & SHADOW_FLAGS_FLASHLIGHT ) { Assert( !pSourceRenderable ); const Frustum_t &frustum = shadowmgr->GetFlashlightFrustum( m_Shadows[handle].m_ShadowHandle ); Vector mins, maxs; pRenderable->GetRenderBoundsWorldspace( mins, maxs ); return R_CullBox( mins, maxs, frustum ); } Assert( pSourceRenderable ); // Compute a bounding sphere for the renderable Vector origin; float radius; ComputeBoundingSphere( pRenderable, origin, radius ); // Transform the sphere center into the space of the shadow Vector localOrigin; const ClientShadow_t& shadow = m_Shadows[handle]; const ShadowInfo_t& info = shadowmgr->GetInfo( shadow.m_ShadowHandle ); Vector3DMultiplyPosition( shadow.m_WorldToShadow, origin, localOrigin ); // Compute a rough bounding box for the shadow (in shadow space) Vector shadowMin, shadowMax; shadowMin.Init( -shadow.m_WorldSize.x * 0.5f, -shadow.m_WorldSize.y * 0.5f, 0 ); shadowMax.Init( shadow.m_WorldSize.x * 0.5f, shadow.m_WorldSize.y * 0.5f, info.m_FalloffOffset + info.m_MaxDist ); // If the bounding sphere doesn't intersect with the shadow volume, cull if (!IsBoxIntersectingSphere( shadowMin, shadowMax, localOrigin, radius )) return true; Vector originSource; float radiusSource; ComputeBoundingSphere( pSourceRenderable, originSource, radiusSource ); // Fast check for separating plane... bool foundSeparatingPlane = false; cplane_t plane; if (!IsSphereIntersectingSphere( originSource, radiusSource, origin, radius )) { foundSeparatingPlane = true; // the plane normal doesn't need to be normalized... VectorSubtract( origin, originSource, plane.normal ); } else { foundSeparatingPlane = ComputeSeparatingPlane( pRenderable, pSourceRenderable, &plane ); } if (foundSeparatingPlane) { // Compute which side of the plane the renderable is on.. Vector vecShadowDir = GetShadowDirection( pSourceRenderable ); float shadowDot = DotProduct( vecShadowDir, plane.normal ); float receiverDot = DotProduct( plane.normal, origin ); float sourceDot = DotProduct( plane.normal, originSource ); if (shadowDot > 0.0f) { if (receiverDot <= sourceDot) { // Vector dest; // VectorMA( pSourceRenderable->GetRenderOrigin(), 50, plane.normal, dest ); // debugoverlay->AddLineOverlay( pSourceRenderable->GetRenderOrigin(), dest, 255, 255, 0, true, 1.0f ); return true; } else { // Vector dest; // VectorMA( pSourceRenderable->GetRenderOrigin(), 50, plane.normal, dest ); // debugoverlay->AddLineOverlay( pSourceRenderable->GetRenderOrigin(), dest, 255, 0, 0, true, 1.0f ); } } else { if (receiverDot >= sourceDot) { // Vector dest; // VectorMA( pSourceRenderable->GetRenderOrigin(), -50, plane.normal, dest ); // debugoverlay->AddLineOverlay( pSourceRenderable->GetRenderOrigin(), dest, 255, 255, 0, true, 1.0f ); return true; } else { // Vector dest; // VectorMA( pSourceRenderable->GetRenderOrigin(), 50, plane.normal, dest ); // debugoverlay->AddLineOverlay( pSourceRenderable->GetRenderOrigin(), dest, 255, 0, 0, true, 1.0f ); } } } // No additional clip planes? ok then it's a valid receiver /* if (shadow.m_ClipPlaneCount == 0) return false; // Check the additional cull planes int i; for ( i = 0; i < shadow.m_ClipPlaneCount; ++i) { // Fast sphere cull if (DotProduct( origin, shadow.m_ClipPlane[i] ) - radius > shadow.m_ClipDist[i]) return true; } // More expensive box on plane side cull... Vector vec[3]; Vector mins, maxs; cplane_t plane; AngleVectors( pRenderable->GetRenderAngles(), &vec[0], &vec[1], &vec[2] ); pRenderable->GetBounds( mins, maxs ); for ( i = 0; i < shadow.m_ClipPlaneCount; ++i) { // Transform the plane into the space of the receiver plane.normal.x = DotProduct( vec[0], shadow.m_ClipPlane[i] ); plane.normal.y = DotProduct( vec[1], shadow.m_ClipPlane[i] ); plane.normal.z = DotProduct( vec[2], shadow.m_ClipPlane[i] ); plane.dist = shadow.m_ClipDist[i] - DotProduct( shadow.m_ClipPlane[i], pRenderable->GetRenderOrigin() ); // If the box is on the front side of the plane, we're done. if (BoxOnPlaneSide2( mins, maxs, &plane, 3.0f ) == 1) return true; } */ return false; } //----------------------------------------------------------------------------- // deals with shadows being added to shadow receivers //----------------------------------------------------------------------------- void CClientShadowMgr::AddShadowToReceiver( ClientShadowHandle_t handle, IClientRenderable* pRenderable, ShadowReceiver_t type ) { ClientShadow_t &shadow = m_Shadows[handle]; // Don't add a shadow cast by an object to itself... IClientRenderable* pSourceRenderable = ClientEntityList().GetClientRenderableFromHandle( shadow.m_Entity ); // NOTE: if pSourceRenderable == NULL, the source is probably a flashlight since there is no entity. if (pSourceRenderable == pRenderable) return; // Don't bother if this renderable doesn't receive shadows or light from flashlights if( !pRenderable->ShouldReceiveProjectedTextures( SHADOW_FLAGS_PROJECTED_TEXTURE_TYPE_MASK ) ) return; // Cull if the origin is on the wrong side of a shadow clip plane.... if ( CullReceiver( handle, pRenderable, pSourceRenderable ) ) return; // Do different things depending on the receiver type switch( type ) { case SHADOW_RECEIVER_BRUSH_MODEL: if( shadow.m_Flags & SHADOW_FLAGS_FLASHLIGHT ) { if( (!shadow.m_hTargetEntity) || IsFlashlightTarget( handle, pRenderable ) ) { shadowmgr->AddShadowToBrushModel( shadow.m_ShadowHandle, const_cast<model_t*>(pRenderable->GetModel()), pRenderable->GetRenderOrigin(), pRenderable->GetRenderAngles() ); shadowmgr->AddFlashlightRenderable( shadow.m_ShadowHandle, pRenderable ); } } else { shadowmgr->AddShadowToBrushModel( shadow.m_ShadowHandle, const_cast<model_t*>(pRenderable->GetModel()), pRenderable->GetRenderOrigin(), pRenderable->GetRenderAngles() ); } break; case SHADOW_RECEIVER_STATIC_PROP: // Don't add shadows to props if we're not using render-to-texture if ( GetActualShadowCastType( handle ) == SHADOWS_RENDER_TO_TEXTURE ) { // Also don't add them unless an NPC or player casts them.. // They are wickedly expensive!!! C_BaseEntity *pEnt = pSourceRenderable->GetIClientUnknown()->GetBaseEntity(); if ( pEnt && ( pEnt->GetFlags() & (FL_NPC | FL_CLIENT)) ) { staticpropmgr->AddShadowToStaticProp( shadow.m_ShadowHandle, pRenderable ); } } else if( shadow.m_Flags & SHADOW_FLAGS_FLASHLIGHT ) { if( (!shadow.m_hTargetEntity) || IsFlashlightTarget( handle, pRenderable ) ) { staticpropmgr->AddShadowToStaticProp( shadow.m_ShadowHandle, pRenderable ); shadowmgr->AddFlashlightRenderable( shadow.m_ShadowHandle, pRenderable ); } } break; case SHADOW_RECEIVER_STUDIO_MODEL: if( shadow.m_Flags & SHADOW_FLAGS_FLASHLIGHT ) { if( (!shadow.m_hTargetEntity) || IsFlashlightTarget( handle, pRenderable ) ) { pRenderable->CreateModelInstance(); shadowmgr->AddShadowToModel( shadow.m_ShadowHandle, pRenderable->GetModelInstance() ); shadowmgr->AddFlashlightRenderable( shadow.m_ShadowHandle, pRenderable ); } } break; // default: } } //----------------------------------------------------------------------------- // deals with shadows being added to shadow receivers //----------------------------------------------------------------------------- void CClientShadowMgr::RemoveAllShadowsFromReceiver( IClientRenderable* pRenderable, ShadowReceiver_t type ) { // Don't bother if this renderable doesn't receive shadows if ( !pRenderable->ShouldReceiveProjectedTextures( SHADOW_FLAGS_PROJECTED_TEXTURE_TYPE_MASK ) ) return; // Do different things depending on the receiver type switch( type ) { case SHADOW_RECEIVER_BRUSH_MODEL: { model_t* pModel = const_cast<model_t*>(pRenderable->GetModel()); shadowmgr->RemoveAllShadowsFromBrushModel( pModel ); } break; case SHADOW_RECEIVER_STATIC_PROP: staticpropmgr->RemoveAllShadowsFromStaticProp(pRenderable); break; case SHADOW_RECEIVER_STUDIO_MODEL: if( pRenderable && pRenderable->GetModelInstance() != MODEL_INSTANCE_INVALID ) { shadowmgr->RemoveAllShadowsFromModel( pRenderable->GetModelInstance() ); } break; // default: // // FIXME: How do deal with this stuff? Add a method to IClientRenderable? // C_BaseEntity* pEnt = static_cast<C_BaseEntity*>(pRenderable); // pEnt->RemoveAllShadows(); } } //----------------------------------------------------------------------------- // Computes + sets the render-to-texture texcoords //----------------------------------------------------------------------------- void CClientShadowMgr::SetRenderToTextureShadowTexCoords( ShadowHandle_t handle, int x, int y, int w, int h ) { // Let the shadow mgr know about the texture coordinates... // That way it'll be able to batch rendering better. int textureW, textureH; m_ShadowAllocator.GetTotalTextureSize( textureW, textureH ); // Go in a half-pixel to avoid blending with neighboring textures.. float u, v, du, dv; #ifndef _XBOX u = ((float)x + 0.5f) / (float)textureW; v = ((float)y + 0.5f) / (float)textureH; du = ((float)w - 1) / (float)textureW; dv = ((float)h - 1) / (float)textureH; #else // xboxissue - need non-normalized tecture coords u = ((float)x + 0.5f); v = ((float)y + 0.5f); du = ((float)w - 1); dv = ((float)h - 1); #endif shadowmgr->SetShadowTexCoord( handle, u, v, du, dv ); } //----------------------------------------------------------------------------- // Draws all children shadows into our own //----------------------------------------------------------------------------- bool CClientShadowMgr::DrawShadowHierarchy( IClientRenderable *pRenderable, const ClientShadow_t &shadow, bool bChild ) { bool bDrewTexture = false; // Stop traversing when we hit a blobby shadow ShadowType_t shadowType = GetActualShadowCastType( pRenderable ); if ( pRenderable && shadowType == SHADOWS_SIMPLE ) return false; if ( !pRenderable || shadowType != SHADOWS_NONE ) { bool bDrawModelShadow; bool bDrawBrushShadow; if ( !bChild ) { bDrawModelShadow = ((shadow.m_Flags & SHADOW_FLAGS_BRUSH_MODEL) == 0); bDrawBrushShadow = !bDrawModelShadow; } else { int nModelType = modelinfo->GetModelType( pRenderable->GetModel() ); bDrawModelShadow = nModelType == mod_studio; bDrawBrushShadow = nModelType == mod_brush; } if ( bDrawModelShadow ) { modelrender->DrawModelShadowEx( pRenderable, pRenderable->GetBody(), pRenderable->GetSkin() ); bDrewTexture = true; } else if ( bDrawBrushShadow ) { render->DrawBrushModelShadow( pRenderable ); } } if ( !pRenderable ) return bDrewTexture; IClientRenderable *pChild; for ( pChild = pRenderable->FirstShadowChild(); pChild; pChild = pChild->NextShadowPeer() ) { if ( DrawShadowHierarchy( pChild, shadow, true ) ) { bDrewTexture = true; } } return bDrewTexture; } //----------------------------------------------------------------------------- // This gets called with every shadow that potentially will need to re-render //----------------------------------------------------------------------------- bool CClientShadowMgr::DrawRenderToTextureShadow( unsigned short clientShadowHandle, float flArea ) { ClientShadow_t& shadow = m_Shadows[clientShadowHandle]; // If we were previously using the LOD shadow, set the material if ( shadow.m_Flags & SHADOW_FLAGS_USING_LOD_SHADOW ) { shadowmgr->SetShadowMaterial( shadow.m_ShadowHandle, m_RenderShadow, m_RenderModelShadow, (void*)clientShadowHandle ); } // Mark texture as being used... bool bDirtyTexture = (shadow.m_Flags & SHADOW_FLAGS_TEXTURE_DIRTY) != 0; bool bDrewTexture = false; bool needsRedraw = m_ShadowAllocator.UseTexture( shadow.m_ShadowTexture, bDirtyTexture, flArea ); if (needsRedraw || bDirtyTexture) { // shadow to be redrawn; for now, we'll always do it. IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( shadow.m_Entity ); // Sets the viewport state int x, y, w, h; m_ShadowAllocator.GetTextureRect( shadow.m_ShadowTexture, x, y, w, h ); materials->Viewport( x, y, w, h ); // Clear the selected viewport only // GR: don't need to clear depth materials->ClearBuffers( true, false ); materials->MatrixMode( MATERIAL_VIEW ); materials->LoadMatrix( shadowmgr->GetInfo( shadow.m_ShadowHandle ).m_WorldToShadow ); if ( DrawShadowHierarchy( pRenderable, shadow ) ) { bDrewTexture = true; } // Only clear the dirty flag if the caster isn't animating if ( (shadow.m_Flags & SHADOW_FLAGS_ANIMATING_SOURCE) == 0 ) { shadow.m_Flags &= ~SHADOW_FLAGS_TEXTURE_DIRTY; } SetRenderToTextureShadowTexCoords( shadow.m_ShadowHandle, x, y, w, h ); } else if ( shadow.m_Flags & SHADOW_FLAGS_USING_LOD_SHADOW ) { // In this case, we were previously using the LOD shadow, but we didn't // have to reconstitute the texture. In this case, we need to reset the texcoord int x, y, w, h; m_ShadowAllocator.GetTextureRect( shadow.m_ShadowTexture, x, y, w, h ); SetRenderToTextureShadowTexCoords( shadow.m_ShadowHandle, x, y, w, h ); } shadow.m_Flags &= ~SHADOW_FLAGS_USING_LOD_SHADOW; return bDrewTexture; } //----------------------------------------------------------------------------- // "Draws" the shadow LOD, which really means just set up the blobby shadow //----------------------------------------------------------------------------- void CClientShadowMgr::DrawRenderToTextureShadowLOD( unsigned short clientShadowHandle ) { ClientShadow_t &shadow = m_Shadows[clientShadowHandle]; if ( (shadow.m_Flags & SHADOW_FLAGS_USING_LOD_SHADOW) == 0 ) { shadowmgr->SetShadowMaterial( shadow.m_ShadowHandle, m_SimpleShadow, m_SimpleShadow, (void*)CLIENTSHADOW_INVALID_HANDLE ); shadowmgr->SetShadowTexCoord( shadow.m_ShadowHandle, 0, 0, 1, 1 ); ClearExtraClipPlanes( shadow.m_ShadowHandle ); shadow.m_Flags |= SHADOW_FLAGS_USING_LOD_SHADOW; } } #define SMALL_OBJECT_FIXUP_FACTOR 10 //----------------------------------------------------------------------------- // Returns true if the shadow is far enough to want to use blobby shadows //----------------------------------------------------------------------------- bool CClientShadowMgr::ShouldUseBlobbyShadows( float flRadius, float flScreenArea ) { // Adjust the shadow area up for small objects; we don't want blobby shadows for // really small things if we're real close to them... float flMaxFixupRadius = 20; float flMinFixupRadius = 6; if (flRadius < flMaxFixupRadius) { if (flRadius >= flMinFixupRadius) flScreenArea *= SMALL_OBJECT_FIXUP_FACTOR * (1.0f - (flRadius - flMinFixupRadius) / (flMaxFixupRadius - flMinFixupRadius) ) + 1.0f; else flScreenArea *= SMALL_OBJECT_FIXUP_FACTOR + 1.0f; } return (flScreenArea <= m_flMinShadowArea); } //----------------------------------------------------------------------------- // Builds a list of potential shadows that lie within our PVS + view frustum //----------------------------------------------------------------------------- struct VisibleShadowInfo_t { ClientShadowHandle_t m_hShadow; float m_flArea; Vector m_vecAbsCenter; float m_flRadius; }; class CVisibleShadowList : public IClientLeafShadowEnum { public: CVisibleShadowList(); int FindShadows( const CViewSetup *pView, int nLeafCount, LeafIndex_t *pLeafList ); int GetVisibleShadowCount() const; const VisibleShadowInfo_t &GetVisibleShadow( int i ) const; private: void EnumShadow( unsigned short clientShadowHandle ); float ComputeScreenArea( const Vector &vecCenter, float r ) const; void PrioritySort(); CUtlVector<VisibleShadowInfo_t> m_ShadowsInView; CUtlVector<int> m_PriorityIndex; }; //----------------------------------------------------------------------------- // Singleton instance //----------------------------------------------------------------------------- static CVisibleShadowList s_VisibleShadowList; CVisibleShadowList::CVisibleShadowList() : m_ShadowsInView( 0, 64 ), m_PriorityIndex( 0, 64 ) { } //----------------------------------------------------------------------------- // Accessors //----------------------------------------------------------------------------- int CVisibleShadowList::GetVisibleShadowCount() const { return m_ShadowsInView.Count(); } const VisibleShadowInfo_t &CVisibleShadowList::GetVisibleShadow( int i ) const { return m_ShadowsInView[m_PriorityIndex[i]]; } //----------------------------------------------------------------------------- // Computes approximate screen area of the shadow //----------------------------------------------------------------------------- float CVisibleShadowList::ComputeScreenArea( const Vector &vecCenter, float r ) const { float flScreenDiameter = materials->ComputePixelDiameterOfSphere( vecCenter, r ); return flScreenDiameter * flScreenDiameter; } //----------------------------------------------------------------------------- // Visits every shadow in the list of leaves //----------------------------------------------------------------------------- void CVisibleShadowList::EnumShadow( unsigned short clientShadowHandle ) { CClientShadowMgr::ClientShadow_t& shadow = s_ClientShadowMgr.m_Shadows[clientShadowHandle]; // Don't bother if we rendered it this frame, no matter which view it was rendered for if (shadow.m_nRenderFrame == gpGlobals->framecount) return; // We don't need to bother with it if ( s_ClientShadowMgr.GetActualShadowCastType( clientShadowHandle ) != SHADOWS_RENDER_TO_TEXTURE ) return; IClientRenderable *pRenderable = ClientEntityList().GetClientRenderableFromHandle( shadow.m_Entity ); Assert( pRenderable ); // Don't bother with children of hierarchy; they will be drawn with their parents if ( s_ClientShadowMgr.ShouldUseParentShadow( pRenderable ) || s_ClientShadowMgr.WillParentRenderBlobbyShadow( pRenderable ) ) return; // Compute a sphere surrounding the shadow // FIXME: This doesn't account for children of hierarchy... too bad! Vector vecAbsCenter; float flRadius; s_ClientShadowMgr.ComputeBoundingSphere( pRenderable, vecAbsCenter, flRadius ); // Compute a box surrounding the shadow Vector vecAbsMins, vecAbsMaxs; s_ClientShadowMgr.ComputeShadowBBox( pRenderable, vecAbsCenter, flRadius, &vecAbsMins, &vecAbsMaxs ); // FIXME: Add distance check here? // Make sure it's in the frustum. If it isn't it's not interesting if (engine->CullBox( vecAbsMins, vecAbsMaxs )) return; int i = m_ShadowsInView.AddToTail( ); VisibleShadowInfo_t &info = m_ShadowsInView[i]; info.m_hShadow = clientShadowHandle; info.m_vecAbsCenter = vecAbsCenter; info.m_flRadius = flRadius; m_ShadowsInView[i].m_flArea = ComputeScreenArea( vecAbsCenter, flRadius ); // Har, har. When water is rendering (or any multipass technique), // we may well initially render from a viewpoint which doesn't include this shadow. // That doesn't mean we shouldn't check it again though. Sucks that we need to compute // the sphere + bbox multiply times though. shadow.m_nRenderFrame = gpGlobals->framecount; } //----------------------------------------------------------------------------- // Sort based on screen area/priority //----------------------------------------------------------------------------- void CVisibleShadowList::PrioritySort() { int nCount = m_ShadowsInView.Count(); m_PriorityIndex.EnsureCapacity( nCount ); m_PriorityIndex.RemoveAll(); int i, j; for ( i = 0; i < nCount; ++i ) { m_PriorityIndex.AddToTail(i); } for ( i = 0; i < nCount - 1; ++i ) { int nLargestInd = i; float flLargestArea = m_ShadowsInView[m_PriorityIndex[i]].m_flArea; for ( j = i + 1; j < nCount; ++j ) { int nIndex = m_PriorityIndex[j]; if ( flLargestArea < m_ShadowsInView[nIndex].m_flArea ) { nLargestInd = j; flLargestArea = m_ShadowsInView[nIndex].m_flArea; } } swap( m_PriorityIndex[i], m_PriorityIndex[nLargestInd] ); } } //----------------------------------------------------------------------------- // Main entry point for finding shadows in the leaf list //----------------------------------------------------------------------------- int CVisibleShadowList::FindShadows( const CViewSetup *pView, int nLeafCount, LeafIndex_t *pLeafList ) { VPROF_BUDGET( "CVisibleShadowList::FindShadows", VPROF_BUDGETGROUP_SHADOW_RENDERING ); m_ShadowsInView.RemoveAll(); ClientLeafSystem()->EnumerateShadowsInLeaves( nLeafCount, pLeafList, this ); int nCount = m_ShadowsInView.Count(); if (nCount != 0) { // Sort based on screen area/priority PrioritySort(); } return nCount; } //----------------------------------------------------------------------------- // Advances to the next frame, //----------------------------------------------------------------------------- void CClientShadowMgr::AdvanceFrame() { // We're starting the next frame m_ShadowAllocator.AdvanceFrame(); } //----------------------------------------------------------------------------- // Re-renders all shadow textures for shadow casters that lie in the leaf list //----------------------------------------------------------------------------- void CClientShadowMgr::ComputeShadowTextures( const CViewSetup *pView, int leafCount, LeafIndex_t* pLeafList ) { VPROF_BUDGET( "CClientShadowMgr::ComputeShadowTextures", VPROF_BUDGETGROUP_SHADOW_RENDERING ); if ( !m_RenderToTextureActive || (r_shadows.GetInt() == 0) || r_shadows_gamecontrol.GetInt() == 0 ) return; MDLCACHE_CRITICAL_SECTION(); // First grab all shadow textures we may want to render int nCount = s_VisibleShadowList.FindShadows( pView, leafCount, pLeafList ); if ( nCount == 0 ) return; // FIXME: Add heuristics based on distance, etc. to futz with // the shadow allocator + to select blobby shadows // Clear to white, black alpha #ifndef _XBOX materials->ClearColor4ub( 255, 255, 255, 0 ); #else // xboxissue - using rgb instead materials->ClearColor4ub( 0, 0, 0, 255 ); #endif // No height clip mode please. MaterialHeightClipMode_t oldHeightClipMode = materials->GetHeightClipMode(); materials->SetHeightClipMode( MATERIAL_HEIGHTCLIPMODE_DISABLE ); // No projection matrix (orthographic mode) // FIXME: Make it work for projective shadows? materials->MatrixMode( MATERIAL_PROJECTION ); materials->PushMatrix(); materials->LoadIdentity(); materials->Scale( 1, -1, 1 ); materials->Ortho( 0, 0, 1, 1, -9999, 0 ); materials->MatrixMode( MATERIAL_VIEW ); materials->PushMatrix(); materials->PushRenderTargetAndViewport( m_ShadowAllocator.GetTexture() ); if ( m_bRenderTargetNeedsClear ) { // GR - draw with disabled depth buffer // GR: don't need to clear depth materials->ClearBuffers( true, false ); m_bRenderTargetNeedsClear = false; } int nMaxShadows = r_shadowmaxrendered.GetInt(); int nModelsRendered = 0; for (int i = 0; i < nCount; ++i) { const VisibleShadowInfo_t &info = s_VisibleShadowList.GetVisibleShadow(i); if ( (nModelsRendered < nMaxShadows) && ( !IsXbox() || !ShouldUseBlobbyShadows( info.m_flRadius, info.m_flArea ) ) ) { if ( DrawRenderToTextureShadow( info.m_hShadow, info.m_flArea ) ) { ++nModelsRendered; } } else { DrawRenderToTextureShadowLOD( info.m_hShadow ); } } // Render to the backbuffer again materials->PopRenderTargetAndViewport(); // Restore the matrices materials->MatrixMode( MATERIAL_PROJECTION ); materials->PopMatrix(); materials->MatrixMode( MATERIAL_VIEW ); materials->PopMatrix(); materials->SetHeightClipMode( oldHeightClipMode ); materials->SetHeightClipMode( oldHeightClipMode ); // Restore the clear color materials->ClearColor3ub( 0, 0, 0 ); } bool CClientShadowMgr::AllocateDepthBuffer( CTextureReference &depthBuffer ) { if( !m_DepthTextureCache.Count() ) return false; depthBuffer = m_DepthTextureCache[ m_DepthTextureCache.Count()-1 ]; m_DepthTextureCache.Remove( m_DepthTextureCache.Count()-1 ); return true; } void CClientShadowMgr::DeallocateDepthBuffer( CTextureReference &depthBuffer ) { m_DepthTextureCache.AddToTail( depthBuffer ); depthBuffer.Shutdown(); } void CClientShadowMgr::SetFlashlightTarget( ClientShadowHandle_t shadowHandle, EHANDLE targetEntity ) { Assert( m_Shadows.IsValidIndex( shadowHandle ) ); CClientShadowMgr::ClientShadow_t &shadow = m_Shadows[ shadowHandle ]; if( (shadow.m_Flags&SHADOW_FLAGS_FLASHLIGHT) == 0 ) return; // shadow.m_pTargetRenderable = pRenderable; shadow.m_hTargetEntity = targetEntity; } void CClientShadowMgr::SetFlashlightLightWorld( ClientShadowHandle_t shadowHandle, bool bLightWorld ) { Assert( m_Shadows.IsValidIndex( shadowHandle ) ); CClientShadowMgr::ClientShadow_t &shadow = m_Shadows[ shadowHandle ]; if( (shadow.m_Flags&SHADOW_FLAGS_FLASHLIGHT) == 0 ) return; shadow.m_bLightWorld = bLightWorld; } bool CClientShadowMgr::IsFlashlightTarget( ClientShadowHandle_t shadowHandle, IClientRenderable *pRenderable ) { ClientShadow_t &shadow = m_Shadows[ shadowHandle ]; if( shadow.m_hTargetEntity->GetClientRenderable() == pRenderable ) return true; C_BaseEntity *pChild = shadow.m_hTargetEntity->FirstMoveChild(); while( pChild ) { if( pChild->GetClientRenderable()==pRenderable ) return true; pChild = pChild->NextMovePeer(); } return false; } //----------------------------------------------------------------------------- // A material proxy that resets the base texture to use the rendered shadow //----------------------------------------------------------------------------- class CShadowProxy : public IMaterialProxy { public: CShadowProxy(); virtual ~CShadowProxy(); virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pProxyData ); virtual void Release( void ) { delete this; } private: IMaterialVar* m_BaseTextureVar; }; CShadowProxy::CShadowProxy() { m_BaseTextureVar = NULL; } CShadowProxy::~CShadowProxy() { } bool CShadowProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { bool foundVar; m_BaseTextureVar = pMaterial->FindVar( "$basetexture", &foundVar, false ); return foundVar; } void CShadowProxy::OnBind( void *pProxyData ) { unsigned short clientShadowHandle = ( unsigned short )pProxyData; ITexture* pTex = s_ClientShadowMgr.GetShadowTexture( clientShadowHandle ); if ((m_BaseTextureVar->GetType() != MATERIAL_VAR_TYPE_TEXTURE) || (pTex != m_BaseTextureVar->GetTextureValue())) { m_BaseTextureVar->SetTextureValue( pTex ); } } EXPOSE_INTERFACE( CShadowProxy, IMaterialProxy, "Shadow" IMATERIAL_PROXY_INTERFACE_VERSION ); //----------------------------------------------------------------------------- // A material proxy that resets the base texture to use the rendered shadow //----------------------------------------------------------------------------- class CShadowModelProxy : public IMaterialProxy { public: CShadowModelProxy(); virtual ~CShadowModelProxy(); virtual bool Init( IMaterial *pMaterial, KeyValues *pKeyValues ); virtual void OnBind( void *pProxyData ); virtual void Release( void ) { delete this; } private: IMaterialVar* m_BaseTextureVar; IMaterialVar* m_BaseTextureOffsetVar; IMaterialVar* m_BaseTextureScaleVar; IMaterialVar* m_BaseTextureMatrixVar; IMaterialVar* m_FalloffOffsetVar; IMaterialVar* m_FalloffDistanceVar; IMaterialVar* m_FalloffAmountVar; }; CShadowModelProxy::CShadowModelProxy() { m_BaseTextureVar = NULL; m_BaseTextureOffsetVar = NULL; m_BaseTextureScaleVar = NULL; m_BaseTextureMatrixVar = NULL; m_FalloffOffsetVar = NULL; m_FalloffDistanceVar = NULL; m_FalloffAmountVar = NULL; } CShadowModelProxy::~CShadowModelProxy() { } bool CShadowModelProxy::Init( IMaterial *pMaterial, KeyValues *pKeyValues ) { bool foundVar; m_BaseTextureVar = pMaterial->FindVar( "$basetexture", &foundVar, false ); if (!foundVar) return false; m_BaseTextureOffsetVar = pMaterial->FindVar( "$basetextureoffset", &foundVar, false ); if (!foundVar) return false; m_BaseTextureScaleVar = pMaterial->FindVar( "$basetexturescale", &foundVar, false ); if (!foundVar) return false; m_BaseTextureMatrixVar = pMaterial->FindVar( "$basetexturetransform", &foundVar, false ); if (!foundVar) return false; m_FalloffOffsetVar = pMaterial->FindVar( "$falloffoffset", &foundVar, false ); if (!foundVar) return false; m_FalloffDistanceVar = pMaterial->FindVar( "$falloffdistance", &foundVar, false ); if (!foundVar) return false; m_FalloffAmountVar = pMaterial->FindVar( "$falloffamount", &foundVar, false ); return foundVar; } void CShadowModelProxy::OnBind( void *pProxyData ) { unsigned short clientShadowHandle = ( unsigned short )pProxyData; ITexture* pTex = s_ClientShadowMgr.GetShadowTexture( clientShadowHandle ); m_BaseTextureVar->SetTextureValue( pTex ); const ShadowInfo_t& info = s_ClientShadowMgr.GetShadowInfo( clientShadowHandle ); m_BaseTextureMatrixVar->SetMatrixValue( info.m_WorldToShadow ); m_BaseTextureOffsetVar->SetVecValue( info.m_TexOrigin.Base(), 2 ); m_BaseTextureScaleVar->SetVecValue( info.m_TexSize.Base(), 2 ); m_FalloffOffsetVar->SetFloatValue( info.m_FalloffOffset ); m_FalloffDistanceVar->SetFloatValue( info.m_MaxDist ); m_FalloffAmountVar->SetFloatValue( info.m_FalloffAmount ); } EXPOSE_INTERFACE( CShadowModelProxy, IMaterialProxy, "ShadowModel" IMATERIAL_PROXY_INTERFACE_VERSION );
# | Change | User | Description | Committed | |
---|---|---|---|---|---|
#1 | 5821 | Knut Wikstrom |
Added Valve Source code. This is NOT to be commited to other than new code from Valve. |