<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>ActiveLayerIndex</key> <integer>0</integer> <key>ApplicationVersion</key> <array> <string>com.omnigroup.OmniGraffle</string> <string>138.12.0.121252</string> </array> <key>AutoAdjust</key> <true/> <key>BackgroundGraphic</key> <dict> <key>Bounds</key> <string>{{0, 0}, {576, 733}}</string> <key>Class</key> <string>SolidGraphic</string> <key>ID</key> <integer>2</integer> <key>Style</key> <dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <key>CanvasOrigin</key> <string>{0, 0}</string> <key>ColumnAlign</key> <integer>1</integer> <key>ColumnSpacing</key> <real>36</real> <key>CreationDate</key> <string>2009-11-20 11:08:45 -0800</string> <key>Creator</key> <string>Michael Bishop</string> <key>DisplayScale</key> <string>1 0/72 in = 1.0000 in</string> <key>ExportShapes</key> <array> <dict> <key>InspectorGroup</key> <real>255</real> <key>ShapeImageRect</key> <string>{{2, 2}, {22, 22}}</string> <key>ShapeName</key> <string>F6F4B631-D0EE-4969-9F9D-5B731242A5ED-6384-0000261646397644</string> <key>ShouldExport</key> <string>YES</string> <key>StrokePath</key> <dict> <key>elements</key> <array> <dict> <key>element</key> <string>MOVETO</string> <key>point</key> <string>{-0.5, -0.5}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.497512, 0.5}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.129353, 0.5}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.129353, 0.179012}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.201492, 0.179012}</string> </dict> <dict> <key>control1</key> <string>{0.201492, 0.179012}</string> <key>control2</key> <string>{0.5, 0.131687}</string> <key>element</key> <string>CURVETO</string> <key>point</key> <string>{0.5, -0.166667}</string> </dict> <dict> <key>control1</key> <string>{0.5, -0.46502}</string> <key>control2</key> <string>{0.201492, -0.5}</string> <key>element</key> <string>CURVETO</string> <key>point</key> <string>{0.201492, -0.5}</string> </dict> <dict> <key>element</key> <string>CLOSE</string> </dict> <dict> <key>element</key> <string>MOVETO</string> <key>point</key> <string>{-0.129367, -0.267498}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.069638, -0.263382}</string> </dict> <dict> <key>control1</key> <string>{0.069638, -0.263382}</string> <key>control2</key> <string>{0.151728, -0.238691}</string> <key>element</key> <string>CURVETO</string> <key>point</key> <string>{0.154215, -0.160502}</string> </dict> <dict> <key>control1</key> <string>{0.156703, -0.0823131}</string> <key>control2</key> <string>{0.0547125, -0.0555634}</string> <key>element</key> <string>CURVETO</string> <key>point</key> <string>{0.0547125, -0.0555634}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.129367, -0.0555634}</string> </dict> <dict> <key>element</key> <string>CLOSE</string> </dict> <dict> <key>element</key> <string>MOVETO</string> <key>point</key> <string>{-0.129367, -0.267498}</string> </dict> </array> </dict> <key>TextBounds</key> <string>{{0, 0}, {1, 1}}</string> </dict> <dict> <key>InspectorGroup</key> <real>255</real> <key>ShapeImageRect</key> <string>{{2, 2}, {22, 22}}</string> <key>ShapeName</key> <string>3831DF12-8556-4CB7-B523-E63A2D8F7FB7-6384-00002613AC09A68F</string> <key>ShouldExport</key> <string>YES</string> <key>StrokePath</key> <dict> <key>elements</key> <array> <dict> <key>element</key> <string>MOVETO</string> <key>point</key> <string>{0.445493, -0.498339}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.206499, -0.5}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.483228, 0.149502}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.5, 0.284053}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.0828092, 0.284053}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.0241091, 0.5}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.240042, 0.5}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.284067, 0.285715}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.468553, 0.285715}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.5, 0.136213}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.315514, 0.136213}</string> </dict> <dict> <key>element</key> <string>CLOSE</string> </dict> <dict> <key>element</key> <string>MOVETO</string> <key>point</key> <string>{0.19182, -0.22923}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{0.112156, 0.127914}</string> </dict> <dict> <key>element</key> <string>LINETO</string> <key>point</key> <string>{-0.189731, 0.127914}</string> </dict> <dict> <key>element</key> <string>CLOSE</string> </dict> <dict> <key>element</key> <string>MOVETO</string> <key>point</key> <string>{0.19182, -0.22923}</string> </dict> </array> </dict> <key>TextBounds</key> <string>{{0, 0}, {1, 1}}</string> </dict> </array> <key>GraphDocumentVersion</key> <integer>6</integer> <key>GraphicsList</key> <array> <dict> <key>Bounds</key> <string>{{116.238, 492.119}, {59.6439, 72.1068}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>29</integer> <key>Shape</key> <string>F6F4B631-D0EE-4969-9F9D-5B731242A5ED-6384-0000261646397644</string> <key>Style</key> <dict> <key>fill</key> <dict> <key>GradientColor</key> <dict> <key>w</key> <string>0.666667</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Cap</key> <integer>0</integer> <key>Join</key> <integer>0</integer> <key>Width</key> <real>9</real> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{135.663, 491.288}, {85.4839, 107.885}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>28</integer> <key>Shape</key> <string>3831DF12-8556-4CB7-B523-E63A2D8F7FB7-6384-00002613AC09A68F</string> <key>Style</key> <dict> <key>fill</key> <dict> <key>GradientColor</key> <dict> <key>w</key> <string>0.666667</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Cap</key> <integer>0</integer> <key>Join</key> <integer>0</integer> <key>Width</key> <real>9</real> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{307.687, 295.955}, {16.9166, 15.2819}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>25</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{-0.5, -0.5}</string> <string>{-0.5, -0.5}</string> <string>{0.201643, -0.480582}</string> <string>{0.201643, -0.480582}</string> <string>{0.201643, -0.480582}</string> <string>{0.491072, -0.364079}</string> <string>{0.499843, 0.0048542}</string> <string>{0.508613, 0.373786}</string> <string>{0.14902, 0.5}</string> <string>{0.14902, 0.5}</string> <string>{0.14902, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{285.581, 279.19}, {59.6439, 72.1068}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>24</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{-0.5, -0.5}</string> <string>{-0.5, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.5, -0.46502}</string> <string>{0.5, -0.166667}</string> <string>{0.5, 0.131687}</string> <string>{0.201492, 0.179012}</string> <string>{0.201492, 0.179012}</string> <string>{0.201492, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.5}</string> <string>{-0.129353, 0.5}</string> <string>{-0.129353, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>Color</key> <dict> <key>b</key> <string>0.516916</string> <key>g</key> <string>0.517023</string> <key>r</key> <string>0.51696</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{331.529, 307.571}, {32.6165, 38.5305}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>23</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{0.5, -0.5}</string> <string>{0.5, -0.5}</string> <string>{0.291209, 0.5}</string> <string>{0.291209, 0.5}</string> <string>{0.291209, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>GradientColor</key> <dict> <key>b</key> <string>0.666667</string> <key>g</key> <string>0.666667</string> <key>r</key> <string>0.666667</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{305.006, 278.359}, {85.4839, 107.885}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>FontInfo</key> <dict> <key>Font</key> <string>Helvetica</string> <key>Size</key> <real>2</real> </dict> <key>ID</key> <integer>22</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{0.445493, -0.498339}</string> <string>{0.445493, -0.498339}</string> <string>{0.315514, 0.136213}</string> <string>{0.315514, 0.136213}</string> <string>{0.315514, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.468553, 0.285715}</string> <string>{0.468553, 0.285715}</string> <string>{0.468553, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.240042, 0.5}</string> <string>{0.240042, 0.5}</string> <string>{0.240042, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0828092, 0.284053}</string> <string>{0.0828092, 0.284053}</string> <string>{0.0828092, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.483228, 0.149502}</string> <string>{-0.483228, 0.149502}</string> <string>{-0.483228, 0.149502}</string> <string>{0.206499, -0.5}</string> <string>{0.206499, -0.5}</string> <string>{0.206499, -0.5}</string> <string>{0.445493, -0.498339}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>Color</key> <dict> <key>b</key> <string>0.516916</string> <key>g</key> <string>0.517023</string> <key>r</key> <string>0.51696</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{120.692, 278.359}, {59.6439, 72.1068}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>27</integer> <key>Shape</key> <string>F6F4B631-D0EE-4969-9F9D-5B731242A5ED-6384-0000261646397644</string> <key>Style</key> <dict> <key>fill</key> <dict> <key>Color</key> <dict> <key>b</key> <string>0</string> <key>g</key> <string>0</string> <key>r</key> <string>0</string> </dict> <key>GradientColor</key> <dict> <key>w</key> <string>0.666667</string> </dict> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{140.117, 277.528}, {85.4839, 107.885}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>26</integer> <key>Shape</key> <string>3831DF12-8556-4CB7-B523-E63A2D8F7FB7-6384-00002613AC09A68F</string> <key>Style</key> <dict> <key>fill</key> <dict> <key>Color</key> <dict> <key>b</key> <string>0</string> <key>g</key> <string>0</string> <key>r</key> <string>0</string> </dict> <key>GradientColor</key> <dict> <key>w</key> <string>0.666667</string> </dict> </dict> <key>stroke</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{285.581, 123.086}, {16.9166, 15.2819}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>17</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{-0.5, -0.5}</string> <string>{-0.5, -0.5}</string> <string>{0.201643, -0.480582}</string> <string>{0.201643, -0.480582}</string> <string>{0.201643, -0.480582}</string> <string>{0.491072, -0.364079}</string> <string>{0.499843, 0.0048542}</string> <string>{0.508613, 0.373786}</string> <string>{0.14902, 0.5}</string> <string>{0.14902, 0.5}</string> <string>{0.14902, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Cap</key> <integer>0</integer> <key>Join</key> <integer>0</integer> <key>Width</key> <real>9</real> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{263.475, 106.321}, {59.6439, 72.1068}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>16</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{-0.5, -0.5}</string> <string>{-0.5, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.5, -0.46502}</string> <string>{0.5, -0.166667}</string> <string>{0.5, 0.131687}</string> <string>{0.201492, 0.179012}</string> <string>{0.201492, 0.179012}</string> <string>{0.201492, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.5}</string> <string>{-0.129353, 0.5}</string> <string>{-0.129353, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Cap</key> <integer>0</integer> <key>Join</key> <integer>0</integer> <key>Width</key> <real>8</real> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{309.423, 134.702}, {32.6165, 38.5305}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>15</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{0.5, -0.5}</string> <string>{0.5, -0.5}</string> <string>{0.291209, 0.5}</string> <string>{0.291209, 0.5}</string> <string>{0.291209, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>GradientColor</key> <dict> <key>b</key> <string>0.666667</string> <key>g</key> <string>0.666667</string> <key>r</key> <string>0.666667</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Cap</key> <integer>0</integer> <key>Join</key> <integer>0</integer> <key>Width</key> <real>8</real> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{282.9, 105.49}, {85.4839, 107.885}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>FontInfo</key> <dict> <key>Font</key> <string>Helvetica</string> <key>Size</key> <real>2</real> </dict> <key>ID</key> <integer>14</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{0.445493, -0.498339}</string> <string>{0.445493, -0.498339}</string> <string>{0.315514, 0.136213}</string> <string>{0.315514, 0.136213}</string> <string>{0.315514, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.468553, 0.285715}</string> <string>{0.468553, 0.285715}</string> <string>{0.468553, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.240042, 0.5}</string> <string>{0.240042, 0.5}</string> <string>{0.240042, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0828092, 0.284053}</string> <string>{0.0828092, 0.284053}</string> <string>{0.0828092, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.483228, 0.149502}</string> <string>{-0.483228, 0.149502}</string> <string>{-0.483228, 0.149502}</string> <string>{0.206499, -0.5}</string> <string>{0.206499, -0.5}</string> <string>{0.206499, -0.5}</string> <string>{0.445493, -0.498339}</string> </array> </dict> <key>Style</key> <dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> <key>stroke</key> <dict> <key>Cap</key> <integer>0</integer> <key>Join</key> <integer>0</integer> <key>Width</key> <real>8</real> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{164.688, 122.255}, {16.9166, 15.2819}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>11</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{-0.5, -0.5}</string> <string>{-0.5, -0.5}</string> <string>{0.201643, -0.480582}</string> <string>{0.201643, -0.480582}</string> <string>{0.201643, -0.480582}</string> <string>{0.491072, -0.364079}</string> <string>{0.499843, 0.0048542}</string> <string>{0.508613, 0.373786}</string> <string>{0.14902, 0.5}</string> <string>{0.14902, 0.5}</string> <string>{0.14902, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{142.582, 105.49}, {59.6439, 72.1068}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>10</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{-0.5, -0.5}</string> <string>{-0.5, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.201492, -0.5}</string> <string>{0.5, -0.46502}</string> <string>{0.5, -0.166667}</string> <string>{0.5, 0.131687}</string> <string>{0.201492, 0.179012}</string> <string>{0.201492, 0.179012}</string> <string>{0.201492, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.179012}</string> <string>{-0.129353, 0.5}</string> <string>{-0.129353, 0.5}</string> <string>{-0.129353, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.497512, 0.5}</string> <string>{-0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>Color</key> <dict> <key>b</key> <string>0</string> <key>g</key> <string>0</string> <key>r</key> <string>0</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{188.53, 133.871}, {32.6165, 38.5305}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>ID</key> <integer>13</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{0.5, -0.5}</string> <string>{0.5, -0.5}</string> <string>{0.291209, 0.5}</string> <string>{0.291209, 0.5}</string> <string>{0.291209, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{-0.5, 0.5}</string> <string>{0.5, -0.5}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>GradientColor</key> <dict> <key>b</key> <string>0.666667</string> <key>g</key> <string>0.666667</string> <key>r</key> <string>0.666667</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> <dict> <key>Bounds</key> <string>{{162.007, 104.659}, {85.4839, 107.885}}</string> <key>Class</key> <string>ShapedGraphic</string> <key>FontInfo</key> <dict> <key>Font</key> <string>Helvetica</string> <key>Size</key> <real>2</real> </dict> <key>ID</key> <integer>12</integer> <key>Shape</key> <string>Bezier</string> <key>ShapeData</key> <dict> <key>UnitPoints</key> <array> <string>{0.445493, -0.498339}</string> <string>{0.445493, -0.498339}</string> <string>{0.315514, 0.136213}</string> <string>{0.315514, 0.136213}</string> <string>{0.315514, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.5, 0.136213}</string> <string>{0.468553, 0.285715}</string> <string>{0.468553, 0.285715}</string> <string>{0.468553, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.284067, 0.285715}</string> <string>{0.240042, 0.5}</string> <string>{0.240042, 0.5}</string> <string>{0.240042, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0241091, 0.5}</string> <string>{0.0828092, 0.284053}</string> <string>{0.0828092, 0.284053}</string> <string>{0.0828092, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.5, 0.284053}</string> <string>{-0.483228, 0.149502}</string> <string>{-0.483228, 0.149502}</string> <string>{-0.483228, 0.149502}</string> <string>{0.206499, -0.5}</string> <string>{0.206499, -0.5}</string> <string>{0.206499, -0.5}</string> <string>{0.445493, -0.498339}</string> </array> </dict> <key>Style</key> <dict> <key>fill</key> <dict> <key>Color</key> <dict> <key>b</key> <string>0</string> <key>g</key> <string>0</string> <key>r</key> <string>0</string> </dict> </dict> <key>shadow</key> <dict> <key>Draws</key> <string>NO</string> </dict> </dict> </dict> </array> <key>GridInfo</key> <dict/> <key>GuidesLocked</key> <string>NO</string> <key>GuidesVisible</key> <string>YES</string> <key>HPages</key> <integer>1</integer> <key>ImageCounter</key> <integer>2</integer> <key>KeepToScale</key> <false/> <key>Layers</key> <array> <dict> <key>Lock</key> <string>NO</string> <key>Name</key> <string>Layer 1</string> <key>Print</key> <string>YES</string> <key>View</key> <string>YES</string> </dict> </array> <key>LayoutInfo</key> <dict> <key>Animate</key> <string>NO</string> <key>circoMinDist</key> <real>18</real> <key>circoSeparation</key> <real>0.0</real> <key>layoutEngine</key> <string>dot</string> <key>neatoSeparation</key> <real>0.0</real> <key>twopiSeparation</key> <real>0.0</real> </dict> <key>LinksVisible</key> <string>NO</string> <key>MagnetsVisible</key> <string>NO</string> <key>MasterSheets</key> <array/> <key>ModificationDate</key> <string>2009-11-29 11:07:52 -0800</string> <key>Modifier</key> <string>Michael Bishop</string> <key>NotesVisible</key> <string>NO</string> <key>Orientation</key> <integer>2</integer> <key>OriginVisible</key> <string>NO</string> <key>PageBreaks</key> <string>YES</string> <key>PrintInfo</key> <dict> <key>NSBottomMargin</key> <array> <string>float</string> <string>41</string> </array> <key>NSLeftMargin</key> <array> <string>float</string> <string>18</string> </array> <key>NSPaperName</key> <array> <string>string</string> <string>US Letter</string> </array> <key>NSPaperSize</key> <array> <string>size</string> <string>{612, 792}</string> </array> <key>NSRightMargin</key> <array> <string>float</string> <string>18</string> </array> <key>NSTopMargin</key> <array> <string>float</string> <string>18</string> </array> </dict> <key>PrintOnePage</key> <false/> <key>QuickLookPreview</key> <data> JVBERi0xLjMKJcTl8uXrp/Og0MTGCjUgMCBvYmoKPDwgL0xlbmd0aCA2IDAgUiAvRmls dGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeAF9mMmSHbcRRff1FfUDAjEPa3ojrSxz 4bXiRXeIClI0B9m/73OBQhVev2dHRwc7LoGszJszvu6/7l93y08qeS8h7N9e9n/uf+7v 3n93++377vrP99v+kzVp1+9y8HV/9/eXb7eXf/3467dP27ePiHI2dnHO590FZ5wrewjR xOL32+f93c+f3f63L/2rpfaTjU84Z3Lze8jV5Oi2cdCPg+/+8fLptx8f//3y/sunL98+ fn758e3jbedj0truqOajNzW4tGdfjcuu7p93z7eLt2FLqZlig9s/ca6Y2Gzb77BoqvVl TzGYVGI/55uxwbt7LBmfa9mStyam3M/ZzN2GvAXDlOoxTfJKCpHvuuyNteMTJxRMjLai XkVuS1LPexOtC92M0DX5/altr/jkF37/GF56/0FEbHb/8F4O6Kz8pH/kTqg86cE38FT9 Qs/uSjC+5bbQs91hBz2uNhN96ucmPXfYoGf3zpsUZbU/2NkWaJKjmz7mvJBzBw1yUC6a EuxKziYjctdjIWex7AOxRUTxo8jwRGDMBG1rxvkmy100IQjKRHOracNBtZoUTgStkP14 9fU5vfOgC8HU4rblG650l8qA4xsLsnzjuIp6Un8G9uYI7IS/si8mOf7XVTLJk1IHIrH3 iLfeePkp+2haLQU/DGTLFloLvoGXeSpVZ1p20DXlpAIXsZK9D8iNSIb8WgnbeUrRPTCy KhG/wctYFMdxccV+7+idORC6PcbrtNpZ5MllpyYHslh9INMeoqMa63y4LMTrJvmUV6td ciR4bYvkBI3JxRPZ3EQuq/cTW6x2Bd+0XFerF+y0GtUOc+4i9GBvz86aggYyt2STKEUd ixH/87m32ObwXEwh7xmTc6biCMnW4XocbX2rmCysJEtst2JC4z9dSTruQdAnB0e6v0F0 bzj1PIQKWHKAi66PKaHiPQ86KppPabVJUEqU6MWmEzttcgRvCN53K7tNcmMrliZy2eQC ittK8E4LXMAZgWr2gGyXTeeh1aZLVbknZIq3J1WUZyFYdZSQvMkkai/ZtXi5RQ0r1KCO Usn9A0OrllTuSYLY8yFEtPd49w7LalZ0FNdM9qoRga9hI+IuKCDEo4BuNjKbY77y5z0g ugKiEh0u1C6L/uNbVDfpxUPGPjPrda/7fyg5v/D7x0OBkzfPW4rgrD59kQHRkcJK9C1k 3GEHGa5ZQiFXqu1JxsR0Nw4yKM/BhHJHxgJNMnTTlqLaPciYQGdnkNFjgEZ9R8ZZQRYy plkU7u57iLaBjkxzgMHuegLNe0EaJvJQz6ohklgXhMzj7nbdfcwQ9eR5kBmJFkdYA82P 9PYbRkCMj4yOPKDrI8td6e2J2Yhq2WeTi+omndMEF9UtBgTPB7RNKPjAjEYpVL9wKTOt nQhNIkcmmNuFqV+4YN0piHGQmKXgbVP0iXDP10QDI9vnqe6fiVFh08gZ6Z49n0oHhmNp jw8WPSdznnNMHBrbFssPSFE3yZinTjvVM2pkVrqQYE1IjCeL5eoZNbd22enod0Qf907R E1ksP08pVA/LHd0zkjQK32n5xGDosnzqOiLzuE99p5rQqxg0qOox0WcFUUu8JL7F0M8b EkytojAAUh6FROI5869reB9Dh7fVKWg/yNsYC/WHOgUdXsQ+Iqeh16Gu/7B0akpmve6N MvP12Xh6nKVrG8vcsVgliHlVxWVatZ3YaZXziULKhD+tIkCZyxlqFqtcyFRGdo3TBheo 3STKZedErsAlxcah4ZUHTZV3c1pjYmQziC5ukTAoDbUxxVKoHDO9sEbXpe1Fho/EOkCd Ns326daF7r49FIfBfXzuw3UgRu4wphTHwhEiY04t4gW31cKfK0S2MyV2ad7SdTim3YI6 3aWdGLxZ1qFQ1eTG6kMc0e+I6Quj8VMJS2JmjhSSwiyNZa4xOTJab4HhuRdHDUVU8cjd E3l+lwUGrhydRLRAiOSBhGgj8ogD6mOnivmh1YrERyyS7a60c4cIjMVPsO3EOEz0MxpH jEwNgi5Em6pNKnUX1vs9zPb1Dendr1J2Aqf2Nw1HlH51C9ovDUxhrGnRZeY4QZaAkEUH tp2Yo3/YzBwXidBurBDvGNUicZzJRGkFFpjr8EBitmNEcIn+Xsh4mpCxTWodCGcOhHtT qwkpO0/wVPVVm73LLVv2SP6iIwXiumMu9yVb0UpkYA0msDL0vkjz964pWigVY8lmrGbv UIwemGqvgsnqJaDg5LFkK6xTIElXLNNLMjtLYFPXzK7BAMMtFeqAJA0FArt4v5nGio1i KJDvIdIrtJFndqzYgQmWlBvpiCuRRj99YplWbP2wQ2r8ycRpp771HZLeoEhKwzB2yP3T FgghjW7d1g5J9OPdhepO8CPVm+q8xloxTVmjnZF2zVMyDgQO3iAhMkZ4tiVWCEM5EIUD IdKYvMbaNzEygITW2nfJUQ/T2veIqIoW46gy5NJxCg0ODIMJ/LH2SXFiUxXgxGhmb82B XNa+Qe6QQqgzpEZtCoHR16asrCEGYg0KggdMrbol3pgiU1NUFQ+aXxhMIotC9cQfagPB iZKG/9PyE5weiDJ1R5tJ7xkPyI0O3829DvUomeCp6SvDKk2FCuEp6Sn0gu9omqjfOlac GrL2DdtyoLSwoEGh6oBWF2YwkpZveSwHgyfsZQddMXpKJtL6CwH1m2MU4+YZ7A+Im2oC vE1RqgjMFpMqjcewmKBvxc6nCl59bIl9XJBLqeloNzDuqmr3dx/apd5zVMxI4TZqJsyP bFIdRGmM4Kqwnk4PV//H0HZwF+kjOFAT8MmdMM8rw8IdgzwjWX8nO7lLrH21QM7C3R12 cNcff0pYuTuglTveNfFc7MPG5G7FJnca+Nnl+vA2uZvYPXd6FrzjTscs06IUntxN7J67 eVUDhoMpr5biI3MNdQGmgKivSCGP8aMEqphHRoeJdfYmpmbtqIWcY1NldSIu/h+m/ZlP EXe8ErCJj1eCjijoq+qheuVxyuvjSb1ySp+6PgC3jejqutLzvBKTJVgmJcoUg5Ins6t6 ilR9A2mWdpZGqnFGDzi80lBx8PlIRQ0z6pXkkSWivd5UlHfqIZ70ZI+mbqtVPiC37VJq nuqJ8ETV5wF9uik20sI1ht7pJsqZHuX6o8d001NMo2GlPS1uSgcmd05yJ3Y5IFFjeNUZ Dx/dTbRz9jkKy+KmqEE+ugBtRxAcul6iJ9BHmml7EiN65rjclJihXLW9IB1umlB3QHdT wgHjdXG6SVqRexrNTzcl1WIeL06nJEWF3ngfEa6dSs1Td26aqh7L/K//BWrL/TQKZW5k c3RyZWFtCmVuZG9iago2IDAgb2JqCjI0NjgKZW5kb2JqCjMgMCBvYmoKPDwgL1R5cGUg L1BhZ2UgL1BhcmVudCA0IDAgUiAvUmVzb3VyY2VzIDcgMCBSIC9Db250ZW50cyA1IDAg UiAvTWVkaWFCb3ggWzAgMCA1NzYgNzMzXQo+PgplbmRvYmoKNyAwIG9iago8PCAvUHJv Y1NldCBbIC9QREYgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUkgXSAvQ29sb3JTcGFjZSA8 PCAvQ3MxIDggMCBSID4+Ci9YT2JqZWN0IDw8IC9JbTEgOSAwIFIgL0ltMiAxMSAwIFIg Pj4gPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMCAwIFIgL1R5cGUgL1hPYmpl Y3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAyMDggL0hlaWdodCAyNTIgL0ludGVycG9s YXRlCnRydWUgL0NvbG9yU3BhY2UgMTMgMCBSIC9JbnRlbnQgL1BlcmNlcHR1YWwgL1NN YXNrIDE0IDAgUiAvQml0c1BlckNvbXBvbmVudAo4IC9GaWx0ZXIgL0ZsYXRlRGVjb2Rl ID4+CnN0cmVhbQp4Ae3QMQEAAADCoPVPbQwfiEBhwIABAwYMGDBgwIABAwYMGDBgwIAB AwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBg wIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYM GDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIAB AwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBg wIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYM GDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIAB AwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBg wIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYM GDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIAB AwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBg wIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYM GDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIAB AwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDDw HBhmXgABCmVuZHN0cmVhbQplbmRvYmoKMTAgMCBvYmoKNzA5CmVuZG9iagoxMSAwIG9i ago8PCAvTGVuZ3RoIDEyIDAgUiAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2Ug L1dpZHRoIDE1NiAvSGVpZ2h0IDE4MiAvSW50ZXJwb2xhdGUKdHJ1ZSAvQ29sb3JTcGFj ZSAxMyAwIFIgL0ludGVudCAvUGVyY2VwdHVhbCAvU01hc2sgMTYgMCBSIC9CaXRzUGVy Q29tcG9uZW50CjggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCngB7dCBAAAA AMOg+VMf4QKFUGHAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAED BgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDA gAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwY MGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAED BgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDA gAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwY MGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDAgAED BgwYMGDAgAEDBgwYMGDAgAEDBgwYMGDgDwxMxwABCmVuZHN0cmVhbQplbmRvYmoKMTIg MCBvYmoKMzk1CmVuZG9iagoxNiAwIG9iago8PCAvTGVuZ3RoIDE3IDAgUiAvVHlwZSAv WE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDE1NiAvSGVpZ2h0IDE4MiAvQ29s b3JTcGFjZQovRGV2aWNlR3JheSAvSW50ZXJwb2xhdGUgdHJ1ZSAvQml0c1BlckNvbXBv bmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4Ae1d91uUSbPdpK5K VJIEycgAgkiSJDnpIDkjoChBQHISRXJGshKUHBRJoqLu7vfcf+2e6n4nD2FA9373eawf EGFgDtVd1dVVp+r95Zef8v008Ov3lO8FC5h+k8nvJxTZb/oNv/hEGDmu33//448/Tn1H wa/D30g4jwuQawy4Tp06ffrMmT+5nD2BCL/izzNnTp/GnwqEHJ/G+mM6+52AAdbZc+fO nz+vpaWlfSLBL9DC7zl/7tzZPwkh8DH9abi8BI2QnQEuoNLW0dHV09P/DqKnp6ujo6MN jADI4bHFPbryGDTojJBp6+jq61+4aGBgaGhkZHwSMTIyMjQ0MDC4eEFfX09HB/hk8I6s O4LGlEbI9C8YGBgZm1wyNTUzN7c4gZhDzMxMTS+ZGBsbEkBdHW3SHltbMowj6Y4WlDba OS0dvQsGRiamZhYWllZW1ja2JxQbG2srK8vLFuZmpibAR/C0SHmnTpFdHAncr4CGrXZe S0efkAGXja29wxVHkcjJycn5OIKfg4hEIkfHKw72drbWVpctzC4BHhaX0J2GWRxJdWxF AU1bV9/A2NTCysbeQeTkctXNzd3d/frxBT/tfu2am9tVF2eRo4O9rbWlheklY4MLCugO W1dS22lojaCZWdrYOzpfdXP38PLx8fWD+Gss9FNcfH1v+Ph4eXq4X3N1cXJ0sLW6bC6g Oycs7GG77lcYAu01fQMTcyvbK85u7p4+vv6BQcGhYZDw4wn9aFhoaEhw0M1Af78b3p7u bi5OV+xsLM1NjQ30dbX5wh62roLaAM3YzMpOdNXd60ZAUEh4ZHTMbXHsnWNLbGysWCy+ fSsmKjIiLDgowM+H4DnaA90lo4v6OlqkOrbrDlhXrjZtvYtYUDuRm4dPQHBY1K3YuMTk lNT0E0laampKclJifJz4VnRkWHCgn7eHm4vI3vqyGbYdqY4b7AH2CmzYbToXjEwv24rc PP2Cw2NiE1LSs+7m5N3Pz89/cDzBT+bn37+Xl5tzNysjLSUxThwTGRbk7+MJ3dlZWZiS 6ti6kr3uq7lffzt15py2noGJhc2Vqx5+wZG341MycvLyC4pLSssePy4/pjx+/ListLTk UXFhQf693LuZaUlx4ujwYH8fDzcnB1tSHVvX0+Tq9gUHK4Xa9I1Mreyd3X2CIsWJ6Xfv FRSXllfV1NY3nETq6+pqa6qqyh+XFhfk593NSEmMjQkP8vN2vyqyszI3Mbygi013IDiG TfeisYWNo6tnQDig5eQXl1XWNjQ9a25pPZG0PG9uftrU2FBbXVH2qCA/Nys1MTY67Kav J1RnjXXFpjsY3G+/nz6rpWdw6bKdk/uN4Jj49JwHj8prG561tHd29/adRHp7e7q7Ozva WpufPqmvqSgtfpCXlZogjgz293Z3uWJ7GZtO72BwMIWz2rSkDlc9/cPEKXfzH1XUNbV0 dPcNDg2PnkBGRoaHh4YGB/v7ujvbW5411laVFT/IzUyOiwkLvOFxVWRraWosBad+y/32 x5lzOheMzW1Ebj43o+Iz7hWV1za1dvW9GBmfmJycnDqu4GcnJ1+9nBgfHRka7O/pbGtu qqsqK7p/Ny0RqvPzdBPZETi2rPBzasEB23kdbDdbJ3ffkFvJdx+W1jS1dg8Mj7+afj07 Nzd/XJmbm5udnX3zemZ68uXE6PBgX3f786baypKCvMzk2KgQPy+AsyJwMIhTf6g31t9g prq03Vw8/MLEaXnFlQ3PuwZGJqbezC8ur6ysHlNWIMvLy0uLC/Nzb2amXk2MDvV3tzc3 1jwuup+dEhcTGkDgLGEQ8HM4IdSC49jYdguMjMvML6192tE3PDE9u7Cy9m59/f1xZZ3k 3bu3a6srywvzszOTQNfX1dpUV/HoQU5afEyYBBycMPMkalaVsOkZAJub983oxOyC8oaW 7hfjU7OLq+/eb25v7xxbtre3t7Y2Nzfer79bW11emHs9NTE62NvR3FBV+jAnPYGDs718 CU4Y4NQqDti09AxNrR3dfIJjknKKqp609Y28erOwur658+HjCWV398POzvbmBuAtL869 nhwf6u9qeVJTVpBL4Pw93RxtLEwMyJNgVVUVR9j0Dc2sRdduhNxKyXtU87RzcGx6bvnd 5s7Hz3t7X44re1w+f/r4cZfBW1temJ15OTrY3dpU+xjg4mNC/TyvXrE2hz3QllNjqwyb EVyIu2+oOPVeaW1z94uJ14trG4D25dtJ5evXL3t7wLe7s7WxDnSvJ8de9LQ9ZeDiooP9 rrs4WJka0aqSOSgf+jJsZKb3S+tbeoZezUJtHwDt77//Ob78DfnrL/x1wPeZoXu3ujg7 NT7U207gclLjooJ83J1oy2FV1SlOwGYrcvcLi03PL2to7R2ZnF1e3/649w3I/nNckf5N AAh4DN3m+trS3PTEUF97U23Zw7spsRGBXthyWFVuDko77leEIdr6xuZwvQzb44bWvtHJ uZX1HWADtP/RWJT+GMIoQbez9X5teW5mYqi3ram6ND8r6XaYnwetqqG+DsxBecdpgE3p TY/8Xwm6L3sfP2xvvGXgelqfVBXfy0iICb7hLrKFreoyP6KouJNiky7dQasvoPu692mX gZsef9Hd0lBRmJt2B6vqesXKDOagqrhjYpNBUv+ZslLxKiwsgduB5manxgY7m7HlspNu h/pdd7a7rFZxx8EmwGFmyAxR8DR/Qcg4JXDlAcrAbW+sLc1OjsAeqh/dz4iLuuntdsWa KY5MVd6NaIyNv7HgHb59hQOTCf5HMAkhf5kcOvrC30xz2+/XFl5PDPW0NpQX5qSIw2SK U7IGwqalzk7JhyjaKXsj9p7MLZDbgl/9/OkTXD8E/37GQYKThAACH3upIjoG7sPW+sr8 NFb1WW1pfmZCVBAURztO+yxOVXlr0BAb++uZS+D+/uPuB5yYEvmwuwuMdNIxeFx7MnT4 YdpzH3c2seWwqm1PKouY4uCALZiPU1xUjs1Iwb+NkH9Trzf8egkyHEQfdrYRaWxubLBA agOfbiFw+bBL+Age1508OPzwl88faVVnJl50NZPi4qNuernCxxnoaVE4Iqc4zbBJoO3t 0RGJAAMB0Nu1tTUKQPHPWwr4Nje3KYCRQ6cEbu/Th813UNwoKQ477naoL3ycuTHcyJkT YWNaYwfQ9ub79bdrCG4XFxYWELnj4+LS8soaItINwNsldILqFMCxVd2QKu5+elxEgKeL PU5V+N9Tvx9Xb1xt/GykuGIFuOZm38zMTJPMzLx+Mzu/sLS8ugbtbX/4+IkWlq2rFBzb cl8+7zLFjfTBVAuyE2OCfWANpoZYVIUNp9GaCg7088cPO5vv364sLcy+npnCVWV8DHfF sbGJiZeTUzNvZheWVtagO6Y6VXB//0XmQDtufLDzaXVxXircCB1cxvra5xQ2nKbYvn1j xyIiCgoV6Y4yMvRicKAfMjD4YmhkdPzl5AyuQUBHqvu8pwYczIHtuFdDPc/ry/Iz4yID aVFNEI2cOSVnDEjVwL/J7BQxUt9+dsrU9oXOHQbtzdTLseEXA33dXR0d7ZCOjq7u3v7B odGJV9Nv5pdW321sUejMwcmtKlPcNnzc1Gh/+5OKgruJMczFwVIVN5yG2L59gx0waPOI /unW2dHagqTHkyeNT5qQQWlt7+zpGxwen5yZXVx5+14AR25YHty3L592mDXA/2JRU8Sh vtdENuZG+oobTopNFlsepDcysg8UhQHa6Iu+rrbnTxvra6urKirKKyqReWp48ux5e1ff IN1vF5YBDsv6hdmDFNt/6Oji1kCLWlean34n3P+6MzbcBR06GqRHqmbYyHMikni3gsB/ dLCnvbmpHjmiEiTZCh4WFBQVlz6uqK5/0tzW1Tc0NvmawGHPwZX8pai4v77tfcSizk3B xTWUP8xKYBvOEhuOPNw+2NIoJj9Ab8zEsNkWZyfHcGF6Wl/1GMmrPCQnszIzKdWJlCLy Y43N7T2Do68I3Mb27qe9bwrRPZ35sFRa1PGBjqaqopwkyYYjDyczBkW9HYKNjmr8UoSu CPp7cZcrLym4n5OVnpKUEB8Xn5CYnJqRnZdfVFpZh5QKA7eCWy5bVbkNR4tKlvp28TXO rWc1j/JSbofcuOZobWZIxrAPNvGh2LCk2G2Lb16N9nc8qy2npFUqJXOjIiHRt8RxialZ ufnF5TVPCNzk7OLa+taHT3tfyQNjx/0P23U48r/u7W7h3OIb7n4a93CCMUhPBgW9HY6N zsL15fnpCQqqKx/l56Qn3bkVGRYSFAgJCgmLjIkFuryCsmoCN447+FtcdLHj5LGR4viG QzDS2vA4P0NiDBQnyU4tTbHRkiJshdqeVlNeI1Echfy3L8ovnp7eN/wCQyJi4pIzcgso U9Y79HIGuQtSHFkD6U1QHNtw71fnp0f72xphDBLve0Hn3GlZ7KsZNn7aLL5+id3WWF6Y B2iRwQE3UNZwdUEJ7Np1L9/AUEpn5xaUIR81gFVdYoqjRWXYGLh//pF4ODKGyoLshKhA r6sOlpcUDVUNNtyd1cdvtE1g+6t0ErLYKys5FilIb3dXZ0cHB5QORc6u7t5+wRG3EzPy iighNTTBFLdLKQIFbH/B+26uLc5M4EiFoSZGB3kjhrtkgFNL5kQ0xAZTgF+aHiXbL85L j4sO8fe6RqUg1ElR27RDOczTNyhCnJSVX1LdBMVNsfTFJ2HD4SJO1kDGQIa6xAy1ujg3 WQhFECYdhK2ecg776k0a3bQ1VhRkJ4vDA30o521ljvryJVPzy9b2IlcP36DI2JQcZPJa e4ZevmFpH2HDUZKAgQM2xElLb14OdTfXwoncQpjkSLEvORGJ81XR24HYmFtipt8C88pM iA72vQ5oFqZU9r5oYHTJ3NJW5OrpFxKTkHG/pKa5a5AW9T3i+6/MGGTYvkmcCLCVcAcn skYIdwJscCFrwl9bmke3cm83EasUoN6to0fFYYBz8woMF6fkFFY2dfSPTmENtnY/y7CR 4pgT2VqXOLh7qfy0h/PFaX9cvbEdTLukueZRLt0tKdViRhUWooJQNZHVnnxDYhKzHmJR cf7RhgM2ulDyzI88tsnhnpa60vuEzV1kg4vgkbHBtmgVBPnPP2RdG4J1VRffTZJkWlgi Hmycc1q8+ITUcWRcRr6Qy1t6y3N5yti2obfJ4d6W+lLhYBCiJOmhdeB+U4+NXAgd0dmw fAr06dqLRAvkz3Pa+oYs5R4QcScdOdDn3TAGwsYMVdAbFlU4GOiWCmxl3xUbuZDCLHhM 8kr8Znnqd1b2R6nC0t7Fwz88Ni2vBPnZ/ztsN+WwgWeFIvERsEn2249Z0wlhTWOwpght WPIMfJnTsjUNjIjbd00l2MhOf5Qt5CTdCqYbOVUItM4Tp4zXr+FEfIKi4jPzy5DXHpbl tZVtQcCGqJz5ELJTw5PZKU5B5kNqmQ/xZz4EFQLiQoEzBEaClYPLdb/QW0ko8TSijKLi Q6A2WLzM9z6vLZX4XiG4PNK5oMZO6RSkk4b+2nSENuR7UWsEm0dXF2wm4nE4XfMJjLyT mltchQN1bHqefK/KuYDgUnpm4VxgZ5b1wWfW/TL5M0sVG53QzCshW5CfmRgT4udx1RHU ABMjsMkMiTIEHoenf+itxCxU7aiMMrOwpnJmKZ71NUc86w/BJtzdeAqo4G6KOEI46y3M TEFLs7C0cXAiHkdUXFpuYQWOheFXcG8U+fLgEl6cLSmPQyQxUnEO3Z6ZN1Ibh6BmxOoy B+sN2HjScQBhL2Ik1KQCiLfgYGttZWllbesgcrnmBR5HbEp2fmnNM1TGpuaW1wXXy22B Y5PGlmTxhXcTkYPbP7Y8IjaKLVl6ijbcg+yUO1Eh/j7XQZdBcOngKHIhXk5IZGxS1v3i ykYKyl/TksrFlgSNHws7PCanrENWvDQjoi4ml2FrkcVvyvuNh/l0zRpGXq+iKC8jSRwZ Eujrdf2am+tVV2JZ+d0Mi76TnImwt76Zq40KiuyiBVB8SSVH1socNgfuMg8y4iL8PZzt +MVe9b5wdGw85ziA+kBpAe4yYHyAauTj7eXl7eMbEBRGvJwsIiSgfE11WFwC6fYs3GW4 2vgdUOZ602OR5XKi1KW2fHZQctYrYpvl+V41eqM74AqStUjBN1aVPMjJSI67HR0eCi7Z TbDSIqJvxyUR+QVcibZe3BbmWR0WuST5O6DUTKVhL92dRbg7M9ercj89IjbcnZFIXnwz OQrF1Vc+epiXlZYUL74dEx0VFR0jvpOQnJ6dV1BSUfe0rYcq60u020htHBtTGy2pkEji AQ1yDjxzybKq0hDpF4309g/PwL9bnp+ZGO5rf1ZfWVoIKk96anJiYkJCYhLoXzn3HhY/ rm5AQuTFGLvWs90mLKkAjUdIMAUk4OjeQQENM1N+zTqe3miffELpAkUflGiRRmqoKS8t eng/Lyc7KysrG6y0B4Ul5VX1TS2dfUPjk7zor5LkYksKXyRElmX5zBRcmClQUlVyZO2n N0ltVzHuxTGI6gBSg6sLAPeir7PlaUNtVXkpMckKCgqLH4H9BZJVS0fPwPDE1OzC6rtN WlFkLuVyXJRGotspT9U015RIEr5Ih1DK4bjYhILUxtuVhTdEWkDWsrmpoQ5MssrKyqpq kNKamls7uvuHRl8icYmsqpB+U9htdNAjGb26MD3GU1zsdoobILtlydIhKnpDjC9fE1fS Gy+roHz8Fplo8D1egGjU3vr82dMmEiKldXT3DiDjO/V6folno6nIAGg4FGS7jR0vLCAn 78ZSg3QqKJmCRtjoPg5r+IRVRQYfafLJ8dGhwb7e7q7ODpLO7p6+gRfDYxPI9i4sAxpl 8VWgkdrYlYiHWiX3yLsJKVXFwoycnfoKPId99QZspDiWKH//dnVx7s30JHhawyCSDUAG iZQGYOBYLSwTKwfQJNUPidboV5Cx06nM0uQoGiXzAIkugArbTV5vR8SG0iSy+FsboMqg KAOaFhHJxsfGxsdR+iBg80D2FtWFHSrMKFWN2F8HtUmjQJQX6DCVLqmcKWiGjSvuKypt VGhDNWt5CTQoFGe4oGQ0twDyFypam1tqC1rYd5RP3aXqArcEoSxDRUok3xRKHxpjY2V3 aI7KRkQzQk0LPDIuVGpbBbD3QCZUsxTLWQwa5fBIbcintlCSnJezkAtRKe4q7rdU4tX0 Dsu4Kwp2iuAGfze2HCPKAN0WL1JSlZLkLWqU7zcADDr7tAe3xpFJTVTYr/Ix4KO89DsR AR6yMqDMu/2ipLfDsEnACeh2QdLixd0NiEJplyMj56EMjaXvKfWJjDGqgJS4oKIMK5/K JclxOsjrDVypQ/TGNIdlJRaPpChONDIuH1BxltXEBUKB1EIlmxUryiq7/e0svYhclKeL gyVPDiiUdjXGRpqjdSV0jEzA2QQgEghUAngNWkwJ1UEKjX6MeUeiEvCsbF3ZA9ptUBuz BKTe5K1Uc71xzUngEUAZC0NKwZAAky0n2wwMGtUnFngyu7IoNzWWis48p6JMc9Bcb1AE qY5EIK8I9BVirpC62B6jb0tVxn+Ea43CP6EGUFOCzCciN+w2ciBMbdL4iIIRYb+ZIbYk bt6h+03yhvTm+4vkVcK/9EIJNCnlp+4xXSLDkBmwZ7sN1EEldt5xsSm9+4H/JWR/U8Fa kSpVlJcWFwnGDxHgmNoULUGN3uoO8m8HQtjnm1KloczP+G8oOBHFDGQkrKivO5hSIA5q qWFcqujtO2MTkJHSKCjlvMEeUPNKGDXPHycpY5hhtymrTXW/HRcbgVAndI4AGZSGExiF V+JbtjXVlHJKI1I9MAQiqlIjg4IlHH9N1cGQ/xrsFcJMmJ1w4B9QzIdoGTxVsC2JChpJ VFBaUZYvVoGmTm89+5+nfEtJMLA3J8ch8N9U/5FQaHH0IqZamp95xfi9IB/npIFCi8IJ XBuj0OIOo6y2Y2DjyASdMOfLCHAC11jxHzDQPiImIGY08UmmJ0YGQD0maEjzUH6MU4/V GYKqf7tXWoc86L5xCPRG0FTPLCLAqQojoAmUbQrhx4b6Op83Mj45MlD+nq7ylG35CIQ8 r8p+OxQbg8ZOU9WzXnLmIzohIaY7p7qDiU9E/BEwI541VCJTkYYmAbDJcY5KqO6qu01j bFxpLAr5TERxSYwEAhxrClD8QPyzVRYbU4sA3WdBPyjOZ/0LDNplYvbu2yKg5N8O0ZsA TTW2BP+NuinkBZ0VrLUCPK+pV+MjRHR51lBVVngvi7J21JSCRPGBrRWaY2NhL8XkYJnJ YvL5eTShyAsaUqgjhXhe7KbY1db8pLYcfRWsju7n6cqh6ZIdqLFRzfebcGSr3mWmp6em JpUFFzDeytPX09kKZMjs3MtOjb8VftPXw9WRaY13y6jbbJraAocmuwMuoteE3wGJACcn IxDqgAL7DFfrDmItAVkRo2xEh/L8NfqzpJ1tSgcCKQ2i0ZoybAwanLzC3bm/X6nLrJd1 juHCT61jjXXVyDfl52amxN+OCPbzuubsYMP62oSmu31aZDXExkJXWc4B/TmD/cg5dLS3 tSm157W0PH/ejEQJaF5VFWXoCMzJTEkQR4Wib8xNZG9lcenwfkBNsHG1IcmFXA3SIXK5 mqYnjUpdjfX19XW1IJ9VyloVE8RoBvTzcndxtLUyMzlCH6WG2ChVQ1x6nNoIKAakOa7K 8nJ0dcqkrAwdnsjLFRU+RItndkYqWjyJgONz3VVE60ktnof2n2qGTZobZLFOX2erkBss Kih4wNphZR/uozMWrbHZ0tbY0Jt+aD51JsLGJUM0Ah7et8uxGUruCwf6Xkpxqc2p5uZk ZWYo9h+nUUdxCvLA8XfQUoyW50Bfb9RIHO3Q3Aml6aKoeWi/s2bY9slFM/7bHbRfywSN 2NSJDfJZeFjwTdaKDWYQNTubQGk656nxlFoU1XsPeR8ir7fn+8YhQg6IX+JYDr9EyOGj 2ToinNrW5SQUHey8hd2HtbCLrthZo8HeiLewYyjGoaMJVPV2MDal2kcur32A/xYg6fiX /Ms6/72p9R8kLydHe7T+Y24CkJHSDl1Pme8lvV3jvWN1B2Kj/BTLZkBtFFhTzSg8GEvm 5XGdpiQoCCYmuMqPTECRlUYmABnW8wjTJmR6Oyo2RmlktbZiqrXBm6LWRmMb+IQJ/hFz JmjUxBVQz2xtadQEZjloPGpiX2xbrHdMIf9GpQ/VGmUAq1ESBgWxwYQOtSM6jjwEQzhP 1aypemzyeT1pbRfDBmygGppmIi9mmGyiNNrkT1gn2YDKtYUbptJHDfUm8N9YW4RCTRzT S+QE82BoIoxkJAw4XlrCxBoa4XCw55AB1AybwH8Dw0mRSwD+G42lURJM0jnRKB1FbCk4 FwQ7VbumX+BCFDgYSLXwZnR9jPORCc0f4hOIVEcQyfRy2GeaYiMGpwp3xQit6Di51clJ RjdpjE3gv4HbL+P8XNRjQSLRzJSFjbzCFqNNdtD5pE6Hx8CGirgyV0qbLiTyo8UYGukH zWExqAybHvMhN0LFh+83GX2e8d9QLgb/jTUIkWJURJ06jvy1Y2OrVGR1yJWLj/zeh71Q go36xENva6C3n9io95/310v0Bj7d+j7+Tbrf/mW9hfwXYjsvr7danAv/RXr7f4ItD3xh Npfgv2W/yentJ7bDnK7wffK9P/V2RGXJveyn3uSUocGn/816++W3P2ALBjRL5wbOLN5z wPjpEp61tCyKdIiEG8b6bdELjFo7Ueq0zyr0d2ugmoNfKsPmE0yzdKgfYuL10trmjkCT pEoME9bSyklOfdQpl/GvYNPFfKQrNIMoObe4GnN+xqkbbZvxw6jMJwhPcFE34AhdAR+A ESOwcn+k3hg2V++gmETMR6LGpUn0P6rMIAJFCtyOVZphAVZ0Wb6Mt/bjsJ1BIwk14Hjd jEqguVKcak1drRh9wEgp/AON6qHc29ToIHpPS9AQwRjD1Bf/w/Yb5pihAcfBxZPmcT0o q0M3GtFfwZYEh01etqh1fX7m5RAI21Ug9t8KwbAZ1rj047Cd07loQnPM0ByUfg8thsRo nkYP+homRxAJShDMlVhlpeOBrub6cmqLpyY+gc0sR+E82PY0+a4wm47Nf8NlJqewvKG5 sx8UWJqxxqZbcAIZqo2sDPpqlAruNRiuga4PNlxDmV6qybsf/FqaN0gDkmhuXnA0tWug HbgLs+kmp2lyhLyAwSjMIqsvB/GEcWKIXkoNhj9Gbwwb5g1ecfXChkvPKxRm+tFkhikM t5DK9BTNcBvooTFpJfkgroUQ8cTCBAwK+e7ug1Wh0XdphiTmNJqiGw3tQbeTsxiJHrMQ MZlhZBQMT6mMjY68GOjtam1uqC7FHDLwdXzA7iC+jhJPUqP3P+jFNAgDTsTEwlZ0DW1V cWlshmTjs9aOrp4+DLeQST/KjTTSsB7F47ysJHgQxg6jzjHFeSkHvZ1G32OHPQ1qtMYQ Sb+wW3z2JtHCwXJuw3ALqbS3gQH9pL4aDf95qGtDbZx5oqcyoEcjAAe8GNgwTxXtj5bU WHUzgs8sfVRWQexwGm4hFdT6wBwXCqEgKhC9g2aQYbvJM9QPeC9Nv0VzaDEY9CIpzuW6 b3CkOCElE10IhY9KH5dXVIDDLpGK8vLSEhqNmo2GfwzQxKBF1LUZUUGJjKgphv1ez+b3 YtirIWbkYqKqXxBm5CZSkwRG5GK2hbw8fCAZKXsbVQUfd2cHK3Nj0MPIFFSZJ/u9oSZf h6GeOUsNt9Sq7OpxA6MFosVxCUkpaemZmVnyglpfKkbxxmJIAo2TdcbAVgn15GhJeU1g sdcKw4XZJGtbmsnsGxgcFhEVIxbfiYuLl5e4uFjxrZjI8BBUQj3dGDROB1Clh2mMQv0P 0MDoM2exqjRm29bR2e26l48fG2UdHkHTLWQSEREWFhIciOkNntTLhkooTZLdlxaj/u00 +iofZo02agbOBm1zrteue6LZys8/IIDGW0glwN/P7wamSvCZ2aAD8MnKxD3RNM18VIQ0 DV9udrqt/RURzY1wd/fwwHALeUGtDw1sLk4iBztrS3MTaE1SdP9R2KA4Bo7NnL9kZoGe Q5obIXJydlEWZydq/LOjKeiobKPgyOvHR6xPHVVZcq9js/r5QHzqbjUxNbe4zCb129nZ 2cuLnZ2tLcbvY/o+irS8fiwpbcv9uu/7qQQcnnGgi2ccGBobXxKecHBZQeiJB3gmAMpq RgYXFcfuf19Acr9N9mwIjD3AVIYL9GgI9mAIEwWhQh/Ke3jcgz5/mgIrIB80xFvuTY77 KQMneaYGf6QGlfQuQC7KhP6Lr7LnZGB8wzlWDD1sbPxxIcl+joHjT/zAgzXomR/0IBI8 qkNZtLVZeQ/Pnzje4ztkb3n0zwjcb+x5JHiCBXuECz2+5Zyy4Gus2Meey8Ify6JxBe3o oKSvRCmKw6NnzJCcVi/8m/RAG3r5v4GMQRTgkQKlghqjRKRfI1AQvFz6l/1Ln+AtmXAA yh8l3/3XYf1Lf/3Pt/mpgZ8a0EQD/wut22D+CmVuZHN0cmVhbQplbmRvYmoKMTcgMCBv YmoKODYwOAplbmRvYmoKMTQgMCBvYmoKPDwgL0xlbmd0aCAxNSAwIFIgL1R5cGUgL1hP YmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAyMDggL0hlaWdodCAyNTIgL0NvbG9y U3BhY2UKL0RldmljZUdyYXkgL0ludGVycG9sYXRlIHRydWUgL0JpdHNQZXJDb21wb25l bnQgOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeAHtfftfTev3/ft9nHMc 5JJLEdFNSlGRogtRIVKkSJGIKCkiIroQ5ZISCZG73O8czvu8X59/7TvGfJ619lp771yO 2vV9vd7PD+ck2e2xn7XGeuacY475r3/9b/3vE/juT+Df/a3vfoXh8YOA8cv3LMIdHu+4 /3ehsYwY8euvv/7W78Jf/jpixAiCHtaYZGOABUB+/33kyD/6WSNHjvz9d4IFKIHU/+cz lH+j0ADM70AyatToMVxeTku+OWb0qFHAOhKgfh2uiAw0AEMoXmPHjRs/fsIEb/uaMGHC +PHjxo0b6zUGoExEw+9GIhxcaEAzeozXuHHAMXHS5MmTp0zxsa4pU6bgm5MnTfT2Biqv MaOJiFs03AARDq40ohkLMJMmT/H1nTrNz2/69OkzzIU/TPfz85s21dfXZ/LkiYDkNQZ7 9NtvBDSUd4rL7wYcbs4fo4DGe+JkH99pfjP8Z84KCAgMCgoKxsL/ZAUGBgTMmuk/Y7rf VN8pk4CIWzT8AAkcbI7XuAkTJ/tOm+4/KyAoeHZoaFhYuNMKmxMaOjs4KGCW/3Q/3ykT J4zzIiBccsNpgzScMWPHewPNjJkBwbPnhEdEzpsfFR0dY13R0VFR8yMj54YDU8DMGdN8 JnkTEO6h4XTFyb0zctQYbM6UqdNnBobMCY+Mil4QuygufvGSJQlqLZG1OD5+UezCmKh5 EeGhwQH+fr6TvXnJ/Y5baNhskAnHe5Kvn39AyJyI+TGxcYsTkpKXpSxfsSLVWCuwlqcs W5qcsCQ+NiYqMjw0SAMahStu2OBxwJnsO31WcOjc+TGLliQtW566clVGxtpM21q7JiNj 1crU5cuSlsQtiIogIJ9JE8Zig3DBubDMkHwDcEb8xovNe/LUGQEh4ZExixKSl6evXrsu e0NObl7eps16bcLKy8vN2ZCduWZVWkryktjoSACaNgVXHDZoxLDBMwJELXD8A0PnRsUu SV6xcm12Tl5+wdai7cU7du7cWVKC/3DtKC7eXlS4ZXPuhnUZ6SlJ8TERoYH+Uyd7Y4OG yw0EarPAiYyJS0wBmtz8wu07d5XuLdtXUVGxXxa+wCov27O7pHjblrwNmatWJMVFzw0J 8POZOG4ML7jhQAhk6t//GD0WFxt2JzImPjk1I2tj/rYdu8sqKg9UH66pOXLUXEeO1Byu PlhVUbZ7x7b8jVmrlyfEzp8ThA2a4DVqeOARLgCcCZN9ZwicpWlr1m/auqO0vLK6pvZY 3cn6hsbGJqxGWQ31J+uOHz18cH/Zru1bNq5buSw+Zm7ILL8puOBG/jYM9kdTm9f4Sb4z ArA7i5emZ+bkF+0qqzp0tK6+8VTz2ZaW1nPmam1tOdvc1HCi9nBV+e7t+TlrUhNiI0MD pvt4jxsWeAxqGz/Rd7oBZ2NBcWlF9dG6htNnW8+3XWpv7+i4rFZHR0d7e9vFc2dPN9TV HCjfVbQpa2VyXFRY0Axf3kBDvz//Nrhgoo9fwOyImHjszsbCHXsrDx+vP91yvq2j82rX te7rltV9rauzve3cmaa6mqqyHQUbMlIWR4cH+0+dNDzwGNQ2xW9WyNzo+GTC2VlWdaSu 6ez5S51d3Td6bt3u7e29w4X/Y93quX6ts/382cbjhyt2b8tduyIhJiJk5tTJ44fB/ihq GwNqmzYzODwqLjlN4Bw4Wn+6ta2z63pP75179x88fPjwkSx88fDh/Xu9Pdevtp9vrq89 sLd407rUxIWRs2dOGw54HNQ21T84LGpRUuranIKdZQdq65vPt18FmnsPH/U9efrMup72 PXpw99b1K5dam+qqy3fkZ6cngRBmDQc8Go7XBFBb0Jz5sYkr1uRs2UE4Zy50dN0Emr6n z168fPnqtWO9evniWd/De7e6Oy80n6ypKNmSvTI5dt6wwGNhalLbwoTlGRvyi/cSzsXL 13ruPOh7+uLl6zdv3723rHdv37x83vfwzs2rl1oajlbuKlxvwzMkx0/1S4XaRuLURmoL jVywJGV1dn7xnqqj2J3O7lv3Hj55/vLN2/cfPn6yrQ/v37x89vjerWvtrU21VbsdeMaN GfnrUJ5HDab2FmqLiV+2MntTUWnlkfrmC5cB59HTF6/fvv/46c/Pn79Y1uc/PwHQkwe9 1y+fN/Hw/gFfDykeE45QW3T80pXr8rbt3l9zovk84Tx+9vLN+w+f/vzy5a+//mNZf335 8+PbV88e3rneef7UMb0/4Dc8f0bj/DZk15uN2sKjFoGpc7fuqjhcd/p8x7UeBecj0fzn b/v66/On96+fPSIe7M+uAvDbwsgQf5wPRv8+dPGPSW04UweFgdrA1IUl+6rrms61d/Xg YsPuAI6g+a91/f2fLxoPr7fKkvystMQFEcH+vt5jR/02YqjCBQu14Uw9b2HCigwydfWx ppZLXT13HwqcT1++cHM0mv/Dwpd///Xl0ztcb73XO1obj1Ts2JyZmhATHjTDx9tr6I5v gKPia3UIJbWtF6ZuaGm7cuPOwycvXr/78OmzFc5/FZ6///7r88d3L58+uH2tvaW+prw4 b+3yxdFhgdOnTBjC447JBT5+s3AIXZyyKnvzdmHqts7rvQ/6nis4fzl2R8P5r+B5+7Lv /q2utjMnD5UV5WakxEfNCfBTx52hoQMTzhS/mTyELl2ZlQemrjnZfKHz+u37fc9evX2P 3eHNY9w63B253P7z5c8Pb1703eu52tZcV71na87qpYvkeDB0dA04Or6e5i+H0PTMPFLb CVCbwdQgaisXCByNB8+f54/v3uy8cPp4Vak8TknXQ0dvVqYmteEQuhHUdqjulKI2Pnic qE3BMfGYdF2J41ta4kJNb78PCb3ZqG3OvNgEHEILdpaD2lrB1Jra8OBxojbjegO9vXfQ 287N60hvwUNHbwa16fh6gTqE4kzd2NJ29Sap7c27j3Zq07vD+8egt4eK3vYpegsfOnpz jq9JbflCbWe/Sm3G9pCu3758Anq7dHY40JuF2hBf8xCapQ+hF8HU9/uev3rLB48LtZl4 7PS2jfQ2n9HP0NCbojZLfA1q27a7wnEI7Yep5ZLj6YCnHdDbvZtXQG8HHPQ2NKdRK7Wp +BrpgpIKUJscQh+R2twytQ0P6e2GOo1uyU4HvfE0OnaU5+lNwRklqcNAUFti6pqcQlDb cTu1uT54BI5J14rezjUerdiZT3qbGzzDl6c3T9O1ZuoxmtokvsYh9CCo7ZKmNsRvbpla 749Jb73dPL3tK96UuWJJdHjQ9ClDcBp1H1/vraptOItDaO/Dvn4OoWpz1GnHRm+Hy7ab pzc5jXr29OZKbYyvq44g+6EOoZranA6hBhy53P620dte0NuyuPmhAUxWeTrYNuEY8XW6 iq9xCL3c/ZVDqA0PTqOgtz7Q20Whtw1I7gxNsG2jNiO+LtHxtU4X9E9tBGXQNejtrqY3 S7ANevNk8kDD8UKRx19ShxJfk9p4CL3rLr42N0Z/4cCD4PTyuaaj+0s0vTHY9iy9aWpT TM3UoYqvD0p8jVNbP/G1DRLxIBny7tXTh6S3hpoKoTcE2yj+eDbYBhwdX/swE+oUX/f2 G19b8RCOprcHPL3Vg97y1iA4DUNw6uFg2+QCa3xdykyopjb38bUVjoPeXiI47WprPlG9 tygnQ+iNwbYn6c2EY8bX6xBf7/9mfO2Cxwy2r1xsrsPpjfSGYJu5RA/iAZxff5P6tY6v deqQ8fW176I2AjPogME26A25UcklxqpcogfpzUFtKnX4/fG1m/1hLlHRWy3oLSs1YcFc D+cSbdQm8XUGa1Zfi6+xFS5L9sdObzt4evM0vTmoTerXjK+ROtTxtaQOXeJrFyz6Gya9 SbB9uFzTW6CfB3OJZnztrerXjtRh//F1/3hwemMuEfR2hvS20fP0ZqE2ia+ROmR8XYMi j3N8beYO+8Vjo7eDpVs3rEqWXKLn6I3UpqQ5jtShS3xtTx32h8YRbGt6212QvRKlYE+W SjS1QZpDamP92oyv21HkscXX5vYY5R4XYG5KJZ6lN2dqY3zN1KFTfC2pQwOF/f82TGap pLujtUGVSkhvHsslajjfFV/bYVj/ZEKy05sulUSFeYzenOLrGFW/NuPrB0Z8LekPEwFL papianzLAAQ8VnorA72ZpRIoxQY92HamNpU6dI2vHQVSgfKXFLP/EkwKkgaE28coleD0 BnrLWaVKJZ6hN0Vt1IRSmkOlkRFfo359+561yKPeNvdFsHzWFXpCkr9SgIxcIksltsq2 R0olVmpDkUfVr/uJr/mmgYZgPkNfgPWnUh0AEf/OgkdKJUNQCdZwLPE1Uocl7uNrgUM0 n/8kmI9cAkm0Bw48bivBnimVWJlapDkrMjYwdcj4WlKHrFnp1KEBhzvz8cMHpdWhyuVP CkPMZKnQ2xBVggHnu+NrDUfQvH//7u3bN1jQIGlEdjyqVOLxSrBJbTq+hjRn83Zr6lDH 15racOt8xt68fw8sr1+9pEBMEGGL1AbxBrLQm6crwSYcxNekNkpz+omvjd1RaF6/fPni OcR7z19SJ8YtcpSCrPTm2UowmdpdfC3SHKf4Gnhkdz6+f/fmNaR6z570YT0BolcExHsI m6j3xyLc8WAl2EFt346vDTgQtRHNk77HIhGFyBK6RAGEDcIP8Xqz0htKJZ6qBFupjUUe pg4LRJrjWr+2wHlFNA8f3Lt3987du/cePu4joHdGdUvn3kBvnq4EO6hNx9cpjK8homT9 2kmaAzi4Kz7j3oGG8mkflLt3oEbu6bnVe+/BIwB6RVLXF5xxGvVwJfi742uD2r5An0cF 5ZNHD+4BzI3r3VCP99y+e//RE1QfDVUS98c8vQm9eagSbKE2I752luYY9WvZHcoNCQeS 3d5bN693Xb3S2Xmlq/vm7bsPHj99oarDQggGvXm2Ekxqc4mvd1nq1y+hNNLxtbp5RA4q cICm83L7pUuX2i9f6Raxsla+OPB4uhKsqc0pvlbSHJf4WjP1e6hB+x5CIc62hIvnz507 f6GtA1ryO/cfa5GiA4+HK8HO1PaN+FoePB/evqKcGgr+jrbzrS1nmpvPoA3jcteN2xAs o6IKZRLxkA4+kd48WAnWcOzxdbGtfg1pjqpf8+bhKefDu9cvngBOd2f7hdYzp5saGxqa TrMToxvSJOr6BI+ma1Po4pFKsC2+nh2J+BrSHNGHS/3aoTrE5831ny9fyNSAc7fnWmfb +bOnGtB5dbzuRMOplouXIfd/gJjPgcdGb56oBDtT21ekOQJHU9tTwrnc1trcePJ47RH0 ytXWNUg3Ru/9xxY8Hq8EK2oz4usoM74WfbhrfI2bR1Hbo3uAc7HlVD2a4qoPHDiAnrkT p1ogtuJJz7E/WqbssUqwldqM+BrSHJs+3IWpQW3oROjuvNjShIa4g5UV+/ZVVB6sOd54 9qLSyAseoQOFx2OVYA3ne+NrB7Xdv32dcOqOVFfuKystLd1bvr+a7T9KJA88n3Ee1fTm uUqwlamN1hdbfP3CFl8rOO9eP+9DX0VnG+DUHKjYu7tkx46dJaXlVTWo3FElz+vtk4mH Oj4PVYIBx4ivjdYXiz7cUb/m0V+4QJia1HbnxlWBU1VeurO4aNu2ouIS9AJqaezjZ6+h W1b7Q3rzWCXYpDYVX7P1ZbNNmvPaVB0qOOrURmrrYt/Y4coyNDAX5OfnF2xDq+Yh3cWA 58/7T+pxauYSjUrwqkGsBJtwrPE1Wl+oD3eS5ggc4xAKautqP3cKcPbuLCrYnLdxY97m gqJd+5Rq5Na9PlylJh4lu3atBA98V4lBbciEUh9ub31xG18rpmaTVcf503U1lXt2bM3P zcnOzt6Qm78NWbpjUMFcu3UfeD7wuAM6sNLbIFeCHdTm1PriRh+O7REukEMoqY1NfZV7 igs35WRnrl2bmbUhrxCxLFQ9Hd23Hzx5+RZ43NDbYFaCrdTmFF87Wl+0PtyAI4dQUtvF M/VHqvYWF+atz4TnxMrVcAlgbH781PnL13uh6nnroGuht8GvBDuoTcXXX2t9MeHIIbT3 xpW2lgb0xO4oyM1eszINFiHpGZk5W4rLqqGPRXX1oYWuQW+eqQSbXOBcvz5j14e7HEKl 47Lp2MGyHYW5WRlpMDlZlpK6cm0OivnVdacvdN6484h07YbeBrMSbMIxpTkurS+2+Fqn C4Sp0XB5vLq8pDB33erUZcmJCYnJKelr0IFafuhE88UrN+8+fq7oDdGCll0PeiUYcFzi a7S+8AFvNim6nNqQLuAhtOM8mLqiZGvuulUrkhNgqrM4cVkqkkE79h0+eabtag/p2k5v aAI0SyWDUgk2mNpRv3ZtfXGBow+hl883n6jZv3tb3rpVy5MWL4qNjY1bAqON9Vt2VtTU n73UBbomvenTm26aG9xKsCu19d/6YnIB42vF1PVHKkuLNmWvWp4YvzAGpk6x8UkoqxSU VBxpaGm/dvvB05eW0yia5p7YmuYGvhJsUJtVH467mfpwS+uLGV87HULP1h+t2rM9P3t1 SmIcvJvmzYtaEJeIXGrhrspaPH6E3kAHen+s9DZIlWAzdaitJaT1xYivrV19JrWZ6QIe QhtrD5QV52/IWJ6wKGZexNzwiHkxiwRPadWxJtC1W3q7OoiVYAu1fav1BRcb0wWSOjQO oceqy3YW5KxZkbgoOjJ8Tijtt9irtXHbnoPHT1+4cvOeG3obzEqwojZr64ul//o2Yxez SVHgOB9CD+0rKdy4NjVpUXTEnNnBMEeLiGKXcF4RHj/NDnrDaUfR9SBXgq3UpltfcqX1 RfVf26U5cmqzH0IPV+zampuZnhwXHREKa7rA4NBw4snMKy4/fFLoDac387Tjrid4QCvB Go5ufWH/ta31xaYPN6hNH0KVs8T+0qK8dSuXxhNOwMyZAYGzgScpbd3mHaDrlvZunt6s walLJXhAm+YsTG1aS/TX+mLAsR9CS4s2Z69athhuWkGwQpwByzdGGunZ+SX7j1rozciN 6qa5QaoE21KHprUEpTnsv3a0vuj42mDqF30P9SEUZ+r89atTliyIhDkY/SpnBEhn7cr1 hbuqanEavXHXOL3J7WMIXQapEuxKbe5bX0ymNjKhjkPolg0ZKxIWzgMcuFTC/XEW8MQv W52ztfTgcZ7eJDiVYM5xehusnmATjtH6oq0l3LS+CLVZmVodQncWwngqUZzBpvnCL9XX D3ii41MyNhbtrT5xpg3Jnb6XPL3Z6Y1NcwNfCbZR2w/E1zyEtuMQeqgCTJ2ZlrwoCj5N 03wmT5o02ZeN6TFLlq8lvYEOuiQ4dUdvA18JNqhNHUId1hKq9cVuLaG4AEztfAgFU8cD zkxYH8KcdzLyQiERCxJSM0FvRxpahd5subfBqwRbqM3VWuKm3VrCRm36EFrDQ2iWYdvm MxHewt6TmOeKXJiYlgV6q21CsG2edpxLJQNteQA4X7GWcKQODSrQRR6dCTUOoatSlsRE zKZN4AQYJU9QDjyxyaC33VXHTiE4tQZzbirBaJoboJ5gkwu0NKc/awmNx1KzYrrAcQhd SBM630njx3p5jR0veOYvWgp623OwrvmiNZgz6W1QKsEmHDO+pjTHrbWEC7UhE2ocQhNi 580JnEE4tOuGQ9L0wLAo0FtuUdkh0pslmHOc3gahJxhw7PG1pfXF2VpCcwHL8U+NTGi1 PoTGzg8TD8exY+BBDjzw4wqPXiz0xtOONZhTeAanEmxl6m9ZS5jUpu2mmAlVh9A0OASS qeEZOgaO6bBRnejrHzw3JiF13eadFUcaW52DucGqBNuo7RvWEga1uT+EzgVT09P1Dxje A8+kqf4hEQsT07O3lCA4tQZzzvQ2kJVgZ2qztb44WUsYcFwPoSt5CJ09yw+GlIADC/8/ xozHOWN2pNBb6QGXYM5ObwNXCTbj62+1vihqcxxCH7geQkFt8KOE4y6M/P/wGj8ZVaP5 cTi9bdvjLpgbnJ5gC7VZ42u0vrhYS2B3LOV4OYQ21iITikPo8gQwtVCbFx2eYbA+ymvC FL8A0tua3O1lh5yCOU3Xqif4lN2A66ea5hS1WeNrN9YSFmnOVw+hvrCnhX8wZkEAz1hv n+lB4TFLVmRuKt7nHMwZdD3QlWArtTlZS7i2vljia7eHULjt0g4Zju8KD+kNp7d1DOYa HbkqXLiDVQlWcOzWEm5aX4zeCtw8ZrqgWzKhsArNY7qAh1AwNbiA/ug8O40mXYdELkxK zy5wE8wNSk+wZmq7NKcfawmD2sDURiYUNSvrIVSYWuD88stvI0HX02aFzotNXrWh0E0w J/SmKsHSNDcQPcFO8bVz64tpLeEUX9sOoUgXpJCptVc1zcR/wcf0G+la0Vt/wZwOtlkJ Poie4AGoBLtS21fja7eH0PWK2sjU48nUnC7A1/1jDOiNp7fla9wEc5re3PYE/+NKsKY2 N60vLtYSmqndZEKRLjAOocLUMiyBeLy8fXB6i1niNpiz09vAVIJt1GbE14Y0x339+uuH UFKbmv3wywjSNegtYkH/wZzV8mAAKsEajkWaQ+vGfltfrNQm5XiXQygnC+jRD7/8+vto nN6M0467YE4ZVqlSyUD0BGtq69da4om99UWOOcYh9DLL8ft360wo0wUmtSknyl9+Bb1N Jr31F8yR3pwrwVGh4i/4jywCAMeQ5nzTWsJgaogoNbWdkSKPndo0F7B/79+ktwmgtzlG MIdKo3MwZ6O3n+4JNqlNx9fLaN3oxlrCyBfoYw6URnQMNk5tBhfIuUAmp4DcQG+/yu0z I9h62nEN5hyWBz/dE2zCscXXbq0lhNpI1e/fKsNgFcGh4ItcG88FiBEmjpfRNjzpcKEN RQcLOreD1DWFFM9e6cqcQW/WSrDyF5w47p+cRsnU7lpf3FlLaKr+9FGrJTrbjGzO6hQc qjEkAWM5kDBQE684mkyGSKjcQdxSng6Q27GnrqWrRPsLwoCLDjVpCWIHi6ZG3D/Y4x/p O3VQ23e1vigJstoepEKhnGLRilUeTuUImDFVZg9xhpdenFhCd+WIGFTmkAupPmFUskRI oYJTg67Z4yxdMgtoFz+JdvF6m2Wvef1+A5uN2ozWl36tJRQb8EkKnR5DuLMNtawjIPGe uChq7uwA/2m+k5E+xFwyDCbj8ho3fuIUrclKz8pXlR/QASjTSF3zNGrIyKVnex38LCMR 3nJ+BI60WJbBel/fLwe1fZe1BPFQd0j9/v3bxqmaBfmUhNiouaGBM6cDEEZ4ecvANQxi Q6IXw36C5og1eQ5SibqwbRbqJVowhUjcn/ys9GSk8RkQTuCli8XBegSGcYHcqP53yeQC 59She2sJ4BE2oPwDukMpJOByQxWOeCLmcDgUayM+at4aB7FJnWQOJpagw27TdhZOLxqV H5FZEg/srrXyAHhK8rNZ01OJ7wnjmL3DDDq5gNVgPR5y+7nsyAVqiI1qWLa50sK6EQVf Q5rD/jaK7lTNV2ShcrkdLNsJdc5KKgzmhYeGBAVwKhnLV2ph5FdgSJgMYGG3LQuNl1gp MXU7eE15nEJJ0d3eSj7g/AhUwUAuGDM10VsP1pPJetgpY1Sgu/tIc4H0ikjtLE1caR3W jY7WF4Gj8JDd1LMU0rajGGAB8dTqFcmLY6PnzQ3DAK/goEBMW9MrkFXt+QsoC6Ef8QHo Djq6eyHj07odfEbUjXJ/ers7ztFefStL4qwhB/Hq9eFkPQ7W410pswIVInc7xKsNI5M4 JkV5HTqkOc6tLyYe6+1zoRlSPexPXnZGWkoih13Ni4wIDw8Lm2Ou8LmRUTGYXZS6OpsG vjU4HNAt+hkK26oyZ+BBWwmUSKeOHdhTlJelLl9WkVmpnIbJeoA1yZtXn2NUoMsOcXvk alPm+7RxRcHX2TXH7N5V15vjYUo6qD96oKxkW35O5urUlOQEzCRbEBODWWuOFR2zMG5J UkpaRnYeZnygGZqqUVxuhkrZ3B/igTSzrhopopy1aUs5ZgrXb7AarAdY2CpQp4wK7Gdu m2wPh/Lg5qHvKXtF0NWHgm8/1o283ohHpXe7cRStr62uKIWWckNmRvqKlOSkhIQlUIVZ 1mJK3lJXZa6HaHQvjRGkmMwDrtLtKDzgA9jf37zSdqa+pmLXtk3ZGalLEzAJDOPa1GA9 wCLT+CArQcqTQN75isP2qKc3MuVhmCsC8wKZJaANwdxYNwKPIwlyGz0JHJgCXXVRAbWu GavSU1Mxac22lq9IW5mRicFS23burawxnfDBM6qJSeOBvfpjKptZbdm7gxdwOiaBxWO7 MVhvXuRcqGWCA2fJ2DYeP9xOCuT20EILmT7az4mlMxyq4XVodaUFRat7h/+14Lnfe/1K W+upk7XV+/eWFG/Nz9u4IXtdZubaNRi1ZllrMtdx5tfWYgwvqqlrakXrPQtiaA1gk6a8 JrZcGEYeaEzolxYXQDy7Km350iSMoIuPw2C96PkQAIXg8YbBegDkdrAej744KyJRjrrz 4pTVuHkQwZ06pwzBHNIcKxz1+GFW58Gdm10dF8421R2triwvLSnGPLL8zXkYtJabu9Gx cvM25W8pLOKYrIOYj8Memdvo+SFvfsaNqT4juYT1gQPqWbmCN2/Ehq9MT5XBeom4MxeC PUODZxEQRx8y+rUTgtqeccxUM5OUnrUJHsj0PcXjwSbNceDR9w8byFDuuX39Ckb0NJ08 VlNdWVFWurtE5qxt315kWduLizG/rGwfxmQdq9ctP5iKge1BmlXtPPZcbkkWkBDsNp88 Wl2xp6SoMD8vZ31W5loO1kvDrZkQD4II04CQ5XcZ3GbZHpTRoeIq3LW/Ru5X7XVo9zSi +ZfgEd0Eu0nv9gDQhZbmxhPH2KZUtb+iYl95eXmZdZXvq9hfxf6luvqmM2iZQwcTZpao pzRTo/Ka6NrWNYobV9vPnT5Ze6iqfA93vCB/kwzWW7d2dfoKEETMPADy4zFINshOCAgc R+q7Z/6i5JXZ+aBqiKJx88BmxtH6wl+JJWZzxCOE8BYb9Ph+b0/3VXQstjQ31Z+oO1Z7 tKam5rDzqqk5WnscM79Onz3HFk3A6cMIFm22Lq8s9ySTK2AEbPmlc80NdUcPHdhfvrd0 V8mO4iLCysvJWrMSj+yFAGQE9M6D6MgGyFtK2WzJirW520qpzZGeHD1LgPGo/Eo7HpxH 37959fzJIwCSjtLzrWeb2bZYr9dJc+EbDY1Np5s586v9yjU2aPbZWpzxyvoZgHvyCWb+ 8BpuOd1w4tgRteUYrCc35+YcCLiXLo6RwgUH0bkMbiMbIKGj7h5sz8594DacFeXhLac2 Gxx9vbFGgrT1O3ycAHTn1s3urs4OaZJtbeE6a1/4DptnL7V3Xr12o6fX7NhW17LeH30m lI7oW9Kkii1nIyS3XAbrleKRAA5PlRhYNggXnN1rGbcPLzeWMSCqgQYS2wNP52uwpWUL i8M0gr9UmxviszSsGd6+NvrLb17v7rraCVBcaGW2LXyr4zK6ta9dv4mO+oePn+JiE4cA auL15vOCo+wUH1Hfw3u3b1y70nHpwjm03cqeAxX4ppwP7WxH+pWDzuxmsZJ34eUmIpR1 Dsn6I9VxaD3miMmh48PEBn14D0Ds/38g/f83b1y/3n2Nq8u+rnEQ242bPbd773JOFv0B 0E8PRwq+vLyiJhnEiPyIAKi358a1q2rPz5/DYL1TjWDQgzyFMAqGICjIHyIAVzy8fZAm Z16Maf9dlUcbuT08+vIs4vj8ZHcUHxgbJIDeiNvEI2XQgCFrt92u3t47d+/du8+hX4Yf hYZjwcMNUoCUp4Ds+ZXOy3Ilk0HB4aXbEQYj3Y86sxoMZt8f0oGX9xQlckBgv/eg0SFB kZDlctBw5P7ReOAKhB0SN5Dnz5729T1+RAuNB+4W/+LR4z4M/XrOQVnv4N7gBEdekzcl AInnA1wS7vbevtXDTcdgPTAoHnJHD+5DFmltKrIuiMRBCM7Xm86LKVEANE+oAkKi2qPu HsPQQ64Ibamprze5gwjoIxG9gfWM2LU8e4r1xGXhm/RykQFm9KeBhRAchGTzZXuMpxqs kwiIH9FzmHJg0+/DlQN7jovvSjt7V2ugTN+clZYEc9UAuEO6eK+TDkQUoKtmuNykCiiB PbdHX93G9qj94YdJSqBxExHBHAjWQK9fv3pFTx136xUmsSn3ILEPIhoHnP+arImXhD8P bkt8QviAnsIDhruOwXpwGejAwfdYdflODm5bNB+TZsR73c5vrJpBFCBp5VWQQFIUQM2T NOToowgh6d3R9w/vXgAyEMGISrk3vet/ibnTBxlhhiuNm8NbU39cBh75jMxNp+HQi+dw 6Xna9xgEcaMLkwKRJN9VuAFe5Zyc44rHJa1sSCB1A4uxPSYcvT8KEBHJJil7LduwNbd/ 0GZiBhgDjtofvencIvhb0d1Kdp0+SnCEkYMiu7yqYAdHeztONnLx+iceoQOtEZIiurCb Vniry80Bx8Qjv11tkjZzw4f+HUvs67gzWMa1rPGol5SPSPuPfVDbjqsPpwZmks41MRIX uz4Dj22w67+F3nyYJmcR3aIRemcEjtaLDbjM94Av1Lvify1j1r7+peOfWF/IeFX1t+au A5V4xIHyGJows3C6TtxVZX8UHzjj0VUzpMmzt6CI7qQR4m+17I4dj3pLjrf4nV9ZkcjX llfVL6H8CHktY+HyoxINHdOdKBQbeDh5ysXcG1VALQqARii7UNGBteGDv+8beFze3g9/ w4KH/9b2sRAZ21VeP8OkJha+lfttP5O08PghXc8KjeTpQCSQ9oYPvLwNziD9we1HYOLi ZCPOLuiRQv4eGgxBVupuFoOjChgHSee2vTbNk+Xp4/b3DcQ3nbbG3Uvi7lSjZtQkLW1W rmcxOFUiiccUOeRAsa4bciQPqx545qc0MF84vWODCSzfdvk9kikRGabqecSomSQ1asal 0uXAE78sQ+FhP6gcruVIAnodkCWsZ7xTy5u34TH+3saXeBowsfACg+hksJ4xKJCjZlwG H9pEKNDYyWkUZUCmknCgH4gFj1GHzajhM2o+ehx4NBiSteY1zW44ADEMZ6LxYvOJQzK7 QA0KdJ3FYMFDSXQpEuWSieUMz7fv3+N59vNLmXJqW07j2GY8TA08gsZ88OjnjpwxPvJ8 qsu0TNTjeKDoQA8KtKVDHHgWsay5u+qo6utBcozn+gFZb9++kzm6hjGnPoiqLdJ4CIfE rM46ppknj4OwwXwFOEhcdkoeGIPoOBdZ5qA6z2KQ45uK5vj8QYMriyQcUHwfUSQO+AOw eNrG6dpw5uRhVF11chcpPAJHH9wYgKjjunFa5+ntfi+SWOwCx+WWiTnc9Pqn+619rqvG Mw0tErFU1aDh/RhaZC9fg4nZAzgBDsh6wjHUjH20kaUEcpa4Vx6gsjlyDAUWnkAlnJJo qo9jq28bp+vdhcZp1Ad04DRqRuGBqka1sIien5ZFlzHfm7H+QKz7nBL+SEJTOFnCPdVt ZIprjXGCinYZITiiXXgT3u7pRgILZYyDaMxlXZXRnIpObbcP8FA0iORbOEZ5ogO5pPxg LabJX2zH/HUmMAZiYYo7cgf3sd1I62DwsQsg3jskZcQIEpgSyv17yLD0MhkBm8Ub3V2X 2843NxyrRuvnxjXLl8TMDcEYe9ex78TD85uqlIj1TEV17cmmM+cuXuqAHeDPr6tXu5Cl uo7Uzh1xfsQWERDuIaDQzyENh5sD70tcXUwcSN6AyaIupMGYfj1df+zQ/tLtmxGcxkWF Bc3g7UOdhTUdL9k35OKpP4plqaQAnjjVR5BlbmYC8OLPr7Y2ZBEvd17t6kYekWlRWlkS EA8fCo8Jh3mQJ49hFtlzExkQyeswldfWhjQckjsoyewpZt90woJIaDkhSxjlRAdQPYlM aLL0tKEyl4XyWem+qkNHj59saDp1+qdXM9aZllakRuGUeO3GrTti/cisuPbmJCLgkWSr mXi73nXlMnOtMPFjppUZxfq62poD+3TyTXo8psqYWnuy6l//Ih6I8A37GZY3i3ftraiq Pnyk9tjxn191dSdO1iN1fQaZ646r3Zjsjgcb7iFukGN/ePPoxKh2V2Qu/JTKhZ88gdzo kUNwvSrZXpCbRaktGqRUU4RTshd4JBsvNgCYhgvTCJQEtxaXoFSzv7IKFm0/uw5WVx9G aUEuYNRJZFS9eFmqVKWxPcpo1Si+XGw9c6qxXpUqDh8+dIi56/I9u1D9y4HDBbSpqqPI TTJe8CB9jQ0KDI2MWZzMkm3u5oJt23eU7NoNT7OfXnvKylD6YeWnobm1TXslWsxG1eXG AFS8L+Gu2HYOhZfjR2uqD1SykoQy0l4UyVAGys/NXgvBRqzSo4lO3YkOsD+oBbPLaIqI a2LiE1GEXrNufQ7rgwUFhT+/thZt53ZXVB2qPcE6o4yrV5UfTQjMw2uzSNoRIml4srbm YOW+vaUlO4uLWebbtrUwf1Puhqy1q1DuBpwQtuOhK4LFOSu74WsQAovBEyahzTV4TmR0 LJxXWIpm/fbn1/r1G3JgvLUFV/CeigOoA7dcQs837CJZmTNuIKP2j0Ij/ftQK6dD3C5W YlGIRRU2J2dDdlbmmlWszcUvmC9wVBuBy/YAj5KMUv40Mzh07nxYlSQkJacsT01NS1/5 82vV6gw4VeXmFxbvLq86ItpAoyyr8ZDd/jSkM+yLxFOmrGQ766YolEuVfDVKp6kpy5IS 4heidordmUo4KGVp6bBlj4AH9Sz06QmgwNlhEfPgvrIofnFCQmJSUvLPLzohZUBGsaVo F44e1GjQedmqo+DlxvSNKLXONR0/VFG6Y6uqa6eJjGHZ0mRYEC2Og44GUhFHbduUQlvw yAaZgPwDgmbPCY+InB8VE7Ng4UIY5fzswieTmLw8PSNr45btpTy8cxaQFGaVGx/pQOra L8SP8AKNeqg7yMa9kpKcKCqTuLhFlB5QJQIpjxJToFRPcYjtcCCwuEG/jZQdmuQz1Q+y ruCQ0Dlh4XMjIiIHYOGTwQW8NHV1Vi7c0frR7UBHoXQhVAlD54inTEbqssTFi4gCwhAo QyANCYOKJwBSK4pdvFip18J76+6QEHAHKUATJk4Goun+MwMCAoOCg0NCQmb/7AoNxQUs uqoMtnVUIlrUlWbtloj9oU6M2ULRIZ0QGSptoRbHxkAMQolWaGjo7JBgSnf8KXukGAnq KipKXbfHAmjM2HHeEyEk9J3m5zd9hj/XzJ9dswKCQujmsmRpuow3QnGJ6T2H+6PgMbMd rQynoRODj1JczPy5MINRCrpZM6kOFGnVJOpcCAdXm3s8aod+/2PUaCCa4D1xEtSRPr6y pv7smoYLOCh0Lux2lq+G/Rb8XGC/BTsx082Stw/oAMnPez1XYRlyeN9O2lkkxcWQyET2 BoHjtKki3qT0bTw2h8IqKkjdbQ82iIB+5TUHRF5jx42jetXbe+LPL7g3wI7CPwgnD8hG szbR7k3ZozmqS6QD3j683M6fOn4QMj5o0il6FlkiVYkUJmplImWkEHVraaJ7PAJIIwKk 0VQXe40FrgFY49VzLWx+LOZp5Um6UuzerHjw9BEZrCEbpXkK9RL0s4A+eDwW38lYUY5C 5mtKR/uBo3ZI7dFvv6MrmWsU1+ifXWPGjMPJQ9ncQHriwGORwQodvJBBmmdPHi7HoFMU R9nDjlZCWAyIrFeEvVQsQ7BsCGH7RUO+g+CcguYRI9D1qhaEzj+98NGoJlYxDGHx3JZO Fp0Y6A10IGPQ2TS3ZxtqVSjGh6jOSK26HmkIrwmG0utvC+QNSArWiIFY7AjW0iBkJ5YL HlPlr+z4NL2JYZUag16wXtV6MYhWGj356VIWDwk5Ft/d94Axn0kArpf805/8D86Go8d5 a8eDNXnS4qyafgyZspwO1FzdjtZGquIxBh1dCzrbgUemdclbM9+rx7/Q0bzqAVxB/y3t 4GD6b8lpx1TF1+P2yVu7fDHHoOvk2lfvEo8DMnsAVYuzrTprqPzldCB0YAyetJTehhcc ZieMamYSssmqOutwG2UuxKS3AeyhHax9YzbM7AGkWEP8quxdC0bpzRNuyj+LU7LJ1h5A JdaAO6dBB9yfoZ+r+704tbjB7nhg7wFk8GMZGz4APbTf++b+wc+ZdGC0BFscDww6GOge 2n/wNr/7n2gxgLUlmD2ASuukTgcD3UP73e/tH/ygFC+M4jkNUODv5BA3GKcdew9tjsfn 6n4/MEUHpkOAzQBF2dcpOhjAHtrvf3P/4CdtWifavdUg2lZulsq+znp6G1w35X/w7l3/ CXP9Yhhi8UMy7d4kGy/BqQRzg+um7Pre/sl38DSFNshhGCLSR6t3tzq9Db6b8j95867/ Rm4f0oF01NP9EXTAnkbDuxuX2xDP1XV901/5DvFYpY/i/miXPjpOb4PppvyV9/gjf/Vv w2BD7NEofWxoRY/mw6fGJBlNB4re1Fxd1EYxNnymKAtcagc/8ssH4Wd5OnD4B4k9mnYI gBe5CNVR1TZyO5fPNbGlPistUVrqXYVGg/AGf/AlFR1YDEPEzVJGR6BYQo2IQziFDsD6 mn3Ihazw6NjwH0Gk6UCU3eKHRGkqu6SkC5BaNNGFokPzkdZRlhXlig6Zunf0WfSTLvyR 9zCQP2vSG+zeIN2CgwNb6tFEC/tvVOyh+Bf9BKqMnNUiwikYInHMtnJA8cDY8B+CK3gk +BH7OuJhkyHM/dhphh4GysXZGgMZsmqgRUc9dIegg6meGRv+Q3BQuABd075uTpTsz65K dAXDDo+tc9CiQTsFNf9ztt/dpExcC6dw+0A45So0+rHfPRg/Lac3wYPrbRVnLRzmrKyr bJ6DkgftJrotAf2r0pYA4dTqZSLj93GR8Q/GG/zB16SyAY9T+okZbZPHGs9e6Oi6jo6z ++wHkrYRtBJ2XDjToIVT0OmJcGr40YEoG+R6Q5dukurSrUHF/iL7GzGWVtYtaYw8f6YR RVNDOBWMVCLb4oYZvWk8aGSDmzLcoXO3luyDcusUJmp2oC8Q7XQYTwvlVPvF1uYGdLPv Kaa/BoRT8AvxFuHUD14Pg/3jcr3Rg4DJ+JQMDMeBcguaiuaW8xcvod2xA52QlzA39Azk E4cqMelIC6fo5+LlIpwa7Hf77dcnHkjV2eUOgoNNe+GOPZCiHT/ZiL7allYudC2ebjx5 /AgateENsI66NrCb0ukNt9OboXRSFh6YZL1+01ZK0ajkOYF24YZGNhKfkK7Sst3sKlUz AEQ4hS7Z4Xb7aDxo21fDktPWwppie8mecoiTDmFUKFfN4UNQTpWV7izakpsNKyLDilku t2GWuiYeNB6L8/yceQuXLEtfk70xHxYIu0r3lu2rkAXx1B4op7ZtgU/HqhVJ6JENoZEX 2c1VmfPtK3xwfwLnA3rGQFrHeQuo2EOKRouKQiqudsgqxhjHwi2bNmKCW1pKwqJoGEXB pwEuAG6EU4P7Zr/j1Vn8QblxwmTUT0PC5y+Mx8gsKHmy1udszM3L24QFF4uN9GrIWJma krQYPlGz4ePVn3DqO37j4P6IQ7k1dQYAQSUST4uX9JWrM9aszZS1dk3GanhppCxNhBhk XjjhwKSQskP30o/BfcPfeHXi4bxx+ooBENyRYmLjFkOLtiwlZfkKWctTUpbB22Zx3MKY +TS9ossaXfDcCqe+8esG/6/pyYc7aOyEiVOmzpgVNDuMFkkLYhfFYVzbElmw6ImLjV0Q HRUJaQvkE9Dm0LRlWG4PhUHcIIg5CcgPUrSQ0DBo0eZFRUVjwhlWNMRTkE5F2E11AMet cGrwN+AbvwGKBhbsAYgqkWlwGAsIghYNYrSwcL1M0yP/GX6+UyZpHdhwvHuAFRINyIII CMItKHmmYvSP/8xZAQGBgYFBsgJNU6qpvlOgBhn3VeHUNz6+wf9rpXMiILgNQooGcZLv VIjR/KYbi9IpZRoGfzex2OpfBzb47/ebv0ED4pwC6LYg25oIxRXUaFg+PvDumyLqKUqn oDjysligDbezjkZqKNEwqABSNNGijYOX4gTRo0GSJuaKlE5BdQRRm6E16s9F8Juf36D/ gKicqK0T2RYEW0ot5WUs9cfRo6gCo3BKbB6HLxx8XgoRIQEUUCk1mkjS9H9EOyWiI1Eb DWs0vACgIaKkCOIoaKQIy3kp7ZTIjvCzg37NDMQv0JisUinnr/Ej/39gsX8efNv2Zf/7 //3pf5/A/z6BofkE/h83cOBDCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKMTM1OTkK ZW5kb2JqCjE4IDAgb2JqCjw8IC9MZW5ndGggMTkgMCBSIC9OIDMgL0FsdGVybmF0ZSAv RGV2aWNlUkdCIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4AYVUz2sTQRT+ Nm6p0CIIWmsOsniQIklZq2hF1Db9EWJrDNsftkWQZDNJ1m426+4mtaWI5OLRKt5F7aEH /4AeevBkL0qFWkUo3qsoYqEXLfHNbky2perAzn7z3jfvfW923wANctI09YAE5A3HUqIR aWx8Qmr8iACOoglBNCVV2+xOJAZBg3P5e+fYeg+BW1bDe/t3snetmtK2mgeE/UDgR5rZ KrDvF3EKWRICiDzfoSnHdAjf49jy7I85Tnl4wbUPKz3EWSJ8QDUtzn9NuFPNJdNAg0g4 lPVxUj6c14uU1x0HaW5mxsgQvU+QprvM7qtioZxO9g6QvZ30fk6z3j7CIcILGa0/RriN nvWM1T/iYeGk5sSGPRwYNfT4YBW3Gqn4NcIUXxBNJ6JUcdkuDfGYrv1W8kqCcJA4ymRh gHNaSE/XTG74uocFfSbXE6/id1ZR4XmPE2fe1N3vRdoCrzAOHQwaDJoNSFAQRQRhmLBQ QIY8GjE0snI/I6sGG5N7MnUkart0YkSxQXs23D23UaTdPP4oInGUQ7UIkvxB/iqvyU/l efnLXLDYVveUrZuauvLgO8XlmbkaHtfTyONzTV58ldR2k1dHlqx5erya7Bo/7FeXMeaC NY/Ec7D78S1flcyXKYwUxeNV8+pLhHVaMTffn2x/Oz3iLs8utdZzrYmLN1abl2f9akj7 7qq8k+ZV+U9e9fH8Z83EY+IpMSZ2iuchiZfFLvGS2EurC+JgbccInZWGKdJtkfok1WBg mrz1L10/W3i9Rn8M9VGUGczSVIn3f8IqZDSduQ5v+o/bx/wX5PeK558oAi9s4MiZum1T ce8QoWWlbnOuAhe/0X3wtm5ro344/ARYPKsWrVI1nyC8ARx2h3oe6CmY05aWzTlShyyf k7rpymJSzFDbQ1JS1yXXZUsWs5lVYul22JnTHW4coTlC98SnSmWT+q/xEbD9sFL5+axS 2X5OGtaBl/pvwLz9RQplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjczNwplbmRvYmoK OCAwIG9iagpbIC9JQ0NCYXNlZCAxOCAwIFIgXQplbmRvYmoKMjAgMCBvYmoKPDwgL0xl bmd0aCAyMSAwIFIgL04gMyAvQWx0ZXJuYXRlIC9EZXZpY2VSR0IgL0ZpbHRlciAvRmxh dGVEZWNvZGUgPj4Kc3RyZWFtCngB7VplXBVft95zmsOhu+vQLZ3SjSAlLd1dIp0iKA2K IG0QSoiUoKSkAoIoIhIqICgqJiJxB//39773y/vp3m/X/WHmmbXXxJn1m72es9YDAH+F c1CQHwIA4B8QFmKmq8FpbWPLiX0BSAELoAPcAHJ2DQ1SNzU1gl3+w/jxDEBHUzOiR9f6 D07/yUwVAt8QAMgUdqD1/Ae7HWGXf3DkET4TFhQG+1w8wq5ezvA8VAFjkRALM00YPwIA R/D8g0nmjrDLH0z19gg7O4d4AsD0GfbndHb2hDEz5T/Y5QhLHOEIV0/4+szwM2CoA9y8 A2ATfA+Mqpt7qCsAfNdgH3+3UFd/APhpYazm7x8Iz/NbwFjANSgEPpc/BsbEo3cH7+ER 2g2AEhF+tqV/2xzrAGh/Dv+E1n/biIEAkKEB6L7yb9tXsz/vE6KfDPWQOvbnchBBAwD0 4uHhVz4AsHkA7OceHv6uOjzcrwYAuQBAr59reEjEH1+AOtqhAR5QAFrABNgBDxAAouAY kANKQA1oAwNgAiyADXAErsAL+IMQcAbEgERwDlwAOaAQFINycA3UggZwB7SDbtAHhsA4 mAKzYB4sg1WwCT6D7+A3BEFYiABRQ4wQO8QLCUOSkDykCmlDhpAZZAM5QR6QPxQOxUDJ UAaUB12BKqEaqAnqgHqhEWgKmoOWoQ1oG9pFIBCkCFoEK4IXIYaQQ6ghDBDmCHuEByII cRaRjMhEXEZUIuoRrYgexBjiKWIJsYn4hjhE4pF0SE6kMFIOqYE0Rtog3ZFByBjkeWQB sgJ5C9mJfIicRi4i3yN3UCgUFYodJYJSQOmgLFDOqEBUDCoDVYS6gbqL6kc9QS2hPqL2 0KRoZrQAWg6ti7ZCu6PD0CnofHQ1ugU9gJ5Bv0F/xSAxtBgiRgajjbHCeGIiMemYYkw9 5j5mArOM+YJFYumw/FgFrBHWERuETcZewtZgu7AT2BXsNxwOx4ITx2ngrHA+uDhcHu4G 7h5uAvcG95OEQMJFIktiSOJEEk6SQVJB0koyTrJM8gNPwHPjFfAmeHd8DD4PX4vvxT/H fyRFk7KRSpMakrqSRpPmk9aTDpC+JP1KIBCIBBWCFSGAkEaoJNwjzBC2yDBknGSKZBZk AWTnyarIusmek22TE8j5yTXIHcgjyfPJG8nHyNcoEBTsFIoUVhQhFFkU9RQjFG8pIUp2 SiVKa8oIynzKZsoJyg9UeCoBKh0qN6pkqkqqXqolqgNqNmplajvqKOpi6k7qF9S/aJho FGhsaKJoimm6aF7S7NGy0arSnqZNpK2iHaRdpcPSCdIZ0vnT5dDdoZul+0nPTK9C70Sf TH+Tfoz+IwM1gwyDDUMsQxXDEMMmIwWjNKMNYyxjNeMI4xYTDZM8kyNTClMd0xTTD2Y2 Zk1mH+Yc5nbmRRYMiyiLBUsMSzXLOMtXVhZWTVY/1gLW+6xrbORscmxObBlsLWyv2DHs Euy27CnsDexzHEgOUQ5rjmSOBo4XnChOCU47zjTOFs5FLjyXHJcrVzZXN9cGNx23BncQ dyn3GPcODy+POU8iTyPPKyKBqEj0Jl4mDhG/8xJ5LXiTeVt4X/NR82nwhfBV883wI/ml +d35L/EP8+8ICAnYCWQKPBD4LMgtaCmYJtgp+EGIQ8hMKFWoQ+i9MLuwmfA54XvCH0W4 RaxEMkR6RL6JCoo6iuaLjojui0mJeYuViT0VJxVXFz8j3iD+VoJFwkwiXaJPYkdSQtJT slzy+TGKY3rHEo51HNuWEpJylboqNStNIa0nnSTdLf1DRkLGR+a6zJIss6ylbI7suBxG TkMuTq5T7ru8pLy/fJ38mgKPgpNCqcK8IoOihWKe4qQSmZKhUrrSsDJGWUs5WblfBVJR U4lX6VE5UFVVjVN9oHpw/Pjx+OO9akBNXS1JbVAdra6rfl59TIOgcUIjV2NGk17TWrNE c1GLS8tdq0brg7aEdph2h/aejppOqs6YLrmuue4V3UU9Hj1vvUa97/pK+on6wwbkBpYG JQavDYUMgw07jICRnlGO0Zwxp7GXcbPx7gmNExdPzJqwm3iaNJv8NtU2zTZ9cZJ4MuBk pxnKzMSs2GzVXNI8xnzEgtbCyeK2xS9LHcs8yyUrEasoq+FTtKdcTjWdOrA2si623rCR tzlnM2tLtA2zHbCjsXO1u2OPtDe3r7b/5qDlUOiw5ijnmO44f1rkdNzpKSdupzCnYWcm Zz/nHhdqF3eXTleCq5PrXTecm71bszva3da90QPlYePR6InytPVs8sJ42Xvd8SbxPu3d 5kPm4+bT7Uvj6+s74MfiF+o37s/jH+M/GyAWkBawHKgYmB+4FaQbVBn0O9gquCmENMQj pC+UNTQydCZMPOxC2Hq4ZnhF+F6ETUTbGZozQWcmIoUj0yPXz2qfrY5CRDlF9USzR8dG L8Qox5TE/I61i+2KY4mLiVuIV4kviz9McEroT+RJTE1cT9JPqk8mTw5KnkmRTbmSspfq lDpwjv/chXOf0izSOs6znU88v5ZulN6cQZ8Rk/H6gt6Fhou0F6Mvvs7Uy2zMYsiKy1rN Ns5uzWHLSc35mGuV25MnkJebt5vvlv+4QK6gspC0MLxw+ZLBpdbLnJcvXP5Z5FI0cUXx yo1i6uK44vclp0oGr0peLS8llJ4tXS+zLBsolyyvqKCoiK34UGlXOV6lWFVXzVydUb17 zefay+tG17tviN0ov0l5M+nmtxr3mrlag9ruOvG6qnq6+vP1v28F3npz2+r2eMPxhpZG gcbSJqqmtKa95uDm9TsOd2Za9Ft67srevd1KbC1po25Lb4faz7Zvd3h3rHTadk7fM7w3 2KXa1d4t0V13n3i/7AHTg/we8p70XlRvfO9uX0Tfdr9//8aAx8DrwdODCw9tHj4bMh96 Mnxi+NGIwcjoqO7o0Jj22OC45nj/I41HfY/VH/dNaEz0T2pODkxpTQ090X0yMm0w/Wjm xMzUU/Onz2atZ18+c3z2+rn78405/7ntF+EvdufjXyJfnl8gX8h/xfSqbJG4WLckudS+ rLr8cMVoZea17evXb3zefHkbtYpYvbBGs3Z1nXe98Z38u/4No41nm06bm+/D3x9+yNii 36r8KPKx45PWp6nP9p83tsO/IL5kf2X9WvdN7tvD7+bfV34E/jj4eXGHZaful8Kv0V2b 3Xe/I/dwe1f2BffvHRgeLBwG/OUCf7nAXy7wlwv85QJ/ucBfLvCXC/ytC/ytC/ytC/yt C/ytC/ytC/ytC/z/rQsEOYc4/+ECSHiL8PAA4MtNuP9gAwDNFACkyP/t/D99lH/YBkDC TaGjxpIVxAM1IWzgav1bVDM6E+OPPYlTJuHFM5JSE3BkKHIsBRUlHRU7tQiNKu0JOk/6 KIZMxnKmBuZOliHWl2zbHOSc4lxm3ME8GcRS3ka+Lv6HAlOCc0KLwisiq6IbYp/Ev0r8 PoaSIkjTyrDIcsvxyQsqiCiKKokqC6sIqvIf51XjUufQYNVk0qLVptDB6hzq/tTb0n9j MGf4yKjPuPVErUm5adHJArN88zyLXMscq6xTGdZpNsm2cXaR9iEOvo4ep12d3J19XIJd Y9zS3HM8ijwrvWq9G33afLv8ev2HAiYC54LeBe+F0oaJhetGOJ+Jjiw4Wx81ED0f8zkO Hc+YIJAok6SWrJtinHrynGXaqfO26fYZDhccLzpmOmY5Zbvl+OVG52Xl3yh4UPjs0lYR 6gpzsUSJ9lXb0oCy5PLiijuVj6veXyO5zn9D56ZbTWJteV13/dytbw0UjfxNis36d8xb bO46trq0ebT7dAR0Bt8L64rojrwf9SC2J7E3ve9y/82B7sGph6tDv0bIRrnGpMZ1Hlk/ 9p6Imkybyn1yafryTMHTnNmMZynPY+ciXgTMe7x0XLB6ZbyovaS8LLMi/lr4Df9b4irn Gts60zv6DepNivekH7BbyK2Djzuftj6/2L7/pfhryDfd72zfv/4Y/Vm5E/nLZJd3d+/3 9F7NftyBxaHQ4SEcf2EwCBXC8adGjqAK0KEYMyw/jgT3jeQlfpx0kNBF1kbeQdFB2UU1 SD1O85J2k+4HA4qRkomJmZ2Fm1WITY79BIcPZwLXZe5anjZiP+8o3wT/pMATwSdCk8KP RcZFh8UGxPskeiV7j/VJ9Un3yfTIdsvdk29TaFasV6pWLlbJU00/Hq8Wpu6r4aRpoaWj raAjrMumR6a3r//BYN5wxKjVuOpEjkmcafBJdzM7czMLA0sNK/lTYtZEGyZbcjuE3Xf7 dw4Ljk9OjzoNOg+4DLmOuj12n/Z45vnCa8F70WfJd9lvxf91wGrgZtDXECiUOow3XC5C /4x9pP/ZuKis6LKY23DVdiR+JuFl4krSavJ6yrvUjXObaZvnN9LfZaxdWIWrsCtZy9lv cjZyv+ejCugLBS4pXTYqcrwSWJxQknO1orS5rL98tmKzClnNdk3hutWNkJuZNbW1A3Wv 6n/epmjga1RqMm62vePe4nc3pDWyLbY9qSOt88K97K787kv3ix+U99zobe7r7Z8eeDd4 MEQ7LDSiNmo15jue8Kjgcc1E9+TjqZdPVqc/zHx++m3257Pd5/tzh/PQS+QC6hV6EbOE XcavUL5mfMPzVnxVaU1n/eQ7+w3PzeD30R9St7I/Fn0q/1y9XfWl9Gvht4vfk36c+em3 4/zLctfgt+resX3eA6ZDwr/iHwR39raQl1DmaE70FmYIW4QLIDHBy5NyEFCEbbJV8jmK UcqHVA+ou2nu03bT3acfYBhlfML0mvmAlYNNnz2Co4pzlGuDB0lk5hXmU+E3ELAUPC3k JRwkEiEaLZYoniZxUTLv2BWpCumbMrdkm+TuyrcrdCi2K7Up31VpUr19/IZapXqxRo5m mlacdoiOp66tnpG+ioG4IbsRmdGe8fsT8ybjpvdPNpvVmJdbXLbMtEo+ddY6wMbF1spO z17RQcSR4zSNE94Z7YJ0Rbgh3dEeGE+sF9Yb44P2Rfkh/IH/QcB+4GEwJoQilCVMMFw+ QveMRaTz2YCos9GpMVmxRXGV8TcSahNrkq4nV6QUpxacy0xLOR+bHpbhd8H1ok2maZZe tkbO8Vz1PL38kwUOhV6XQi/HF6VfyS++WnL96u3StrKe8tGKZ5XrVb+ukV3nvCF9U7fG tta/Lr4+51bl7eaG3sbxppnmuTvzLfN351qftz1tn+6Y7Hx8b6xruHvwfv+Dvp7+3uG+ qf5XA1uD+0Pkw+wjYqMqY0bjdo+8H5+ZSJ7Mmrr0pHj66kzJ0yuzl54VPM+Zy3yRPp/6 Mmkh7lX0YuRS5HL0SuLrC2+K3t5Yvbs2sD71bnHj/ebOB/QW9UeOT6Kfj29bfgn+mvut 5fvsj587TL+Udu1/x+6V7T84WDqK/z/99KOcgJEF4AYDAJaTABh2AlDWDADvBpx/uAAw JQPAQgEg1OCcwaULEAz4f+UPCO5lkwJqWI/ACySBKjAGDiAA7lYXgjrQC+bANkQK8UGa cL85HqqA+qE1BAEhjXBAnEM0IxaQOKQM0g1ZiBxFHqLkUCGoRtQWWgwdjG5HH2B0MbmY RawwNgo7jmPHheLGSIgkCSSL+OP4KlIcaRDpPEGH0ErGS1ZETkaeSn5IEUuxTxlPhabK pGakvk4jQzNMa0f7iS6Fnom+iUGf4S1jEhMP0xCzHwsdSx9rIBsn2zR7KoccxwZnCZcx N8TdwRNCFCN+4G3gC+aXF4AEHgkWCbkLSwjvigyIXhCzFOcS/yTRI5l7zENKRZpe+ovM E9kWuSL5JIVgRTcle2VrlVOqNsdPq3moB2vEa2ZrVWt36EzqrurtGGANaY04jEVOKJoY mZ4+GWGWbV5nMWK5cYpgLWFjaRtlV2bf77B+mtxJ1tnJJdP1vttHD25PG69c78e+ZH7m /hUBP4IsgjtCOcIywn+e8Yx8EWUSPRKrGdefoJn4EM5bD8+pprWmC2VUXmTKLMymySnI Y8wvLxS81FqkdWWuJLSUvmywIrpKsfrg+sjNwlr3eoXbVA3vm0bv1N3NagvvcLin0y36 gK7nsO/DwMLDyeGHo93j7Y9bJ1uf3Jvpn516/n6eFV5GJ1d03gyuab4beK+z9fizzZeN 73E7jLtt+9Z/1g/En/jTAFbAB6SAOjAFziAU1iqUgGYwAlZgHQI9JAWZQoFQDnQHegbt IYiIE7By4DriCWIfKYK0R2YhB5C7KCm4738b9REtgQ5Hd2PQGFNMGWYLq4rNwb7FKcJd +Q8k+iQ1eBK8P36GVJm0hkBPOEf4RRZItkbuRP6KwoFiidKN8j1VBDWSuoCGH16nrGi3 6bLohelHGbwYSRjrmUyZdpirWUxZAWsLmzc7N/srjmJOay46rmnuLB5DIp44xpvJZ87P wr8mcFcwReiUsIgIUmRetFnsnLithJgkSnLhWJtUnnSwjJmsrByrPFp+W2FZcVppVHlQ ZVB1+Pik2gv1NY0fWjhtdh05XTO9YP1cg7uGs0bfT1CbiJjqnHQyizUvsbhvuXIKC8fd 3jbDrtN+05H1tLFTrPNtl1du5O7qHmc8G702fPh8Pfxq/LcCZYOSgp+GioRdDN8+4xD5 KEo1uiVWOO5GAk/itWT+lNvnZNIepOtkjF00zBzN1skZyNPMf1iof2mqyPbKekl4Kbas pEKqcqo6DF6RntZk1524RXl7trG02atFrhXX9qqj9V52t98D/V5i397A9MOa4YRRu3GF x8wTB1Or05NPu57Vz5XOFyzkLl5ern899vbLOseG6fvUrQeffn1R+Bbzo/8X2W/b/fr/ jj8GEGAtEgfMJOSBHqxb8QXx8Nd/CwyCRbALR18GsoB1JkVQN7SCwCEkENaIBEQtYhqx h+RHWiCTka3IDRQHyhqVh5pEk6NN0Hno5xh2jBemBQuwJtgK7BecDu4qzEhMSOrxeLwv fpJUlrSMgCecIbwjsyObItcnH6RQp+in1KYcp7KgWqYOoAE0BbTCtIN0TnR79MUM8gxz jFFMHEzDzMEs7CwTrIlw5+Ez+y0Ob05+zlWuam4nHg6eJWIlrwefGN8OzF8LBT2FlIVp hbdEhkUrxCLFTSUEJCE4/p1SV6RjZJxl9eWk5LkUqBRRintKv5T3VJHHKdQ41I9p6Gm6 wBmsVKdH960+wUDW0MXoIsxg5032T3KaaZp7w/y1y2rDmsnGyDbJrsv+h6PU6WCnBucN V6Kbk3upxysvdm9Xnzrfr/5qAdmBK8GyIdmhH8MtIvoipc/ejhaOqY8Tj29LVEt6lGKX upWWmM6Q0XBRK/N5tnvO57yzBajCnMscRc3FOiWLpZHl9BVtVbbXENcbb7rVctWt3Wpq SGgyuyNwF9G62H6/s7wr5b5vj3mfygDxIXZobaR3rPhR2MTJKYlpmpmd2eXn4y86Xta+ KlnKWol/47Nqsi62gd9c/zD08ebnjC9B36x/aO5I7nLt0RzgjuL/jwYLTh/wnxQjbS1O Te8Ad39nTi3v0CA/57N/7P+nG3+/cFjz9WccqdoI7gGW5vAe1nLBK5ARrJ7SApxAE3jD Ocgd1k45w0da8FEoCAJ+8NHZf7RhR+djYJ1ZniwiPpJsSDMl4cjyP0eYeySsGwNAMzDo bIi3p1cYpzqsnnMX4dQPcBUT4TwmIaEA/gvwHJ1mCmVuZHN0cmVhbQplbmRvYmoKMjEg MCBvYmoKNTcyMwplbmRvYmoKMTMgMCBvYmoKWyAvSUNDQmFzZWQgMjAgMCBSIF0KZW5k b2JqCjQgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9NZWRpYUJveCBbMCAwIDYxMiA3OTJd IC9Db3VudCAxIC9LaWRzIFsgMyAwIFIgXSA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL1R5 cGUgL0NhdGFsb2cgL091dGxpbmVzIDIgMCBSIC9QYWdlcyA0IDAgUiAvVmVyc2lvbiAv MS40ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9MYXN0IDIzIDAgUiAvRmlyc3QgMjQgMCBS ID4+CmVuZG9iagoyNCAwIG9iago8PCAvUGFyZW50IDI1IDAgUiAvQ291bnQgMCAvRGVz dCBbIDMgMCBSIC9YWVogMCA3MzMgMCBdIC9UaXRsZSAoQ2FudmFzIDEpCj4+CmVuZG9i agoyNSAwIG9iago8PCA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL1BhcmVudCAyNSAwIFIg L0NvdW50IDAgL0Rlc3QgWyAzIDAgUiAvWFlaIDAgNzMzIDAgXSAvVGl0bGUgKENhbnZh cyAxKQo+PgplbmRvYmoKMjYgMCBvYmoKKFVudGl0bGVkKQplbmRvYmoKMjcgMCBvYmoK KE1hYyBPUyBYIDEwLjYuMiBRdWFydHogUERGQ29udGV4dCkKZW5kb2JqCjI4IDAgb2Jq CihNaWNoYWVsIEJpc2hvcCkKZW5kb2JqCjI5IDAgb2JqCihPbW5pR3JhZmZsZSkKZW5k b2JqCjMwIDAgb2JqCihEOjIwMDkxMTI5MTkwNzU1WjAwJzAwJykKZW5kb2JqCjEgMCBv YmoKPDwgL1RpdGxlIDI2IDAgUiAvQXV0aG9yIDI4IDAgUiAvUHJvZHVjZXIgMjcgMCBS IC9DcmVhdG9yIDI5IDAgUiAvQ3JlYXRpb25EYXRlCjMwIDAgUiAvTW9kRGF0ZSAzMCAw IFIgPj4KZW5kb2JqCnhyZWYKMCAzMQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMzQ0 MjAgMDAwMDAgbiAKMDAwMDAzMzk4MCAwMDAwMCBuIAowMDAwMDAyNTg0IDAwMDAwIG4g CjAwMDAwMzM4MTcgMDAwMDAgbiAKMDAwMDAwMDAyMiAwMDAwMCBuIAowMDAwMDAyNTY0 IDAwMDAwIG4gCjAwMDAwMDI2ODggMDAwMDAgbiAKMDAwMDAyNzg5NyAwMDAwMCBuIAow MDAwMDAyODE4IDAwMDAwIG4gCjAwMDAwMDM3NDcgMDAwMDAgbiAKMDAwMDAwMzc2NyAw MDAwMCBuIAowMDAwMDA0MzgzIDAwMDAwIG4gCjAwMDAwMzM3ODAgMDAwMDAgbiAKMDAw MDAxMzIyNCAwMDAwMCBuIAowMDAwMDI3MDE1IDAwMDAwIG4gCjAwMDAwMDQ0MDMgMDAw MDAgbiAKMDAwMDAxMzIwMyAwMDAwMCBuIAowMDAwMDI3MDM3IDAwMDAwIG4gCjAwMDAw Mjc4NzcgMDAwMDAgbiAKMDAwMDAyNzkzMyAwMDAwMCBuIAowMDAwMDMzNzU5IDAwMDAw IG4gCjAwMDAwMzM5MDAgMDAwMDAgbiAKMDAwMDAzNDE0MyAwMDAwMCBuIAowMDAwMDM0 MDI4IDAwMDAwIG4gCjAwMDAwMzQxMjEgMDAwMDAgbiAKMDAwMDAzNDIzNiAwMDAwMCBu IAowMDAwMDM0MjYzIDAwMDAwIG4gCjAwMDAwMzQzMTUgMDAwMDAgbiAKMDAwMDAzNDM0 OCAwMDAwMCBuIAowMDAwMDM0Mzc4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgMzEg L1Jvb3QgMjIgMCBSIC9JbmZvIDEgMCBSIC9JRCBbIDwzNTFmZDA3Mjc1ZWIwOTFmMGM4 ZjczZDkxY2E3NTI5Nz4KPDM1MWZkMDcyNzVlYjA5MWYwYzhmNzNkOTFjYTc1Mjk3PiBd ID4+CnN0YXJ0eHJlZgozNDU0MAolJUVPRgoxIDAgb2JqCjw8L0F1dGhvciAoTWljaGFl bCBCaXNob3ApL0NyZWF0aW9uRGF0ZSAoRDoyMDA5MTEyMDE5MDgwMFopL0NyZWF0b3Ig KE9tbmlHcmFmZmxlIDUuMi4xKS9Nb2REYXRlIChEOjIwMDkxMTI5MTkwNzAwWikvUHJv ZHVjZXIgMjcgMCBSIC9UaXRsZSAoUDQgSWNvbik+PgplbmRvYmoKeHJlZgoxIDEKMDAw MDAzNTMxOCAwMDAwMCBuIAp0cmFpbGVyCjw8L0lEIFs8MzUxZmQwNzI3NWViMDkxZjBj OGY3M2Q5MWNhNzUyOTc+IDwzNTFmZDA3Mjc1ZWIwOTFmMGM4ZjczZDkxY2E3NTI5Nz5d IC9JbmZvIDEgMCBSIC9QcmV2IDM0NTQwIC9Sb290IDIyIDAgUiAvU2l6ZSAzMT4+CnN0 YXJ0eHJlZgozNTQ4NAolJUVPRgo= </data> <key>QuickLookThumbnail</key> <data> TU0AKgAADWKAP+BP8AQWDQeEQhkQsAPuHQmIRF1RMADiLAANxmIwiBgBfR8APORAAByU AAaUAAiSuSSZ7y8ANeZRuaQl8zcAP6dAAdT0AAGgRtq0MAGejQgBUkAUkBAAW08AJOpR yOzWIlesABVVurV2ni0AHyxAAq2Wf0GdP4AJ22AA0W+czuDiy6ABjXcAA29ABoX0ADHA V3BQkT4UAL/EAAM4sAOvHAAb5EAATKAAc5e42pZZsAFDPABQ6GqQLBwisFetVzS1YGa2 PSAa7EALnaAAqbcAPTdRvPFDUqoAAXhABo8UADDkaDRXQWauDyJ5gAydMAA/ra9fAAld sANvvABleEAB/yACO9YH2Gxnb2aOCc4AaffxsMfWl0p3/kAS97xswP+AA4wEAAlwKABy QQrsBDiABHQchDimi47kmTCoABtDAAGLDcAwGA8PgACMRAAQsSqcqEIwmGAAB5FoAGZG DDsSiwcAAe0bsax4QR2ABaR9AkDIOgb3ucLEjAAVMko2TUmLIsxmygAAnymAB6yshDAB is4AgAZ0vNWTMwgAM0yIQaUzgAF81AAhZkMgyRbzi7TuBFOoAHZPAAAlPYAG/PyEAnQI AHdQgAFLQ4AC1RQAFHRoAMKE87zzAolz7P8dhA9z4ABIwsSRJSIk5UQADHUscnXFQAHN VaEAdVwAHlWNNgAYVagAHtcIQaddgAF1fTYhjIhuAE4lvOYlAAQVlL4vxX2dWFZNaBgA BNaoAVcB0XxiXtuSBSp23AABLXGABA3MkKRqBLkhKq5ws3eABUXkjYo3qjCNV2aYAGDf lZ3qKMex+hx9gBD4DgAcWEgAC2GV1XlfBcABj4miqL2LY6NiljQAFbjoAJufIAWkAA/5 KAAnZRW9cvqDAAGzl4AP+MAAGtmrwPEiMh03d4s3jedZvgnodAAPWigAJmkIQFGl5uZS 8r2g5qalE6wYmY+Kxqx1URgZiEJQAwACBsSWgGABG7OAA6bU2bajFtwAHLuMnCq+bYhq ADmAAT+9o3nT4Z5nxUaAwYR8LYk5R8WgADlxiEO3ZBYci4Lh6jqavrsvDLhzG0cGxz2+ tI2hcgAP3SgAOvUAAWvVgAePXbhuVzEDomjL0BoAEB3O07XnN2tXwF5cEiONCkAAO+OA B0eUADNlk/aYIPEQI+Yzgd+tMcy1ETiEDX7oAEp8ChKJvK7mMyzMSgZoABp9iu6+AA3f jLsvy8ZwAFN/GMFn/YABX/wAE6giAALaAgAAkwHdAaQ+CigtAAFPA8jb2gABDgo0dpJQ xqteJSo0UbcwAD4hAt5GQvyEFSEmAANkKXxQZbyhsYpPCfPpfW+0JsNWAuKEXDkAAX4e OLcakkVIABdRDWgPJk7KWEjiOIcaGoTQADhigAAD0U4EpENXAyB0ECIiSi49R5wvIwEb EVGOHwcmyAAPyO9qjsBykIjALyCcFSIs1Gs/1/8LoYNDfqAAGcfSERjEU6d1JYg+IkRM 6gOqnEjt7E+oZRChB3AAETJNkjJo8LqAAoECZ4zyt+OcFuUD938kRVwD0AAw5UEbaWCg AAVpXH3KaQc/kkpKERSYJpgqIAFy7AAFOXzNGbP+BWWstpyEVkyGuAALky4jhOAALGaA AJblFKOaVsQQIRgAC9NtRijiInsDtLQRJ5nfGlErOcACZxpEISsPWRwpXBzxITK4Kyn4 gzIAACqfRq02pvWHOoAA/KBGrT2BIACmDunfOglVK4PqHAAE9REAAYaKTkgVPIhDXAAN 2oxR0PdHwACEpFB+EMdCNoLjQfoS9KwAAJpdPIDlMWFsNj2QcblNz4lZfK+dzcnqOkFR SIyoUZ54jLqNMCOpB5jAAlWQhMgZgABBqkauPoM35v2p+QdZwr0LoZIyBsrskEQojp9V msznB7QGgQrUYRCEHCOQ6gyn8GGPk4nixeQgABz17AA1IagAAi2BmfNGmIHEtl/MCuyi 9Z6zJ4HYAAEtkQADwsoQgXFlwABHs1YyrIc7PMcY8OC0QAIuCSABOChk7iStlKtWWzlG F+DBbC2Mg5TAAWiHA8Z5Fr6MPWB3Llg9QhGTiJiTOgBpbXW8cHNAWIABQXPsPLsBYAIJ MGuUrNga11XwgHwRtTsWRTmruTde8l5XBj6vRX1qZVmGAWABYW8U5bzXzvpfW+Ni77X5 v1fsgt47+X/wBZy/2AcCYFcHgPA2CcFFdwRgvB2DyDYNwhhPBOEsKYXwBhbDGG784avn dlWMRrbW2ukZMyuHL6JDnw5qeUUwPOkdMbcKhGx+41gsEwAFlxcEbrYyqU1yrcLaa7PE CuRY+R+ZGRGgQ/IbqDULbUpSQ66N5sYJvKx0jqEHfiG4qJUyrNaAABTMV13PDYmzT+60 vgpnVOuQcXebwAU3G4RsBWdaLD/ymXWxl7Y2AAysJsAAatBFdyKBUABEx1XzzLmes7hQ RgACNpEAFRhl5CK7fBIdJphG8M+x0VtaJFKedWLWCKoy3hooDQMqwP9WAAGBq/RTnzEQ kIixCfM+5ZxDF088/pB336sB+ADN4uzVt50zMF/5ETegAq3CUqeWyNsjN0PQ1epwAUrE vrHM2syNoYBtkeqxByPnZZeNkjdti0mrocD7O8+J9AqI2+wGjuw6agdKH5A6CTSsjxZs MhFpQABt4FfPcp2CNt5qajetK3Be11ZCaUBHEQAcRARZOypB0phP3aTPd987bXMABOcS uObMZuzgSsInBGYbj48UplEztdagIOzLO+iwU83vnW+uK96wKrHMQhuMbQNdD5Vubll5 oKBDilFSRhCLrNuDFzVz/NwUkbPIB8lRLCD0A0oRsowZwACY7Fk6SMmiEHo4sPC/PBej kQdsyI1xB8Q2pI3VWru3+gxeIQYsDJnTPpD4LU3ZRn9m8geIZkhHKHDrGMoARfa/ZrkI RoxJil9hteXABwzbqGe7T41eMAjejrAWCkwvkAAxPUEI47sDO/gWmeDN8yUP6LEXTtaU 0xqwAAIe7IQ+ASnAeBkHooGGiFEvLeY80RHbxijGP7Fn4gg+fOM4m8cQfz9xZkkHt8r1 X6Q/LjaUeYYiISPyXqr+ggchCLV9h7H6KLcXXIiwIRR8PYAHuhrIRnz9djPv+ZW61qV+ 4KZA6cRAiapapeIix0VOIQaQxweOA6zueUHQjKI27yx6v4kw7mySrOiSaaI2yWpSjUvM /Wkww8noAAFXBSv+6ututGwIUOng7mv4w8D7Bq/Mnk4UiEiIIOusqkCCIQqWEPCEwK08 IaIenivQH07oIO8aAAzqAUU0v25Y6SIQ3k0mqOxQqyoAjwIOqbB9Civ1CEEOdoD0IQm2 C8OUFDCyqyjeoSG2IQaETSTWsUisvs2W5AIOERD0AADvD7DWp/BgiKccO5BZDov4PlAk IQEHEWAA3XD+cHAGeCYyY27fENEfEuvsw9ExE2nlE1E5E+U3E9FBFGMHFFFJFOJpFNFR FXDBFZFcOdFVFfFXFjFlFPFpFrFHFvFxE/F1F3E3F7F9EvGBGDD/GHGJCzGNGOw5GTGU wwSHAUvkPgekn8sOKs2wAAXAHalhG2ts+GAA0LGbFSIHCaxqH6qyqWFJHSjsmGIOkmnG DxHgNXGyT0T5HCd6IFCa/ICQ/se8U2O9DeWUEEu0Wy66lQGGAA8O8Ug4IQh4C+WYGgeS eXHsJqSHCaqeXEXIyCcSJOJSusUozCzHIMAACFJImabYdHAe8oauIO92AgAA6oAAAvJk 1c1hInHEIEOEAKywDI2upYYuceI2vgoBGm+WL7IgWwAAQqGSaedu4AdyEBCczsVKDHJ6 2zJsirJzJ3Kq8WYwXGEsotH4/wK2OALKbpG8NDDU+vDjCpI+5fJe5wEjLifgflKvHuH+ fe6g/YExK5KBIDKSQsgIFs0sBlMI6y5SPCac7m4EDae+fDI3CTIQY2dE0g0lLqIgSHLw be7FL3J+O4IipQ50HTNEAABJNLJHJKX+omoqIOT8G+lEFMAA/oYQYVJTMsISSGus5oTC EyqRL0I2TUBfJjJmpEEJIeABN2mo7BAGxKoXIa2YWeoXNsiq4oh2h7ORM6WQNLKyEhO4 ABDE4c+o55Cu0qo4IO67OlLtOpDOmkSbOw52oiE9G3KfMieKiw9y5jAag8ueFBKY78N9 IXPRMuIGpcASAAC7QPPYlxPdBY0Q8etko4/vIxK/LiEixuAA9EkA1C6WxeRKELDJQDQE IFQImUmYz/L5M8IMiAlalfPgVIVM1tD0EQAAhlBqD6dUdZKy0iCMABHgDxEaoeIPH1Gr JsSHCfR+3YDfSS0s3uAAlAC2ABHSFJL/KW9ZAGNKyC/iAADhS2I2z5NEHTPRSKzslmKt RMOnJ4hlQaU3SE/6G9TcIRTPNJNMtjTCIG5jHKIQFFT0cCz8yuq+nkZGlKcwfMdcHiIQ 2XN0TFOkwa6/QSs5Lc5A75IjAmIi50pRUXGiQgOM58nlA62sENVALcLgoKUSUWmWC5CA OTUlUwvwvKfxNhSc4MfeRaB4m6g7VPRBJvDqvK2ghMPmn650hlMIBlVyiqvs+XPOIgkw 2nKjChWKIgICAA8BAAADAAAAAQAwAAABAQADAAAAAQBYAAABAgADAAAABAAADhwBAwAD AAAAAQAFAAABBgADAAAAAQACAAABEQAEAAAAAQAAAAgBEgADAAAAAQABAAABFQADAAAA AQAEAAABFgADAAAAAQBYAAABFwAEAAAAAQAADVoBHAADAAAAAQABAAABPQADAAAAAQAC AAABUgADAAAAAQABAAABUwADAAAABAAADiSHcwAHAAAnoAAADiwAAAAAAAgACAAIAAgA AQABAAEAAQAAJ6BhcHBsAgAAAG1udHJSR0IgWFlaIAfZAAsAGwAVACIAAWFjc3BBUFBM AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEXJYWVoAAAFQAAAAFGdY WVoAAAFkAAAAFGJYWVoAAAF4AAAAFHd0cHQAAAGMAAAAFGNoYWQAAAGgAAAALHJUUkMA AAHMAAAIDGdUUkMAAAnYAAAIDGJUUkMAABHkAAAIDGFhcmcAABnwAAAAIGFhZ2cAABoQ AAAAIGFhYmcAABowAAAAIHZjZ3QAABpQAAAGEm5kaW4AACBkAAAGPmRlc2MAACakAAAA bWRzY20AACcUAAAAQG1tb2QAACdUAAAAKGNwcnQAACd8AAAAJFhZWiAAAAAAAABzvAAA OyQAAAHfWFlaIAAAAAAAAF6qAAC31wAAFLVYWVogAAAAAAAAJG8AAA0FAAC8mVhZWiAA AAAAAADzUgABAAAAARbPc2YzMgAAAAAAAQxCAAAF3v//8yYAAAeSAAD9kf//+6L///2j AAAD3AAAwGxjdXJ2AAAAAAAABAAAAAAFAAoADwAUABkAHgAjACgALQAyADcAOwBAAEUA SgBPAFQAWQBeAGMAaABtAHIAdwB8AIEAhgCLAJAAlQCaAJ8ApACpAK4AsgC3ALwAwQDG AMsA0ADVANoA4ADlAOoA8AD1APsBAQEHAQwBEgEYAR4BJQErATEBOAE+AUUBSwFSAVkB YAFmAW0BdQF8AYMBigGSAZkBoQGoAbABuAHAAcgB0AHYAeAB6QHxAfoCAgILAhQCHAIl Ai4CNwJAAkoCUwJcAmYCcAJ5AoMCjQKXAqECqwK1Ar8CygLUAt8C6gL0Av8DCgMVAyAD KwM3A0IDTQNZA2UDcAN8A4gDlAOgA6wDuQPFA9ID3gPrA/gEBAQRBB4ELAQ5BEYEVARh BG8EfASKBJgEpgS0BMIE0QTfBO4E/AULBRoFKAU3BUcFVgVlBXQFhAWTBaMFswXDBdMF 4wXzBgMGFAYkBjUGRQZWBmcGeAaJBpoGqwa9Bs4G4AbyBwMHFQcnBzkHTAdeB3AHgweW B6gHuwfOB+EH9AgICBsILwhCCFYIagh+CJIIpgi6CM4I4wj3CQwJIQk2CUsJYAl1CYoJ oAm1CcsJ4An2CgwKIgo5Ck8KZQp8CpIKqQrACtcK7gsFCx0LNAtLC2MLewuTC6sLwwvb C/MMDAwkDD0MVgxuDIcMoQy6DNMM7Q0GDSANOg1UDW4NiA2iDbwN1w3xDgwOJw5CDl0O eA6TDq8Oyg7mDwIPHg86D1YPcg+OD6sPyA/kEAEQHhA7EFgQdhCTELEQzhDsEQoRKBFG EWQRgxGhEcAR3xH+Eh0SPBJbEnoSmhK5EtkS+RMZEzkTWRN6E5oTuxPbE/wUHRQ+FF8U gRSiFMQU5RUHFSkVSxVtFZAVshXVFfcWGhY9FmAWgxanFsoW7hcSFzUXWRd9F6IXxhfq GA8YNBhZGH0YoxjIGO0ZExk4GV4ZhBmqGdAZ9hodGkMaahqQGrca3hsGGy0bVBt8G6Mb yxvzHBscQxxsHJQcvRzmHQ4dNx1gHYodsx3dHgYeMB5aHoQerh7YHwMfLR9YH4Mfrh/Z IAQgMCBbIIcgsyDeIQohNyFjIY8hvCHpIhUiQiJwIp0iyiL4IyUjUyOBI68j3SQMJDok aSSXJMYk9SUkJVQlgyWzJeImEiZCJnImoybTJwMnNCdlJ5Ynxyf4KCooWyiNKL4o8Cki KVUphym5KewqHypSKoUquCrrKx4rUiuGK7or7iwiLFYsiiy/LPQtKS1eLZMtyC39LjMu aS6eLtQvCy9BL3cvri/kMBswUjCJMMEw+DEwMWcxnzHXMg8ySDKAMrgy8TMqM2MznDPV NA80SDSCNLw09jUwNWo1pTXfNho2VTaQNss3BjdCN343uTf1ODE4bTiqOOY5IzlgOZ05 2joXOlQ6kjrPOw07SzuJO8c8BjxEPIM8wj0BPUA9fz2/Pf4+Pj5+Pr4+/j8/P38/wEAA QEFAgkDEQQVBR0GIQcpCDEJOQpFC00MWQ1hDm0PeRCFEZUSoROxFMEV0RbhF/EZARoVG ykcOR1NHmUfeSCNIaUivSPVJO0mBScdKDkpVSptK4ksqS3FLuEwATEhMkEzYTSBNaE2x TfpOQk6MTtVPHk9nT7FP+1BFUI9Q2VEkUW5RuVIEUk9SmlLlUzFTfFPIVBRUYFStVPlV RlWSVd9WLFZ6VsdXFFdiV7BX/lhMWJpY6Vk4WYZZ1VokWnRaw1sTW2NbslwDXFNco1z0 XURdlV3mXjdeiV7aXyxffl/QYCJgdGDHYRlhbGG/YhJiZWK5YwxjYGO0ZAhkXGSxZQVl WmWvZgRmWWavZwRnWmewaAZoXGiyaQlpX2m2ag1qZGq8axNra2vDbBtsc2zLbSNtfG3V bi5uh27gbzpvk2/tcEdwoXD7cVZxsHILcmZywXMcc3hz03QvdIt053VDdaB1/HZZdrZ3 E3dwd854K3iJeOd5RXmjegJ6YHq/ex57fXvcfDx8m3z7fVt9u34bfnx+3H89f55//4Bg gMKBI4GFgeeCSYKrgw6DcIPThDaEmYT8hWCFw4YnhouG74dUh7iIHYiBiOaJTImxihaK fIrii0iLrowUjHuM4o1Ija+OF45+juWPTY+1kB2QhZDukVaRv5IokpGS+pNkk82UN5Sh lQuVdZXglkqWtZcgl4uX95himM6ZOpmmmhKafprrm1ebxJwxnJ+dDJ15neeeVZ7DnzGf oKAPoH2g7KFbocuiOqKqoxqjiqP6pGqk26VMpbymLqafpxCngqf0qGWo2KlKqbyqL6qi qxWriKv7rG+s461WrcuuP66zryivnbARsIew/LFxseeyXbLTs0mzv7Q2tK21JLWbthK2 ibcBt3m38bhpuOG5WrnSuku6xLs+u7e8MLyqvSS9nr4ZvpO/Dr+JwATAf8D6wXbB8cJt wunDZsPixF/E3MVZxdbGU8bRx07HzMhKyMnJR8nGykXKxMtDy8LMQszBzUHNwc5CzsLP Q8/D0ETQxtFH0cjSStLM007T0NRT1NbVWNXb1l7W4tdl1+nYbdjx2XXZ+tp/2wPbiNwO 3JPdGd2e3iTeqt8x37fgPuDF4Uzh0+Ja4uLjauPy5HrlAuWL5hPmnOcl56/oOOjC6Uzp 1upg6urrdev/7IrtFu2h7izuuO9E79DwXPDp8XXyAvKP8xzzqvQ39MX1U/Xh9m/2/veM +Bv4qvk5+cn6Wfro+3j8CPyZ/Sn9uv5L/tz/bmN1cnYAAAAAAAAEAAAAAAUACgAPABQA GQAeACMAKAAtADIANwA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACV AJoAnwCkAKkArgCyALcAvADBAMYAywDQANUA2gDgAOUA6gDwAPUA+wEBAQcBDAESARgB HgElASsBMQE4AT4BRQFLAVIBWQFgAWYBbQF1AXwBgwGKAZIBmQGhAagBsAG4AcAByAHQ AdgB4AHpAfEB+gICAgsCFAIcAiUCLgI3AkACSgJTAlwCZgJwAnkCgwKNApcCoQKrArUC vwLKAtQC3wLqAvQC/wMKAxUDIAMrAzcDQgNNA1kDZQNwA3wDiAOUA6ADrAO5A8UD0gPe A+sD+AQEBBEEHgQsBDkERgRUBGEEbwR8BIoEmASmBLQEwgTRBN8E7gT8BQsFGgUoBTcF RwVWBWUFdAWEBZMFowWzBcMF0wXjBfMGAwYUBiQGNQZFBlYGZwZ4BokGmgarBr0Gzgbg BvIHAwcVBycHOQdMB14HcAeDB5YHqAe7B84H4Qf0CAgIGwgvCEIIVghqCH4IkgimCLoI zgjjCPcJDAkhCTYJSwlgCXUJigmgCbUJywngCfYKDAoiCjkKTwplCnwKkgqpCsAK1wru CwULHQs0C0sLYwt7C5MLqwvDC9sL8wwMDCQMPQxWDG4MhwyhDLoM0wztDQYNIA06DVQN bg2IDaINvA3XDfEODA4nDkIOXQ54DpMOrw7KDuYPAg8eDzoPVg9yD44Pqw/ID+QQARAe EDsQWBB2EJMQsRDOEOwRChEoEUYRZBGDEaERwBHfEf4SHRI8ElsSehKaErkS2RL5ExkT ORNZE3oTmhO7E9sT/BQdFD4UXxSBFKIUxBTlFQcVKRVLFW0VkBWyFdUV9xYaFj0WYBaD FqcWyhbuFxIXNRdZF30XohfGF+oYDxg0GFkYfRijGMgY7RkTGTgZXhmEGaoZ0Bn2Gh0a QxpqGpAatxreGwYbLRtUG3wboxvLG/McGxxDHGwclBy9HOYdDh03HWAdih2zHd0eBh4w HloehB6uHtgfAx8tH1gfgx+uH9kgBCAwIFsghyCzIN4hCiE3IWMhjyG8IekiFSJCInAi nSLKIvgjJSNTI4EjryPdJAwkOiRpJJckxiT1JSQlVCWDJbMl4iYSJkImciajJtMnAyc0 J2UnlifHJ/goKihbKI0ovijwKSIpVSmHKbkp7CofKlIqhSq4KusrHitSK4YruivuLCIs ViyKLL8s9C0pLV4tky3ILf0uMy5pLp4u1C8LL0Evdy+uL+QwGzBSMIkwwTD4MTAxZzGf MdcyDzJIMoAyuDLxMyozYzOcM9U0DzRINII0vDT2NTA1ajWlNd82GjZVNpA2yzcGN0I3 fje5N/U4MThtOKo45jkjOWA5nTnaOhc6VDqSOs87DTtLO4k7xzwGPEQ8gzzCPQE9QD1/ Pb89/j4+Pn4+vj7+Pz8/fz/AQABAQUCCQMRBBUFHQYhBykIMQk5CkULTQxZDWEObQ95E IURlRKhE7EUwRXRFuEX8RkBGhUbKRw5HU0eZR95II0hpSK9I9Uk7SYFJx0oOSlVKm0ri SypLcUu4TABMSEyQTNhNIE1oTbFN+k5CToxO1U8eT2dPsU/7UEVQj1DZUSRRblG5UgRS T1KaUuVTMVN8U8hUFFRgVK1U+VVGVZJV31YsVnpWx1cUV2JXsFf+WExYmljpWThZhlnV WiRadFrDWxNbY1uyXANcU1yjXPRdRF2VXeZeN16JXtpfLF9+X9BgImB0YMdhGWFsYb9i EmJlYrljDGNgY7RkCGRcZLFlBWVaZa9mBGZZZq9nBGdaZ7BoBmhcaLJpCWlfabZqDWpk arxrE2tra8NsG2xzbMttI218bdVuLm6HbuBvOm+Tb+1wR3ChcPtxVnGwcgtyZnLBcxxz eHPTdC90i3TndUN1oHX8dll2tncTd3B3zngreIl453lFeaN6Anpger97Hnt9e9x8PHyb fPt9W327fht+fH7cfz1/nn//gGCAwoEjgYWB54JJgquDDoNwg9OENoSZhPyFYIXDhieG i4bvh1SHuIgdiIGI5olMibGKFop8iuKLSIuujBSMe4zijUiNr44Xjn6O5Y9Nj7WQHZCF kO6RVpG/kiiSkZL6k2STzZQ3lKGVC5V1leCWSpa1lyCXi5f3mGKYzpk6maaaEpp+muub V5vEnDGcn50MnXmd555VnsOfMZ+goA+gfaDsoVuhy6I6oqqjGqOKo/qkaqTbpUylvKYu pp+nEKeCp/SoZajYqUqpvKovqqKrFauIq/usb6zjrVaty64/rrOvKK+dsBGwh7D8sXGx 57JdstOzSbO/tDa0rbUktZu2EraJtwG3ebfxuGm44blaudK6S7rEuz67t7wwvKq9JL2e vhm+k78Ov4nABMB/wPrBdsHxwm3C6cNmw+LEX8TcxVnF1sZTxtHHTsfMyErIyclHycbK RcrEy0PLwsxCzMHNQc3BzkLOws9Dz8PQRNDG0UfRyNJK0szTTtPQ1FPU1tVY1dvWXtbi 12XX6dht2PHZddn62n/bA9uI3A7ck90Z3Z7eJN6q3zHft+A+4MXhTOHT4lri4uNq4/Lk euUC5YvmE+ac5yXnr+g46MLpTOnW6mDq6ut16//siu0W7aHuLO6470Tv0PBc8OnxdfIC 8o/zHPOq9Df0xfVT9eH2b/b+94z4G/iq+Tn5yfpZ+uj7ePwI/Jn9Kf26/kv+3P9uY3Vy dgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBj AGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDaAOAA 5QDqAPAA9QD7AQEBBwEMARIBGAEeASUBKwExATgBPgFFAUsBUgFZAWABZgFtAXUBfAGD AYoBkgGZAaEBqAGwAbgBwAHIAdAB2AHgAekB8QH6AgICCwIUAhwCJQIuAjcCQAJKAlMC XAJmAnACeQKDAo0ClwKhAqsCtQK/AsoC1ALfAuoC9AL/AwoDFQMgAysDNwNCA00DWQNl A3ADfAOIA5QDoAOsA7kDxQPSA94D6wP4BAQEEQQeBCwEOQRGBFQEYQRvBHwEigSYBKYE tATCBNEE3wTuBPwFCwUaBSgFNwVHBVYFZQV0BYQFkwWjBbMFwwXTBeMF8wYDBhQGJAY1 BkUGVgZnBngGiQaaBqsGvQbOBuAG8gcDBxUHJwc5B0wHXgdwB4MHlgeoB7sHzgfhB/QI CAgbCC8IQghWCGoIfgiSCKYIugjOCOMI9wkMCSEJNglLCWAJdQmKCaAJtQnLCeAJ9goM CiIKOQpPCmUKfAqSCqkKwArXCu4LBQsdCzQLSwtjC3sLkwurC8ML2wvzDAwMJAw9DFYM bgyHDKEMugzTDO0NBg0gDToNVA1uDYgNog28DdcN8Q4MDicOQg5dDngOkw6vDsoO5g8C Dx4POg9WD3IPjg+rD8gP5BABEB4QOxBYEHYQkxCxEM4Q7BEKESgRRhFkEYMRoRHAEd8R /hIdEjwSWxJ6EpoSuRLZEvkTGRM5E1kTehOaE7sT2xP8FB0UPhRfFIEUohTEFOUVBxUp FUsVbRWQFbIV1RX3FhoWPRZgFoMWpxbKFu4XEhc1F1kXfReiF8YX6hgPGDQYWRh9GKMY yBjtGRMZOBleGYQZqhnQGfYaHRpDGmoakBq3Gt4bBhstG1QbfBujG8sb8xwbHEMcbByU HL0c5h0OHTcdYB2KHbMd3R4GHjAeWh6EHq4e2B8DHy0fWB+DH64f2SAEIDAgWyCHILMg 3iEKITchYyGPIbwh6SIVIkIicCKdIsoi+CMlI1MjgSOvI90kDCQ6JGkklyTGJPUlJCVU JYMlsyXiJhImQiZyJqMm0ycDJzQnZSeWJ8cn+CgqKFsojSi+KPApIilVKYcpuSnsKh8q UiqFKrgq6yseK1Irhiu6K+4sIixWLIosvyz0LSktXi2TLcgt/S4zLmkuni7ULwsvQS93 L64v5DAbMFIwiTDBMPgxMDFnMZ8x1zIPMkgygDK4MvEzKjNjM5wz1TQPNEg0gjS8NPY1 MDVqNaU13zYaNlU2kDbLNwY3Qjd+N7k39TgxOG04qjjmOSM5YDmdOdo6FzpUOpI6zzsN O0s7iTvHPAY8RDyDPMI9AT1APX89vz3+Pj4+fj6+Pv4/Pz9/P8BAAEBBQIJAxEEFQUdB iEHKQgxCTkKRQtNDFkNYQ5tD3kQhRGVEqETsRTBFdEW4RfxGQEaFRspHDkdTR5lH3kgj SGlIr0j1STtJgUnHSg5KVUqbSuJLKktxS7hMAExITJBM2E0gTWhNsU36TkJOjE7VTx5P Z0+xT/tQRVCPUNlRJFFuUblSBFJPUppS5VMxU3xTyFQUVGBUrVT5VUZVklXfVixWelbH VxRXYlewV/5YTFiaWOlZOFmGWdVaJFp0WsNbE1tjW7JcA1xTXKNc9F1EXZVd5l43Xole 2l8sX35f0GAiYHRgx2EZYWxhv2ISYmViuWMMY2BjtGQIZFxksWUFZVplr2YEZllmr2cE Z1pnsGgGaFxosmkJaV9ptmoNamRqvGsTa2trw2wbbHNsy20jbXxt1W4ubodu4G86b5Nv 7XBHcKFw+3FWcbByC3JmcsFzHHN4c9N0L3SLdOd1Q3Wgdfx2WXa2dxN3cHfOeCt4iXjn eUV5o3oCemB6v3see3173Hw8fJt8+31bfbt+G358ftx/PX+ef/+AYIDCgSOBhYHngkmC q4MOg3CD04Q2hJmE/IVghcOGJ4aLhu+HVIe4iB2IgYjmiUyJsYoWinyK4otIi66MFIx7 jOKNSI2vjheOfo7lj02PtZAdkIWQ7pFWkb+SKJKRkvqTZJPNlDeUoZULlXWV4JZKlrWX IJeLl/eYYpjOmTqZppoSmn6a65tXm8ScMZyfnQydeZ3nnlWew58xn6CgD6B9oOyhW6HL ojqiqqMao4qj+qRqpNulTKW8pi6mn6cQp4Kn9KhlqNipSqm8qi+qoqsVq4ir+6xvrOOt Vq3Lrj+us68or52wEbCHsPyxcbHnsl2y07NJs7+0NrSttSS1m7YStom3Abd5t/G4abjh uVq50rpLusS7Pru3vDC8qr0kvZ6+Gb6Tvw6/icAEwH/A+sF2wfHCbcLpw2bD4sRfxNzF WcXWxlPG0cdOx8zISsjJyUfJxspFysTLQ8vCzELMwc1BzcHOQs7Cz0PPw9BE0MbRR9HI 0krSzNNO09DUU9TW1VjV29Ze1uLXZdfp2G3Y8dl12fraf9sD24jcDtyT3Rndnt4k3qrf Md+34D7gxeFM4dPiWuLi42rj8uR65QLli+YT5pznJeev6DjowulM6dbqYOrq63Xr/+yK 7Rbtoe4s7rjvRO/Q8Fzw6fF18gLyj/Mc86r0N/TF9VP14fZv9v73jPgb+Kr5OfnJ+ln6 6Pt4/Aj8mf0p/br+S/7c/25wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAALA3Bh cmEAAAAAAAMAAAACZmYAAPKnAAANWQAAE9AAAAsDcGFyYQAAAAAAAwAAAAJmZgAA8qcA AA1ZAAAT0AAACwN2Y2d0AAAAAAAAAAAAAwEAAAIAAABWASMBsAJZAxUD5ASxBY0GbQdR CDwJJQoYCxIMCA0EDgcPERAVER4SLBM+FE4VZxZ6F40YnxmuGrkbxhzbHfEfDiAvIVIi cSOKJJ0lrya7J8Uo0CnYKt4r4SzlLeku7y/zMPsyBDMMNBQ1GzYiNyY4KTksOi07LTwr PSk+Jz8lQCFBH0IcQxlEFEUPRgdG/0f3SO1J40rYS8xMwU21TqlPn1CYUZRSk1OSVJFV kFaOV4pYh1mDWn5beFxyXWteZl9jYGVhamJxY3xkh2WQZphnoWipaa9qtmu7bMBtxm7O b9hw6HH8cxR0LnVHdmF3e3iUeat6w3vafPB+BX8YgCiBNYJAg0eETYVRhlWHV4haiVyK XYtejF6NXo5gj2SQbJF7ko6TppS+ldaW7ZgEmRqaMJtFnFqdbp6Dn5qgsqHNouukCaUn pkanZKiBqZ+qvKvYrPSuD68nsDqxSbJTs1m0XrVitma3arhuuXG6dLt2vHi9er59v4HA icGXwqfDvMTQxeXG+cgNySHKM8tGzFjNac56z4fQkdGW0pfTlNSQ1YrWhNd92HbZbtpm 217cVt1N3kXfPOA14S/iK+Mn5CTlIOYd5xnoFukS6g/rC+wH7QPt/u747+3w2fG98prz cvRH9R318/bJ96H4ePlP+iX6/PvS/Kj9fv5U/yr//wAAACsAxAGVAlkDEgPIBJQFcwZS BycICQj0CdsKywvEDLsNtg64D7gQuxHEEssT2xTqFfYXBBgQGRkaHhsiHCodNx5OH2og gCGXIqkjtiTCJckmzifPKNEp0SrPK80syy3HLsMvwTDAMcAywTPBNME1vza8N7o4tjmx Oqs7ozyaPZI+iT9/QHRBa0JgQ1RERkU5RitHHUgNSP1J7EraS8hMtU2iTpBPflBxUWVS W1NSVEpVQlY4Vy5YJFkZWg5bAlv1XOhd3F7RX8lgxGHDYsZjyWTNZdJm1mfZaNxp3mrf a+Bs4W3ibuVv6nDzcgFzEnQldTd2SXdceG15fnqOe558rX27fsh/04DbgeGC5YPnhOiF 6Ybqh+qI6YnoiuaL5YzijeGO4I/jkOmR9ZMElBaVKJY7l0yYXplvmoCbkJygnbGewp/V oOqiA6MdpDmlVqZyp42oqanDqt2r960PriavO7BNsVqyZbNstHK1eLZ9t4K4h7mLuo+7 k7yWvZq+n7+mwLHBwMLSw+jE/sYUxyrIQMlWymvLgMyUzajOvM/N0NvR5dLs0/DU9NX3 1vrX/dj/2gHbA9wE3QXeBt8H4ArhEOIY4yPkL+U75kbnUehc6Wfqcet77IXtj+6Y75/w o/Gi8p3zlfSM9YL2d/ds+GH5VfpK+z78Mv0l/hn/DP//AAAAKwDEAXACLgLtA5YEUwUg Be0GxgeYCG4JTwo4Cx8MBAzxDeUO2A/JEMURvhK8E70UvBW9FsMXyRjRGeIa/hwfHUke dh+iIMkh6SMDJBolKyY9J0ooVSlfKmgrcCx2LXsugS+HMIwxkjKZM6A0pzWsNrA3tDi3 Obg6tzu2PLQ9sD6tP6ZAoUGaQpBDh0R+RXJGZ0daSExJPUovSx5MDUz8TetO2k/LUL1R sVKoU59Ul1WNVoNXeVhuWWJaVltIXDpdLF4fXxNgCmEFYgNjAmQDZQVmBmcHaAdpBmoF awRsAm0Abf5u/W//cQZyD3MbdCl1OHZHd1R4YXluenl7hXyOfZh+oX+mgKmBqIKlg6CE moWUho2HhIh9iXSKbItjjFmNUI5Ij0KQP5FBkkiTUZRdlWiWc5d/mImZk5qcm6WcrZ22 nr+fyaDWoeei+aQNpSCmNKdHqFqpbap/q5Csoa2xrsCvy7DTsdiy2rPatNi117bUt9K4 z7nNusq7x7zEvcK+wb/CwMfB0MLdw+3E/cYOxx7ILsk9ykzLW8xpzXfOg8+O0JbRmtKc 05vUmdWW1pTXkNiN2YnahduC3H7de95433jge+GB4ovjmOSm5bTmw+fQ6N7p6+r47AXt Eu4f7y3wP/FV8nHzkfSz9dX29/gZ+Tv6XPt9/J79vv7f//8AAG5kaW4AAAAAAAAGNgAA phcAAFXPAABLuQAAnrEAACXpAAANIQAAUA0AAFQ5AAJAAAACIUcAAhcKAAMBAAACAAAA AQAFAAsAEgAbACUAMQA+AE0AXQBuAIEAlQCqAMAA2ADxAQsBJgFDAWABfwGgAcIB5gIM AjQCXQKGArEC3AMIAzUDZAOVA8kD/wQ3BHIErwTtBS4FcQW3Bf4GRwaRBt4HKwd6B8sI HghzCMoJJAmACd4KPwqiCwgLcAvaDEYMtQ0lDZgODQ6FDv8PfQ/9EH8RBRGNEhgSpRM1 E8cUWxTvFYQWGRawF0kX5BiCGSMZxhpsGxUbwRxvHSAd0h6FHzcf6SCbIU0iASK4I3Ik LiTsJa4mcSc4KAEozCmYKmUrMCv6LMMtiy5VLyEv7zC/MZEyZjM9NBY08jXRNrM3mDiC OXE6ZDtcPFg9Vz5ZP19AZkFxQn9Dj0SjRbhGz0flSPhKB0sUTB9NLE46T0xQX1F2Uo9T qlTIVelXDFgwWVVaelueXMJd518OYDZhYGKNY71k7mYiZ1lokWnNaw1sU22gbvZwVHG4 cx90inX3d2d42XpPe8h9Q37CgEOBxYNHhMWGPoe1iSqKoYwZjZWPE5CUkhiTn5UplrWY RJnYm3OdFp7EoHuiOqP+pcinlallqzmtEa7rsMmyqrSOtnW4XbpGvC2+Fb//wezD3MXP x8XJvMu3zbXPtdG608LV0Nfr2hzcad7P4UbjxOZD6MPrRu3N8Fny6fV++Bj6tv1Y//8A AAACAAUACwATABwAJgAzAEEAUABhAHMAhgCbALEAyADhAPsBFgEzAVABbwGQAbIB1gH8 AiQCTgJ5AqUC0QL9AywDXAOOA8MD+gQzBG8ErQTuBTAFdQW8BgUGUAaeBu0HPgeQB+QI OgiSCOwJSQmoCgkKbQrTCzwLqAwWDIYM+Q1vDeYOYA7dD10P3xBkEOsRdhIDEpQTJxO9 FFYU8RWOFisWyRdoGAkYqxlQGfgaoxtQHAAcsx1pHiIe3R+aIFghFSHSIo4jSyQKJMol jSZTJxsn5ii0KYQqVyssLAMs2i2xLoYvWjAuMQQx3DK2M5I0cTVSNjY3HDgFOPE54DrS O8k8xD3EPsc/z0DZQeZC9kQIRR5GN0dSSHFJkUq0S9VM9U4STyxQRlFgUn1Tm1S9VeFX B1gwWVxailu5XOpeHF9NYH1hrWLdZA5lQWZ3Z69o6Woma2ZsqG3tbzZwgnHUcyx0jHXx d114zHo+e7N9K36mgCOBpIMnhK2GNYe+iUaKyoxLjcmPRpDDkkOTxZVJltCYWpnnm3Wd B56boDOh0KN0pSCm1KiPqk6sEK3Vr52xaLM3tQi23bi1uo+8bL5JwCTB/MPSxajHgMlb yznNGs7+0OXSz9S71qvYndqU3JHel+Cr4srk8ucf6VDrhe2+7/nyOfR89sL5Dfta/av/ /wAAAAIABgAMABUAHwArADgASABZAGsAfwCVAKwAxADeAPoBFgE1AVQBdQGYAbwB4QII AjACWAKAAqkC0gL8AycDVAODA7UD6QQfBFgEkgTPBQ4FTwWSBdcGHgZoBrMHAAdPB6AH 8ghGCJwI9AlPCasKCgprCs8LNgueDAoMdwzoDVsN0A5JDsQPQQ/CEEUQyxFUEeASbhMA E5QUKxTEFWAV/BaaFzgX2Bh6GR8ZxxpxGx4bzhyBHTcd8B6sH2kgJyDlIaMiYCMfI98k oSVmJi4m+CfFKJUpZyo8KxQr7SzHLaAueC9QMCgxATHcMrkzmTR8NWE2STczOCE5EToE Ovw7+Tz8PgM/D0AfQTJCSENiRH5FnUa/R+RJDEo2S2JMjE21TtpP/VEgUkNTaVSRVbtW 6VgZWUxaglu7XPZeM19xYK5h6WMkZGBlnWbdaB5pY2qqa/NtQG6Pb+FxNnKPc+51VHbB eDR5rXsrfKt+L3+2gUCCzIRbhe2HgYkXiq6MRI3Xj2WQ8JJ5lASVkJcfmLGaRpvenXif FqC2olqkAqWvp2SpIarmrLCugLBSsii0ArXet725n7uEvWu/U8E9wyTFB8bmyMDKmsx0 zlHQMNIT0/jV4NfL2bjbqd2b347hf+Nq5U/nLukK6ufsxu6n8IrycPRY9kP4Mfoh/BP+ CP//AABkZXNjAAAAAAAAABNMRUQgQ2luZW1hIERpc3BsYXkAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAABAAAADGVuVVMAAAAkAAAAHABMAEUARAAg AEMAaQBuAGUAbQBhACAARABpAHMAcABsAGEAeW1tb2QAAAAAAAAGEAAAkjYCf3gNxkOE gAAAAAAAAAAAAAAAAAAAAAB0ZXh0AAAAAENvcHlyaWdodCBBcHBsZSwgSW5jLiwgMjAw OQA= </data> <key>ReadOnly</key> <string>NO</string> <key>RowAlign</key> <integer>1</integer> <key>RowSpacing</key> <real>36</real> <key>SheetTitle</key> <string>Canvas 1</string> <key>SmartAlignmentGuidesActive</key> <string>YES</string> <key>SmartDistanceGuidesActive</key> <string>YES</string> <key>UniqueID</key> <integer>1</integer> <key>UseEntirePage</key> <false/> <key>VPages</key> <integer>1</integer> <key>WindowInfo</key> <dict> <key>CurrentSheet</key> <integer>0</integer> <key>ExpandedCanvases</key> <array> <dict> <key>name</key> <string>Canvas 1</string> </dict> </array> <key>Frame</key> <string>{{750, 201}, {710, 778}}</string> <key>ListView</key> <true/> <key>OutlineWidth</key> <integer>142</integer> <key>RightSidebar</key> <false/> <key>ShowRuler</key> <true/> <key>Sidebar</key> <true/> <key>SidebarWidth</key> <integer>120</integer> <key>VisibleRegion</key> <string>{{-184, -145}, {942.623, 1022.95}}</string> <key>Zoom</key> <real>0.61000001430511475</real> <key>ZoomValues</key> <array> <array> <string>Canvas 1</string> <real>0.61000001430511475</real> <real>0.56000000238418579</real> </array> </array> </dict> <key>saveQuickLookFiles</key> <string>YES</string> </dict> </plist>
# | Change | User | Description | Committed | |
---|---|---|---|---|---|
#1 | 8331 | Matt Attaway |
Adding initial version of MacMenu for Perforce MacMenu is a helpful Perforce client that sits in your toolbar. It allows you to run standard Perforce operations on the document that is open the currently active editor/viewer. |